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Abstract

For a block-fading channel, this paper optimizes the allocation of redundancy between packet-level erasure
coding (which provides additional packets to compensate for packet loss) and physical layer channel coding (which
lowers the probability of packet loss). After some manipulation, standard optimization techniques determine the
trade-off between the amount of packet-level erasure coding and physical-layer channel coding that minimizes the
transmit power required to provide reliable communication. Our results indicate that the optimal combination of
packet-level erasure coding and physical-layer coding provides a significant benefit over pure physical-layer coding
when no form of channel diversity is present within a packet transmission. However, the benefit of including
packet-level erasure coding diminishes as more diversity becomes available within a packet transmission. Even
with no diversity within a packet transmission, this paper shows that as the total redundancy becomes large the
optimal redundancy for packet-level erasure coding reaches a limit while the optimal redundancy for physical-layer
coding continues to increase. Hence providing limitless redundancy at the packet-level with rateless codes such as
fountain codes is not the best use of limitless redundancy for block-fading channels.

Index Terms

Cross-layer coding, cross-layer optimization, selection diversity, rateless codes, Rayleigh fading channels.

I. INTRODUCTION

W IRELESS channels require physical-layer coding in order to combat the interference and noise

faced by every packet and some form of packet-level erasure coding to deal with packets lost

to severe fading. Because both forms of coding draw from a common pool of available redundancy, the

transmitter should optimize the allocation of redundancy between these two coding mechanisms. This

paper provides a convex-optimization approach to determine the optimal allocation for wireless block

fading channels. Applying this approach provides insight into how the allocation of redundancy between
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these two coding mechanisms evolves as more redundancy becomes available and how available diversity

affects the value of packet-level erasure coding.

Several recent works [1], [2], and [3] consider a similar system model and jointly optimize the code

rates at the physical layer and packet level. In [3], the authors restrict their attention to ARQ for the

packet-level code and optimize the physical-layer rate in order to maximize overall throughput. In [1] and

[2], the authors consider maximizing throughput (and the equivalent dual problem of minimizing outage

probability [1]) instead of optimizing the system to work over the widest possible range of SNR’s by

minimizing the required transmit power as this paper does. Neither [1] nor [2] considers the effect of

diversity on the optimal solution.

Luby et al. noticed the need to consider cross-layer effects in the simulation-based analysis provided in

[5] for 3GPP. Vehkapera and Medard also note the importance of cross-layer coding in [7]. In a similar

vein to the present work, the authors of [14] determine the total number of expected channel uses required

to transmit a packet if retransmission is allowed. However, the packet-level coding in [14] is restricted to

simple retransmission. In this regard, this paper generalizes their results. Xiao [15, Ch. 5] considers the

problem of jointly balancing linear network coding with packet-length in multi-hop networks to minimize

expected delay (between the source and sink nodes), but neither fading nor diversity are considered in

[15, Ch. 5].

In recent years, “rateless” packet-level erasure coding schemes such as Raptor coding [4] and fountain

codes have gained widespread popularity. These schemes incrementally add redundancy as required; in

principle they can add a limitless amount of redundancy.

In a pure erasure channel where packets are received noiselessly unless they are erased, no physical

layer coding is necessary and it suffices to use a packet-level erasure code designed for the particular

probability of erasure. In scenarios where this erasure probability is not known exactly, rateless codes are

frequently employed.

In contrast, on a channel where packets are never erased but always distorted by AWGN with some

known SNR that remains constant from packet to packet, physical-layer channel coding is essential and no
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packet-level erasure coding is necessary. If the physical-layer code rate does not exceed capacity we can

expect to decode all packets reliably. On the other hand, if the physical-layer code rate exceeds capacity,

all packets will be declared erasures overwhelming the erasure code so that, again, it provides no benefit.

Wireless block fading channels are at neither of the two extremes discussed above. Both packet-level

and physical-layer coding mechanisms play important roles, and the allocation optimization presented in

this paper becomes important to obtaining the best performance.

It has been noted (see for example [6]) that rateless coding can be used to drive the outage probability

to zero in a fading environment. A fundamental question is how to allocate such a stream of incremental

redundancy. Should it all be applied to packet-level erasure coding as a “rateless” code typically would

do? Perhaps surprisingly, a key result of this paper is that as the amount of available redundancy grows

large, additional redundancy should be allocated entirely to the physical-layer channel code for block-

fading wireless channels. Thus, packet-level “rateless” erasure codes are not the best approach for these

channels.

