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Abstract—Consider a connected broadcast network of N nodes
that all wish to recover k desired packets. Each node begins
with a subset of the desired packets and broadcasts messages
to its neighbors. In a previous paper we established necessary
and sufficient conditions on the number of transmissions from
each node required for universal recovery (in which each node
recovers all k packets). However, these conditions are numerous
and cumbersome. The present paper gives a series of relatively
simple conditions for universal recovery that apply when the
number of packets is large and the distribution of packets among
the nodes is well behaved.

Our first result, which applies to any fixed network topology,
uses only simple cuts in the network to characterize a set of
transmission strategies such that for any ε > 0 these strategies
require at most kε transmissions above the minimum required for
universal recovery. For certain topologies including nonsingular
d-regular d-connected networks, we explicitly construct trans-
mission strategies that achieve universal recovery while using at
most N transmissions above the minimum even when the total
number of required transmissions is very large. These explicit
constructions essentially resolve the problem completely for many
canonical networks (e.g. cliques, rings, grids on tori, etc.).

I. INTRODUCTION

CONSIDER a connected network of N nodes that all wish
to recover k desired packets. Each node begins with

a subset of the desired packets and broadcasts messages to
its neighbors over discrete, memoryless, and interference-free
channels. Furthermore, every node knows the topology of the
network and which packets each node already knows. The
network seeks universal recovery (i.e. to disseminate the k
packets to every node in the network). This paper identifies
the minimum number of transmissions required for univer-
sal recovery and demonstrates how to efficiently design a
transmission strategy and communication schedule that closely
approach this minimum.

For the special case when the network is a clique, upper
and lower bounds for this problem have been recently de-
scribed in [11]. This paper provides feasibility results and
asymptotic bounds on the minimum number of transmissions
required for the general case. It also provides bounds (within
a constant number of transmissions) on the minimum number
of transmissions required for universal recovery in a general
class of networks which includes many frequently considered
canonical networks. In doing so, it significantly extends the
recent work by the present authors [1].

The problem addressed in this paper is related to the index
coding problem originally introduced by Birk and Kol in [3].
Specifically, generalizing the index coding problem to permit
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each node to be a transmitter (instead of having a single server)
and further generalizing so that the network need not be a
single hop network leads to a class of problems that includes
our problem as a special case in which each node desires to
receive all packets.

In general, nonlinear coding is required to minimize the
required transmissions for the index coding problem. (See
[2], [9].) As discussed above, the universal recovery problem
is distinct from the index coding problem, and it turns out
that linear encoding does achieve the minimum number of
transmissions required for universal recovery.

This paper is organized as follows. Section II states the
problem and introduces basic definitions and notation. Sec-
tion III describes our three main results: (1) necessary and
sufficient conditions describing all transmission strategies per-
mitting universal recovery, (2) the characterization (in terms of
simple cuts in the network) of a set of transmission strategies
requiring at most kε transmissions above the minimum number
required for universal recovery, and (3) explicit transmission
strategies for certain topologies (including many canonical net-
works) that achieve universal recovery while using at most N
transmissions above the minimum number required. Section
IV delivers the conclusions. The Appendix sketches the proofs
of the results.

II. SYSTEM MODEL

This paper considers a network T of N nodes. The network
must be connected, but it need not be fully connected (a
clique). A graph GT = (V,E) describes the specific con-
nections in the network. V is the set of vertices {vi : i ∈
{1, . . . , N}}, each corresponding to a node. E is the set of
edges connecting nodes. Although we assume that the edges in
E are undirected, our work easily extends to directed graphs.