Diversity is another important factor affecting the optimal allocation of redundancy between the packet

level and the physical layer. This paper shows that packet-level erasure coding provides essentially the

same benefit as a form of diversity. Specifically, our results show that the optimal amount of redundancy

that should be applied to packet-level erasure coding decreases as either the selection diversity order or the

number of block fades per packet increases. Either form of diversity (or their combination) can become

large enough that packet-level erasure coding provides only a small benefit to the communication system.

To summarize, this paper studies the optimal allocation of redundancy between a packet-level erasure

code and a physical-layer channel code for a Rayleigh block-fading channel with or without selection

diversity. The paper is organized as follows: Section II introduces the communication model. Section

III expresses the tradeoff between the physical-layer channel code rate, RC , and the packet-level erasure

code rate, RE , as an explicit optimization problem with a clear solution path. Section IV discusses several

special cases of interest. The three subsections of Section IV each reduce one of these special cases to

a form that may be solved explicitly using standard optimization methods. Section V gives numerical
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results. Section VI shows that in the limit of large redundancy, additional redundancy should be allocated

entirely to the physical-layer channel code. Thus, packet-level “rateless” erasure codes are not optimal

for fading channels. Section VII delivers the conclusions.

II. COMMUNICATION MODEL

This paper considers a communication model where a single transmitter attempts to deliver a message

consisting of m packets to a receiver employing N -fold selection diversity. In other words, the receiver

has N independent “looks” at each transmitted packet and decodes the best one (See [13, p. 208] for a

detailed discussion on selection diversity). One application for this model is a coded message broadcast to

N distinct but cooperating receivers through N i.i.d. channels. The receivers recover the original message

by sharing at the packet-level [8].

Let the transmission time be T channel uses. The optimal allocation of redundancy varies with T . For

a given transmission time T , the transmitter uses a packet-level erasure code to encode the original m

information packets (each with information content k nats/packet1) into m/RE erasure-coded packets.

The quantity RE is defined to be the rate of the erasure code. The value of 1/RE need not be an integer,

but m/RE will always be an integer in practice. We also have RE ≤ 1. Each of the m/RE erasure-coded

packets is then encoded for transmission over a wireless channel using a physical-layer channel code with

rate RC [nats/channel-use]. For an elapsed transmission time of T channel uses, RE and RC must be

chosen to satisfy T = mk/(RERC). We can also write the relationship between RE and RC as

mk/T = RERC . (1)

Since the LHS of (1) is constant, there exists a tradeoff between the amount of erasure coding, evident

from RE , and the amount of channel coding, evident from RC , that can be applied to a message for a

fixed value of T . Indeed, RE and RC are inversely proportional to one another. A particular allocation of

redundancy selects a point in this tradeoff between RE and RC .

1For convenience, we use the natural logarithm throughout this paper, and therefore all information quantities are in terms of nats rather
than bits.
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The model assumes N -fold selection diversity, i.e., the receiver receives each of the m/RE packets

through N independent channels and chooses the best signal for decoding on a packet-by-packet basis.

Each channel is a block-fading Rayleigh channel with additive white Gaussian noise. That is, y = ax+n

where y is the received symbol, x is the transmitted symbol, a is the Rayleigh fading coefficient, and n

is additive white Gaussian noise (AWGN) with variance σ2.

The SNR for given fading coefficient a is a2E[x2]
σ2 , where E[x2] = P is the transmit power. Without

loss of generality, we assume that E[a2] = 1 and σ2 = 1. Thus, the SNR at the receiver for the Rayleigh

fading cases treated in this paper follows an exponential distribution with parameter 1/P (see [13, Ch. 6]

or similar for a derivation). Specifically, Pr(SNR < x) = 1− e−x/P . Note that the average SNR is P .

We characterize the block fading nature of the channel by the number of fading blocks F . F is the

number of independent fades that each packet experiences in each channel. For example, if F = 1, a

packet is received at a single SNR through each channel. If F = 2, one half of the packet is received at

one SNR and the other half at another (independent) SNR through each channel.

Due to the N -fold selection diversity, the receiver has N independent attempts to decode each of the

m/RE channel-coded packets and determines whether the decoding was successful based on an indicator

mechanism such as a cyclic redundancy check. If a particular channel-coded packet was successfully

decoded (i.e. if the CRC passes for at least one of the N decoding attempts), we say that this packet was

successfully received.

The receiver successfully recovers the original message if it successfully decodes a sufficiently large

subset of the original m/RE erasure-encoded packets. To be more precise, the original message can be

successfully recovered if m̂ = (1 + δ)m of the original m/RE erasure-encoded packets were successfully

received by the receiver, where δ is the overhead of the packet-level erasure code. For Reed-Solomon

codes this overhead is zero. For Raptor codes δ ≈ 0.038 for m = 65536 (see [4]). It suffices to consider

only m̂ in our analysis because, for a known m and δ (which are design parameters), m̂ can be computed

for a specific erasure code.

Furthermore, we characterize our channel code by the gap parameter ε and say that a packet is
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successfully received during the ith decoding attempt if (1+ε)RC < Ci, where Ci is the capacity of the ith

channel from the transmitter to the receiver. Here we make the implicit assumption that the physical-layer

codeword length, k/RC , is sufficiently large so that reliable communication is possible within the given

gap, ε, from channel capacity.

Remark 1: This paper does not discuss the details of physical-layer or packet-level code design since

we are interested in the optimal allocation strategy, not the actual codes that can be used to implement

it. The existence of good packet-level erasure codes and physical-layer channel codes is well established.

III. OPTIMIZING THE TRADEOFF BETWEEN RE AND RC

This section presents the optimization problem at the heart of this paper. Define the optimal redundancy

allocation as follows:

Definition 1: An allocation strategy (selection of RE and RC) is optimal if it minimizes the transmitter

power P required to ensure that the probability of the message not being correctly received is below a

specified threshold κ1.

For given parameters T , m, and k, (1) shows that RC implies RE and vice versa. Thus, optimization

can focus on finding the optimal RC . Note also that RC ≥ km̂/T . This lower bound on RC follows from

requirement that the transmission of the encoded message must fit into the number of channel uses in the

transmission time T .

The probability that the message is not recovered is the probability that the receiver does not successfully

decode the required m̂ packets. The largest tolerable message error probability, denoted κ1, is a design

parameter and will vary depending on the reliability required for a particular application. Noting that N

is the selection diversity order and that the number of transmitted packets (assumed to be an integer) is

RCTk−1, we can express this constraint on message error probability as

m̂−1∑

i=0




RCTk−1

i


 (1− pN

e )i(pN
e )RCTk−1−i ≤ κ1 . (2)
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In (2), pe is the packet-erasure probability, or the probability that a particular packet is not successfully

decoded during a particular one of the N attempts. This is the probability that the instantaneous channel

capacity C is not sufficient to support reliable transmission of the packet, i.e. C < RC(1 + ε). The

instantaneous capacity, which is a random variable, is defined as follows:

C =
1

F

F∑

j=1

1

2
log(1 + γj) .

Note that pe is independent of packet index i because in our model the block fading channel is i.i.d.

and memoryless from packet to packet. However, pe does depend on RC (which we make explicit by

introducing the notation pe(RC)). Specifically:

pe(RC) = Pr


cFRC >

F∑

j=1

log(1 + γj)


 , (3)

where c = 2(1 + ε) is a constant introduced for notational convenience, and γj is the SNR experienced at

the receiver during fade j ∈ {1, . . . , F}. In (3), pe(RC) is the outage probability of a Rayleigh block-fading

channel [12, p. 105].

Constraint (2) is difficult to manipulate directly, but fortunately we can use a Gaussian approximation

which is tight if m̂ is relatively large. Define Sj to be a random variable indicating the success or failure

of transmission of the jth packet over a particular channel. Let Sj = 1 if packet j is received and Sj = 0

otherwise.

The number of packets successfully received over a particular channel is S = S1 +S2 + · · ·+SRCTk−1 .

Thus Constraint (2) may be rewritten as Pr (S ≤ (m̂− 1)) ≤ κ1.