This paper seeks to determine the minimum amount of
communication required to achieve universal recovery of k
desired packets. Each node wishes to recover the same k
desired packets, and each node begins with a (possibly empty)
subset of the desired packets. Specifically, node i begins
with the set of packets Pi ⊆ {p1, . . . , pk}. {Pi}Ni=1 satisfies⋃N
i=1 Pi = {p1, . . . , pk}. Each pj ∈ F, where F is some

sufficiently large finite field (e.g. F = GF(2m)).
This paper considers sequences of networks indexed by the

total number of packets k. In such a sequence, the network
topology is fixed, but the distribution of packets depends on
k. In order to emphasize this dependence on k, we will often
refer to a sequence of packet distributions indexed by k as
{Pi(k)}Ni=1. Naturally, these sets must satisfy

∣∣∣⋃Ni=1 Pi(k)
∣∣∣ =

k.



We say that a sequence of packet distributions is well-
behaved if the limit of the packet distribution

PS , lim
k→∞

1
k

∣∣∣∣∣⋃
i∈S
Pi(k)

∣∣∣∣∣ (1)

exists for all subsets S ⊆ {1, . . . , N}. PS is the limit of the
empirical probability that any node in S receives a particular
packet. Let PcS = 1 − PS . The condition (1) can be replaced
with convergence in probability, as discussed in subsection
III-D.

Let the set Γ(i) be the neighbors of node i. For convenience,
i ∈ Γ(i). There exists an edge e ∈ E connecting two vertices
vi, vj ∈ V iff i ∈ Γ(j). Node i broadcasts messages to its
neighbors Γ(i) over discrete, memoryless, and interference-
free channels. If S is a set of nodes, then we define Γ(S) =
∪i∈SΓ(i). The neighbors of a set S not included in S itself
(i.e., the boundary of S) are denoted ∂(S) = Γ(S) ∩ Sc.

Throughout this paper, we adopt the conventional notation
[k] , {1, . . . , k}. An indexed set (or vector) {x1, . . . , xk}
is referred to by the shorthand notation {xi}ki=1. When the
range of the index is apparent from context, we will sometimes
abbreviate it further as {xi}.

An important consideration is whether packets are consid-
ered indivisible (so that the smallest unit of transmission is a
packet) or packets may be split into chunks so that a fraction
of a packet may be transmitted. The implications of divisible
packets were considered previously in [1]. In this paper, we
maintain a combinatorial approach throughout and assume that
transmissions must consist of an integer number of packets
unless otherwise stated. However, divisible packets can be
modeled by choosing an appropriate sequence of well-behaved
packet distributions in which packets are replicated to produce
the chunks of a subsequent packet distribution.

A. Indivisible Packets

When packets are deemed indivisible, a single transmission
by user i consists of sending a packet (some z ∈ F) to all
nodes j ∈ Γ(i). For the remainder of this section, let M
be the minimum required number of such transmissions that
permit universal recovery. Throughout this paper, we assume
error-free broadcast channels and orthogonal multiple-access
channels (i.e. there is no interference from simultaneous trans-
missions). Thus, the task of determining M is combinatorial.

Example 1 (Line Network): Suppose T is a network of
nodes connected along a line as follows: V = {v1, v2, v3},
E = {(v1, v2), (v2, v3)}, P1 = {p1}, P2 = ∅, and P3 = {p2}.
Note that each node must transmit at least once in order for
all nodes to recover {p1, p2}, hence M ≥ 3. Suppose node 1
transmits p1 and node 3 transmits p2. Then (upon receipt of p1

and p2 from nodes 1 and 3) node 2 transmits p1⊕p2 where ⊕
indicates addition in the finite field F. This strategy requires 3
transmissions and allows each user to recover {p1, p2}. Hence
M = 3.

Example 1 demonstrates a transmission strategy that uses
two rounds of communication. The broadcasts by node i in

a particular round of communication can depend only on the
information available to node i prior to that round (i.e. Pi and
previously received transmissions from neighboring nodes). In
other words, the broadcasts are causal.

Example 2 (Clique): Suppose T is a network of nodes
that are fully connected so as to form a clique as follows:
Pi = {p1, p2, p3}\pi, and GT is a clique of size 3. Clearly
one transmission is not sufficient, thus M ≥ 2. It can be
seen that two transmissions suffice: let node 1 transmit p2

which lets node 2 have P2 ∪ p2 = {p1, p2, p3}. Now, node 2
transmits p1 ⊕ p3, allowing nodes 1 and 3 to each recover
all three packets. Thus M = 2. Since each transmission
was only a function of the packets originally available at
the corresponding node, this transmission strategy can be
accomplished in a single round of communication.

III. MAIN RESULTS

In this section, we state our main results. In subsection
III-A, we define a set of conditions which are both necessary
and sufficient for universal recovery. In subsection III-B, we
derive asympotic bounds on the number of transmissions
required for universal recovery by considering a slice of the
region defined in subsection III-A. Subsection III-C specializes
the results of subsection III-A for a wide class of networks.
In particular, we demonstrate how to explicitly construct a
transmission strategy which uses at most a constant number
of transmissions more than the minimum number of transmis-
sions required for universal recovery. Subsection III-D sum-
marizes the results in the context of a probabilistic framework
(i.e., when random packet distributions are considered). Proofs
of all results are delayed until the Appendix.

A. Transmission Strategies Permitting Universal Recovery

Let bji be the number of transmissions from node i during
round j. In this way, the total number of packet transmissions
summing over all rounds is

∑N
i=1

∑r
j=1 b

j
i . Also, let {bji}

denote the set of bji values for i ∈ [N ] and j ∈ [r].
Define the region Rr ⊂ ZN×r+ as follows:

{bji} ∈ Rr if and only if:
∀∅ ( S0 ⊆ · · · ⊆ Sr ( [N ] satisfying Sj ⊆ Γ(Sj−1)

for each j ∈ [r], the following inequalities hold :
r∑
j=1

∑
i∈Sc

j
∩Γ(Sj−1)

b
(r+1−j)
i ≥

∣∣∣∣∣ ⋂
i∈Sr

Pci

∣∣∣∣∣ . (2)

Theorem 1: For a fixed number of communication rounds
r, a transmission strategy in which node i makes exactly bji
transmissions during the jth round of communication permits
universal recovery if and only if {bji} ∈ Rr.

Thus, the family of inequalities given by (2) are necessary
and sufficient for universal recovery. These inequalities utilize
sequences of sets of the form ∅ ( S0 ⊆ · · · ⊆ Sr ( [N ]
satisfying Sj ⊆ Γ(Sj−1) for each j ∈ [r]. For convenience,
we refer to this type of sequence of sets as an appropiate
sequence of sets. The inequalities defined by all appropriate



sequences of sets can be thought of as “generalized cutset
bounds” which govern the information flow in the multihop
broadcast networks under consideration.

In this paper, we are interested in the minimum number
of transmissions required to permit universal recovery in a
network. Since the number of transmissions required is finite,
there exists some finite r0 for which a vector {bji} ∈ Rr0
defines a transmission strategy requiring the minimum number
of transmissions.

For any feasible vector {bji} (i.e. one that satisfies {bji} ∈
Rr for some r), a corresponding transmission strategy (in
which user i makes exactly bji transmissions during round
j) can be computed in polynomial time using the algorithm
described in [12]. Therefore, the difficulty in describing a
transmission strategy which achieves (or approaches) the
minimum number of transmissions lies solely in solving a
minimization problem over Rr.

Remark 1: Theorem 1 (and the subsequent results) can be
readily extended to include the case where only a subset of
the nodes wishes to reconstruct the original k packets and the
other nodes serve only as helpers or relays. However, in order
to keep the arguments and notation simple, we restrict our
attention to the case where universal recovery is the objective.

B. Asymptotic Results for General Networks

This section considers what happens asymptotically as the
number of packets k becomes large. Of particular interest is the
case where the sequence of packet distributions {Pi(k)}Ni=1 is
well-behaved as defined in (1).