The Central Limit Theorem allows approximation of S by a Gaussian random variable with Mean(S) =

RCTk−1(1− pN
e ) and Var(S) = RCTk−1pN

e (1− pN
e ). This Gaussian approximation yields the following
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optimization problem:

minimize P

subject to: pe(RC) = Pr

(
cFRC >

F∑

i=1

log(1 + γi)

)
(4)

Φ


(m̂− 1)−RCTk−1(1− pN

e )√
RCTk−1pN

e (1− pN
e )


 ≤ κ1 (5)

RC ≥ km̂

T
, (6)

where Φ(x) is the CDF of a standard normal random variable.

Note that the minimization takes place over the transmit power P , which parameterizes the distributions

of the γi’s. This optimization minimizes the transmit power required for the system to perform with the

desired reliability κ1. Equivalently, for a system in which P is fixed, this optimization provides the rate

allocation that minimizes the SNR at which the desired reliability κ1 is achieved.

In the above problem formulation, we can rewrite Constraint (5) as

(m̂− 1)−RCTk−1(1− pN
e ) + κ2

√
RCTk−1pN

e (1− pN
e ) ≤ 0 , (7)

where κ2 = −Φ−1(κ1) > 0. Introducing the change of variables X =
√

RCTk−1(1− pN
e ) and Y =

√
pN

e ,

Constraint (7) reduces to

Y ≤ 1

κ2

(
X − m̂− 1

X

)
. (8)

Since (1− pN
e ) + pN

e = 1 we also have

1 =
k

RCT
X2 + Y 2 . (9)

Because pe is a decreasing function of P when RC is constant and Y is a monotonically increasing

function of pe, Y is a monotonically decreasing function of P for a fixed RC . Therefore, maximizing Y

for a fixed RC also minimizes P and therefore ensures optimality.
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Y ≤ 1

κ2

(X − m̂−1

X
)

Y

X

k

RcT
X

2 + Y
2 = 1

Optimum Point

√
m̂ − 1−

√
m̂ − 1

√
RcTk−1−

√
RcTk−1

1

−1

Fig. 1. Geometric interpretation of Constraint (2) using the change of variables X =
√

RCTk−1(1− pN
e ) and Y =

√
pN

e . The optimum
point is used to compute p∗e(RC).

Figure 1 shows graphically how Y is maximized. The non-negativity of X and Y restricts our attention

to the nonnegative quadrant of Figure 1. Constraint (8) restricts our attention to the shaded region in Figure

1, and Constraint (9) indicates that our solution must lie on the ellipse in Figure 1. Thus the maximum

(and therefore optimal) Y is the star in the nonnegative quadrant of Figure 1 at the intersection of the

ellipse described by (9) and the curve where (8) achieves equality.

Another change of variables reduces the fourth-order equation obtained by combining (8) and (9) to

produce a quadratic equation that preserves the solution of interest as follows: Let Z = (1−Y 2) to obtain

the following equation, where κ3 = κ2
2:

Z2RCTk−1(RCTk−1 + κ3)− ZRCTk−1(2(m̂− 1) + κ3) + (m̂− 1)2 = 0 . (10)

Solving (10) for Z (we are interested in the larger root) gives pe as a function of RC since Z =

1− pN
e (RC). This yields the following optimization problem:
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minimize P

subject to: pe(RC) = Pr

(
cFRC >

F∑

i=1

log(1 + γi)

)
(11)

Z2RCTk−1(RCTk−1 + κ3)− ZRCTk−1(2(m̂− 1) + κ3) + (m̂− 1)2 = 0 (12)

Z = 1− pN
e (RC) (13)

RC ≥ km̂

T
. (14)

Denote as p∗e(RC) the value of pe(RC) that solves (13) with Z taken to be the larger root of (12). This

effectively combines Constraints (11)-(14) into a single constraint which yields the following compact

expression for our optimization problem:

minimize P

subject to: p∗e(RC) = Pr

(
cFRC >

F∑

i=1

log(1 + γi)

)
(15)

RC ≥ km̂

T
. (16)

In general, no closed form expression exists for the probability distribution that is required to evaluate

(15) accurately. We therefore resort to analyzing several special cases for which we can either enforce

Constraint (15) by computing the distribution of
∑F

i=1 log(1 + γi) exactly or by using an approximation.

The analysis of this section may be summarized as follows: The choice of channel-coding rate RC affects

two things. First, it determines the packet erasure probability as a function of P through (3). Second,

it determines the message error probability as a function of the packet erasure probability through (2).