Theorem 1 characterizes all transmission strategies by
means of a very complicated sequence of cuts. By consid-
ering the asymptotic (large k) case, Theorem 2 simplifies
this result to yield a more meaningful region which still
characterizes feasible transmission strategies of interest. Using
only simple cuts in the network, Theorem 2 characterizes
a sufficient condition permitting universal recovery in the
asymptotic regime under a per-round constraint on the number
of transmissions by each node. In other words, for any ε > 0,
we can find transmission strategies requiring at most kε more
transmissions than the minimum number allowing universal
recovery. This asymptotic result is analogous to a recent result
of Mohajer et. al. [13] for the networks under consideration.

Theorem 2: For a fixed network topology, τ , k/r
fixed, and a well-behaved sequence of packet distributions
{Pi(k)}Ni=1, if {bi} satisfies:∑

i∈∂(S)

bi > τPcS , ∀ ∅ ( S ( [N ] (3)

then any vector {bji} satisfying bji ≥ bi for all i ∈ [N ], j ∈ [r]
permits universal recovery for all sufficiently large k.

The interpretation of Theorem 2 is as follows: if node i is
allowed to make at least bi transmissions per communication
round, then universal recovery is possible if the bi’s flowing
into any set S from its bordering nodes ∂(S) represent a total
information flow larger than the information S is missing.
Theorem 1 yields a corresponding converse.

Theorem 3: Universal recovery is not possible if node i is
allowed to make at most bi transmissions per communication
round and there is some set ∅ ( S ( [N ] for which

∑
i∈∂(S)

bi <
1
r

∣∣∣∣∣⋂
i∈S
Pci

∣∣∣∣∣ .
Equation (3) indicates a possible asymptotic gap of rεr

transmissions between the constraints of Theorem 2 and a
truly optimal transmission strategy computed by optimizing
over the region Rr0 directly. However, a key constraint in
the proof of Theorem 2 is that the number of communication
rounds r grows linearly with k as k → ∞. This yields a
potential gap of kεk transmissions where εk = εr/τ .

From a combinatorial point of view, it is perhaps more
interesting to approximate the minimum number of transmis-
sions required within a constant factor (not depending on k
or r). The next section accomplishes this for a wide class of
networks by constructing transmission strategies that require
at most N more transmissions than the required minimum.

C. Bounding Excess Transmissions by the Number of Nodes

Analysis in [1] analytically computed the minimum number
of transmissions required for universal recovery in clique
networks with a special type of packet distribution. This
section presents tight bounds on the minimum number of
transmissions for a wide class of networks by considering the
asymptotic scenario where k is large.

Vector {bji} is “within ` transmissions of optimal” if the
minimum number of transmissions required for universal re-
covery is M and

∑
i,j b

j
i ≤M+`. In this section, we show for

a wide class of networks that we can construct vectors {bji}
that are within N transmissions of optimal. Recall that N is
the number of nodes in the network. Thus, we can bound the
minimum number of transmissions by the network parameter
N , instead of by a factor linear in k as in the previous section.

Since we plan to determine (or approximate) the minimum
required number of transmissions analytically, it is necessary
to introduce some notational machinery based on the network
topology and the limiting packet distribution {PS}S⊆[N ]. In
what follows, we shall always assume that we are working
with a well-behaved sequence of packet distributions with
limiting distribution {PS}S⊆[N ].

Define A to be the adjacency matrix of the graph GT (i.e.
ai,j = 1 if (i, j) ∈ E and ai,j = 0 otherwise). If A is
nonsingular, we say that the network is nonsingular.

Let ~Pc(k) = [|Pc1(k)| , . . . , |PcN (k)|]T . Assuming A is
nonsingular, define δi(k) =

[
A−1 ~Pc(k)

]
i
, where [~x]i denotes

the ith coordinate of the vector ~x. The following theorem gives
sufficient conditions that, when met, allow us to explicitly
construct a transmission strategy {bji} from the quantities k,
r, δi(k).

Theorem 4: If δi(k) ≥ 0 and there exists some k0 so that



for all k ≥ k0:

1
r

r∑
j=1

∑
i∈Sc

j
∩Γ(Sj−1)

δi(k) ≥

∣∣∣∣∣ ⋂
i∈Sr

Pci (k)

∣∣∣∣∣+ rN

for all appropriate sequences of sets with |Sr| ≥ 2, then
choosing bji so that bji ≥ b 1

r δi(k)c and
∑r
j=1 b

j
i = dδi(k)e

yields a vector {bji} that is within N transmissions of optimal.
Remark 2: If packets are divisible, then we can always

choose {bji} so that
∑r
j=1 b

j
i = δi(k). Thus, the optimum

can be achieved by packet splitting. See [1] for a detailed
discussion regarding divisible packets.

The main application of Theorem 4 is to networks which
have some structure allowing the δi’s to be easily computed.
In this paper, we are particularly interested in the case of d-
regular networks (i.e. every node has d neighbors) and packet
distributions where Pi = ρ for all i ∈ [N ] (i.e. each node
has approximately ρ× k packets). The choice of d-regularity
includes many canonical networks (e.g. cliques, rings, grids on
tori, Cayley graphs, etc.), and the choice of the uniform-type
packet distribution is inspired by those real-world applications
where the networks are approximately homogeneous.

Theorem 5 below requires the network to be d-connected
and nonsingular1. A d-connected network is a network in
which at least d nodes must be removed in order to disconnect
the network. Clearly the connectivity of a d-regular network is
at most d since one can remove the nodes in ∂(i) to disconnect
i from the rest of the network. It turns out (see [14]) that almost
every large random d-regular network is d-connected, therefore
our choice to enforce the d-connectivity criterion serves to
eliminate certain pathological realizations of networks which
would rarely (if ever) appear in practice.

Theorem 5: All nonsingular d-regular, d-connected net-
works with ρ > 0 fixed,

Pi = ρ < PS , ∀i ∈ [N ], ∀S : |S| > 1, (4)

and

(N − |S|) · Pci > d · PcS , ∀S : |S| > N − d (5)

satisfy the conditions of Theorem 4. Accordingly, one can ana-
lytically compute a vector {bji} that is within N transmissions
of optimum. Moreover, for this {bji}, we have that:

1
d

∑
i∈[N ]

|Pci (k)| ≤
∑
i∈[N ]
j∈[r]

bji ≤
1
d

∑
i∈[N ]

|Pci (k)|+N. (6)

In certain situations, some conditions required by Theorem
5 are not necessary. We state these as corollaries.

Corollary 1: If Pi < 1
d+1 , then condition (5) in Theorem 5

can be omitted.
Corollary 2: If PS = 1 whenever |S| ≥ N − d + 1, then

condition (5) in Theorem 5 can be omitted.

1Costello and Vu have recently conjectured that, for d > 2, almost every
large d-regular network is nonsingular (See [15], [16].).

Corollary 3: If the packet distribution satisfies

PS =
1− (1− q)|S|

1− (1− q)N
, ∀S ⊆ [N ],

for any 0 < q < 1, then conditions (4-5) in Theorem 5 can be
omitted.

Whenever the conditions of Theorem 5 or its corollaries are
met, we can explicitly construct a transmission strategy {bji}
that is within N transmissions of optimal. Thus, we have an
analytical expression for transmission strategies that approxi-
mate the performance of the optimum strategy computable by
solving an Integer Linear Program over the region Rr0 .

D. Random Distributions of Packets

Instead of considering well-behaved sequences of packet
distributions as defined in (1), we can instead consider random
distributions of packets which satisfy 1

k

∣∣⋃
i∈S Pi(k)

∣∣ → PS
in probability for all subsets S ⊆ [N ]. Then, by standard
arguments, it can be shown that all the previous results hold
with arbitrarily high probability as k →∞.

One particularly important random distribution that we
consider is when each node has a packet with probability q
independent from other nodes. Necessarily, we must condition
on the fact that each packet is available to at least one node,
yielding:

PS =
1− (1− q)|S|

1− (1− q)N
, ∀S ⊆ [N ]. (7)

Abusing terminology slightly, we call this the independent
distribution.