The optimization seeks the value of RC that balances these two effects so that reliable communication

(acceptably low message error probability) occurs at the minimum possible P . That is, it balances the

redundancy used to lower the packet-erasure probability with the redundancy left available for erasure

correction.
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IV. EXPLICIT SOLUTION OF THREE CASES

We now apply the results of the previous section to three special cases.

A. Case 1: Single Fade per Packet

In this case, F = 1, so Constraint (15) can be rewritten as:

p∗e(RC) = Pr
(
ecRC − 1 > γ

)

= 1− e−(ecRC−1)/P . (17)

Solving for P yields

P = − ecRC − 1

log (1− p∗e(RC))
. (18)

Where (17) and (18) follow because γ is an exponential random variable with mean P . In this case, the

optimization problem is now to minimize (18) subject to the inequality constraint (16).

Differentiating P with respect to RC allows us to solve this case by standard optimization techniques

which we mention briefly at the beginning of Section V. Several more details are given in the Appendix.

See [10] for a comprehensive review of standard optimization techniques.

B. Case 2: Many Fades per Packet

If there are many fades per packet (i.e. F À 1), we can use a Gaussian approximation in place of

Constraint (15). Specifically, (15) becomes:

√
F

cRC − µ(P )√
Var(P )

= Φ−1 (p∗e(RC)) . (19)

Where µ(P ) = Mean(log(1 + γ)) and Var(P ) = Var(log(1 + γ)) for γ an exponential random variable

with mean P . Φ(x) is, again, the CDF for a standard normal random variable.
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If we introduce the auxiliary equations:

α(P ) =
∫ ∞

P−1

1

t
e−tdt and (20)

β(P ) =
∫ ∞

P−1

log(t)

t
e−tdt , (21)

it can be shown, after some intermediate calculus, that:

µ(P ) = e1/P α(P )

Var(P ) = 2e1/P β(P ) + 2e1/P log(P )α(P )− e2/P α2(P ) .

The LHS of (19) must be monotonic in P , because for fixed RC , the probability of an erased packet

decreases as P increases. Therefore, for a fixed RC , we can solve (19) for P numerically by bisection.

The optimization problem can then be solved by standard methods using the derivatives of P with respect

to RC obtained by differentiating (19) implicitly.

Remark 2: It should be pointed out that high quality numerical methods exist for computing the

exponential integral (20). However, the authors are unaware of any accurate methods for computing

the log-exponential integral (21) when P is small. Therefore, (19) can only be reliably solved for P when

P is relatively large (i.e. when the average SNR is high). The next subsection provides a solution for low

average SNR.

C. Case 3: Low Average SNR

When the average SNR is low, we can use the approximation log(1 + γ) ' γ which is tight when γ is

small. In this case, (15) simplifies to:

p∗e(RC) = PΓ

(
cFRC |F, P−1

)
. (22)
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In (22), PΓ(x|F, P−1) is the CDF for a Gamma random variable with parameters F and P−1. Explicitly,

this function can be written as:

PΓ(x|F, P−1) =
P−F

(F − 1)!

∫ x

0
tF−1e−t/P dt . (23)

Using a change of variables, we can solve for P as:

P =
cFRC

P−1
Γ (p∗e(RC)|F, 1)

. (24)

Where P−1
Γ is the inverse of the Gamma CDF defined by:

P−1
Γ (y|F, 1) = {x : PΓ(x|F, 1) = y} . (25)

We can now solve the optimization problem using the derivatives obtained from (24).

V. NUMERICAL RESULTS

This section presents and discusses the results obtained by solving instances of the three optimization

problems presented in the previous section. The barrier method of optimization produced these results.

Each of the three optimization problems are solved via standard optimization techniques. A complete

description of these techniques is beyond the scope of this paper but can be found in any standard

optimization text. The interested reader is directed to [10, Ch. 11] for a description of the barrier method

used here.

It should be noted that the results in this section are analytical results obtained by solving the opti-

mization problems described in the previous section and are not obtained via Monte Carlo simulation.

Figure 2 plots typical curves of the minimum average operating SNR, which is equal to 10 log10(P ), as

a function of R−1
E . Since these curves are calculated using F = 1, they do not involve the approximations

introduced in Cases 2 and 3 of Section IV. The first characteristic to note is that the curves are convex with

a global optimum. This confirms our intuition that there should be an optimal tradeoff between RC and

RE . The next characteristic to note is that the optimal minimum average operating SNR is decreasing as
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Fig. 2. Typical curves of the minimum operating SNR (10 log10 P ) as a function of R−1
E for selection diversity ranging from N = 1 to

N = 64. These curves were generated for an overall code rate of 1/2 (Tk−1 = 200, m = m̂ = 100), ε = 0.05, F = 1, and κ1 = 10−3.
Solid circles represent the system performance with optimal cross-layer coding. Solid stars show performance of pure physical-layer coding
with no packet-level erasure coding.

N increases. Again, this confirms our intuition that selection diversity allows a message to be successfully

communicated over a channel with a lower average SNR. The final interesting point is that the optimizing

R−1
E is decreasing and approaching 1 as N increases. This suggests that the redundancy required to tolerate

packet erasures can be in the form of redundant packets, created by an erasure code, or in the form of

diversity such as the selection diversity studied here.

Figure 2 also shows that the gain achievable by introducing more diversity is most significant when

N is small. This is essentially a standard diversity result. However, it is interesting to note that using

the optimal cross-layer coding scheme (i.e. a combined packet-level and physical-layer coding scheme)

effectively gives the same performance as using a physical-layer-coding-only scheme with more selection

diversity. If diversity is not present, cross-layer coding allows us to create diversity through erasure coding

which has the effect of adding virtual independent channels to the system. In the case studied in Figure 2,

cross-layer coding with no diversity is almost as good as pure physical-layer coding with 4-fold selection

diversity. Note that in this case cross-layer coding provided a 22 dB gain over pure physical-layer coding.
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Fig. 3. Achievable gain by using the optimal cross-layer coding strategy versus a pure channel coding (RE = 1) strategy as a function of
N . All curves were generated using m = m̂ = 100, ε = 0.05, and κ1 = 10−3. The corresponding optimization case (and solution method)
defined in Section IV used to generate each curve is indicated in the legend.

Figure 3 plots the gain achieved by using the optimal cross-layer coding strategy instead of a pure

physical-layer coding strategy. For N = 1 and F = 1, we see that optimal cross-layer coding provides a

benefit of over 20 dB as compared to pure physical-layer coding. However, Figure 3 also shows that the

achievable gain decreases dramatically as diversity is introduced either by increasing the selection diversity

order N or the block fading diversity per packet F . This is an important result because it suggests that

near-optimal performance does not require any packet-level erasure coding when sufficient diversity is

present. We will comment more on the practical implications of this observation at the end of this section.

For F = 1, Figure 4 explores the evolution of the optimal transmission strategy as a function of

instantaneous rate km/T of the overall cross-layer code for a range of selection diversity orders from

N = 1 to N = 64. Figure 4 shows that the optimal erasure code rate R∗
E is an increasing function

of selection diversity order N . This implies that the redundancy created by the erasure code becomes

less useful as we gain diversity in terms of the independent observations possible through independent

channels.

Figure 4 also shows the limit points for R∗
E and R∗

C as the instantaneous overall code rate approaches
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Fig. 4. Evolution of the optimal packet-level erasure coding rate R∗E and the optimal physical-layer channel coding rate R∗C as a function
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F = 1. All curves were generated using m = m̂ = 100, ε = 0.05, and κ1 = 10−3. The dashed lines in the figure extend the curves to their
respective limits as km/T → 0 (i.e. as the elapsed transmission time T →∞).

zero. R∗
E converges to nonzero limit points, but R∗

C converges to zero. This indicates that as T grows very

large (and instantaneous overall code rate km/T becomes very small) the optimal physical-layer code

rate continues to decrease towards zero but the optimal packet-level erasure code rate does not. Section

VI presents the derivation of the limit points and further discusses their interpretation. We further note

that R∗
E is insensitive to changes in T when N is large.

Although not shown in Figure 4, similar computations reveal that R∗
E is nearly one in all cases when

F is large. This implies that the diversity provided by the multiple fades is sufficient, and very little

redundancy is required in the form of erasure protection. Note that if there are sufficiently many fades

per packet ergodicity makes it unlikely that the observed fading characteristics of one packet would be

markedly different from those of another packet. Therefore, severely faded packets are no longer a key

obstacle. Thus all (or almost all) available coding resources should go into the physical channel code

which does not assist with recovery from severely faded packets, but rather reliably makes the number of

erased packets negligible.
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In summary, the gains achieved by having packet-level erasure coding are marginal except when both

N and F are small. If either N or F is sufficiently large, a nearly optimal strategy is pure physical-layer

coding. This is important from a practical standpoint because a gain on the order of a fraction of a dB

may not merit the cost of implementing the packet-level erasure coding mechanism. If N and F are both

small, we may be able to take advantage of the insensitivity of R∗
E with respect to T to implement another

simple, yet nearly optimal, coding design. This is discussed in the next section.

Remark 3: Our analysis has treated F as a parameter independent of RC . In a practical application, F

is likely to increase linearly with the transmission time of a packet in a time-varying channel. In such a

scenario, F is inversely proportional to RC . This would make R∗
E nearly one in most situations based on

the results given in this section.

VI. ASYMPTOTIC RESULTS AND RATELESS CODING

This section shows that the optimal erasure coding rate R∗
E changes very little after the elapsed

transmission time, T , becomes sufficiently large. In other words, the limit of R∗
E as km/T → 0 exists

and is bounded away from zero. This is a particularly interesting result because it indicates that rateless

packet-level erasure codes (e.g. Raptor codes) are not well-suited for fading channel applications.

Note that as more transmission time elapses and T becomes large, the instantaneous coding rate, km/T ,

becomes very small, allowing reliable communication at a low average SNR. Therefore, we can use the

low SNR approximation to show that R∗
E is independent of T when T is large.

For fixed T , P ∝ PT so that minimizing P is equivalent to minimizing PT . Using the low SNR

approximation (24),

PT =
cFRCT

P−1
Γ (p∗e(RC)|F, 1)

. (26)

Introducing the auxiliary variable ` = RCT , we can rewrite (10), (16), and (26) all in terms of `:

minimize
cF`

P−1
Γ (p∗e(`)|F, 1)

subject to: ` ≥ km̂ .
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Where p∗e(`) = (1− Z)1/N , and Z is the larger root of the quadratic equation:

Z2`k−1(`k−1 + κ3)− Z`k−1(2(m̂− 1) + κ3) + (m̂− 1)2 = 0 .

Because the optimization problem involves RC and T only through their product `, changing T does

not change the optimum `. Rather, it changes the required value of RC to maintain the optimal ` value.

Thus, as T →∞, RC → 0. Figure 4 shows this behavior in which RC always converges to 0 as T →∞

(or mk/T → 0).

Note from (1), RE = km/`. In this large-T , high-SNR region, increasing T does not change ` so it

does not change RE . Again, Figure 4 shows this behavior in which RE converges to a finite positive rate

while RC converges to zero.

This implies that, after the elapsed transmission time becomes large, the ever-increasing redundancy of

a rateless coding architecture should be applied to the physical-layer channel coding.

Remark 4: Separate from the above analysis, RE is insensitive to T when F (or N ) is large since,

regardless of T , little or no erasure coding is needed producing RE ≈ 1.

A practical transmission strategy that would achieve near-optimal performance across all scenarios

would have the transmitter select an erasure code rate RE based on some estimate of the the average

channel SNR (and therefore the required transmission time T ). The transmitter would then use a rateless

physical-layer channel code (See e.g. [11]) to encode the erasure-coded packets and send additional

physical-layer coded symbols for each packet on a round-robin basis. This method would guarantee that

the transmission fills the entire transmission window, that RC would be as low as possible (which lowers

p∗e(RC)), and that each erasure coded packet is transmitted at nearly the same rate.

VII. CONCLUSION

In this paper, we developed techniques to determine the optimal tradeoff of redundancy allocation

between packet-level erasure coding and physical-layer channel coding for wireless fading channels with

a specified degree of selection diversity and a specified number of fades per packet. We provided results
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for N -fold selection diversity schemes with N ranging from 1 to 64. The optimal (RC , RE) point for

each situation permits reliable message reception while minimizing transmit power.

Three formulations of the general optimization problem provide the optimal (RC , RE) pairs for a wide

range of interesting cases. The results demonstrate the relationship between the system parameters and

the optimal solution. The largest amount of packet-level erasure coding in the cases studied corresponded

approximately to a rate-1/3 erasure code. Little erasure coding is needed when diversity is provided by a

high degree of selection diversity or a large number of independent fades per packet. Conversely, when

little or no diversity is available, packet-level erasure coding combined with physical-layer channel coding

offers a significant gain over pure physical-layer channel coding. In the cases we studied, gains of up to

25 dB were achieved using the optimal combination instead of pure physical-layer channel coding.

We show that the optimal amount of packet-level erasure code redundancy is partially determined by

the amount of diversity available in the system. The more diversity available through multiple independent

fading instances or multiple independent channels, the less erasure coding is needed.

We also found that the optimal packet-level erasure coding rate approaches a non-zero limit as the

elapsed transmission time grows (or equivalently as the amount of available redundancy grows). In

contrast, the optimal physical-layer channel coding rate approaches zero. This demonstrates that traditional

raptor-style rateless packet-level codes are not the best choice in a wireless fading channel. Instead, it

is the physical-layer channel code that needs to be able to continuously lower its rate with incremental

redundancy. See [11] for a family of capacity-approaching turbo-codes that can be used to generate

incremental redundancy at the physical layer.

APPENDIX

IMPLEMENTATION OF THE

OPTIMIZATION ROUTINE WHEN F = 1

All three cases of the optimization problem presented in Section IV were solved using the Barrier

Method. For details on implementing the Barrier Method, readers are directed to the excellent reference,

[10], by Boyd and Vandenberghe.
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The barrier method provides primal-dual feasible points at each iteration of the optimization procedure.

The dual problem is always convex, and any dual feasible point provides a lower bound on the primal

optimal solution. In our standard implementation of the barrier method, the algorithm terminates when

the duality gap is less than some specified tolerance. This proves that our numerical results are indeed

optimal regardless of the convexity of the optimization problem.

In order to actually do the optimization, one has to derive the first and second derivatives of Z, p∗e(R),

and P with respect to the optimization variable, RC . This can be quite tedious, so the results are provided

in this appendix for convenience. For brevity, we only provide the complete set of derivatives for the case

when F = 1. The other cases require a similar amount of effort to derive.

In order to evaluate the derivatives given by (27)-(32) at a particular value of R, one needs the values

of Z, p∗e(RC), and P . Z can be computed by solving (10) for the larger root, then one can compute

p∗e(RC) = (1− Z)1/N , and consequently P from (18). In what follows, let λ = 1/P .

∂Z

∂RC

= − Z

RC

(m̂− 1)− Z` + (1− Z)κ3

2

(m̂− 1)− Z` + (1− 2Z)κ3

2

(27)

∂p∗e(RC)

∂RC

= − ∂Z

∂RC

(1− Z)1/N−1

N
(28)

∂2Z

∂R2
C

=
1

RC


Z2`R−1

C + ( ∂Z
∂RC

)2RC(` + κ3)

(m̂− 1)− Z` + (1− 2Z)κ3

2

− 2
∂Z

∂RC

(m̂− 1)− 2Z` + (1− Z)κ3

2

(m̂− 1)− Z` + (1− 2Z)κ3

2


 (29)

∂2p∗e(RC)

∂R2
C

=
(1− Z)1/N−1

N


 1−N

N(1− Z)

(
∂Z

∂RC

)2

− ∂2Z

∂R2
C


 (30)

∂λ

∂RC

=
1

1− ecRC

(
cλecRC − ∂p∗e(RC)

∂RC

eλ(ecRC−1)

)
(31)

∂2λ

∂R2
C

=
cecRC

1− ecRC

(
∂λ

∂RC

+ cλ

(
1 +

ecRC

1− ecRC

))
−

eλ(ecRC−1)

1− ecRC


∂2p∗e(RC)

∂R2
C

+

(
∂p∗e(RC)

∂RC

)2

eλ(ecRC−1) +
∂p∗e(RC)

∂RC

cecRC

1− ecRC


 (32)

As a final note, the authors found that it was more convenient to minimize the objective function

f0 = − log(λ) = log(P ) rather than minimize P directly. The reason for this is that the optimization

routine converged faster when optimizing log(λ). The derivatives of this new objective function are easily
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obtained as a function of derivatives (27)-(32).
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