Due to the importance of this interpretation, we summarize
some of the previous results in this probabilistic context.
Note that regardless of the random distribution considered,
we always require that P[N ] = 1 (i.e., all N nodes collectively
have all the packets).

Theorem 6: Suppose that each of k total packets is dis-
tributed in a nonsingular, d-regular, d-connected network ac-
cording to an i.i.d. process, and that the marginal probability
of a node having a packet is ρ for all nodes. If any one of the
following conditions are true:

1) ρ < 1
d+1 .

2) The probability of any subset of nodes of size greater
than N − d missing a packet is zero.

3) Packets are distributed according to the independent
distribution (7).

then the transmission strategy {bji} obtained by choosing bji
so that bji ≥ b 1

r δi(k)c and
∑r
j=1 b

j
i = dδi(k)e yields a vector

{bji} that is within N transmissions of optimal and is feasible
with arbitrarily high probability (as k → ∞). Moreover, for
this {bji}, we have that:

1
d

∑
i∈[N ]

|Pci (k)| ≤
∑
i∈[N ]
j∈[r]

bji ≤
1
d

∑
i∈[N ]

|Pci (k)|+N.



IV. CONCLUDING REMARKS

This paper studies connected broadcast networks of N
nodes that all wish to recover k desired packets originally
dispersed among the nodes. The key results give a series of
relatively simple conditions for universal recovery that apply
when the number of packets is large and the distribution of
packets among the nodes is well-behaved.

For any fixed network topology, it suffices to consider
only simple cuts in the network to characterize a set of
transmission strategies that requires at most kε transmissions
above the minimum required for universal recovery (ε can
be arbitrarily small). For certain topologies including non-
singular d-regular d-connected networks, this paper shows
how to explicitly construct transmission strategies that achieve
universal recovery while using at most N transmissions above
the minimum number required, thus essentially resolving the
universal recovery problem completely for many canonical
networks (e.g. cliques, rings, grids on tori, etc.).

APPENDIX

This appendix contains all the proofs of the results given in
the paper.

Proof of Theorem 1 : This proof is accomplished by
reducing the problem at hand to an instance of a single-source
network coding problem and invoking the Max-Flow Min-Cut
Theorem for network information flow [4].

First, fix the number of communication rounds r large
enough to permit universal recovery. For a network T , con-
struct the network-coding graph GNCT = (VNC , ENC) as
follows. The vertex set, VNC is defined as:

VNC = {s, u1, . . . , uk} ∪
r⋃
j=0

{vj1, . . . , v
j
N} ∪

r⋃
j=1

{wj1, . . . , w
j
N}.

The edge set, ENC , consists of directed edges and is con-
structed as follows:
• For each i ∈ [k], there is an edge of unit capacity2 from
s to ui.

• If pi ∈ Pj , then there is an edge of infinite capacity from
ui to v0

j .
• For each j ∈ [r] and each i ∈ [N ], there is an edge of

infinite capacity from vj−1
i to vji .

• For each j ∈ [r] and each i ∈ [N ], there is an edge of
capacity bji from vj−1

i to wji .
• For each j ∈ [r] and each i ∈ [N ], there is an edge of

infinite capacity from wji to vji′ iff i′ ∈ Γ(i).
The interpretation of this graph is as follows: the vertex ui

is introduced to represent packet pi, the vertex vji represents
node i after the jth round of communication, and the vertex
wji represents the broadcast of node i during the jth round
of communication. If the bji ’s are chosen such that the graph
GNCT admits a network coding solution which supports a
multicast of k units from s to {vr1, . . . , vrN}, then this network
coding solution also solves the universal recovery problem for

2An edge of unit capacity can carry one field element z ∈ F per unit time.

the network T when node i is allowed to make at most bji
transmissions during the jth round of communication.

We now formally prove the equivalence of the network
coding problem on GNCT and the universal recovery problem
defined by T .

Suppose a set of encoding functions {f ji } and a set decoding
functions {φi} describe a transmission strategy which solves
the universal recovery problem for a network T in r rounds
of communication. Let bji be the number of transmissions
made by node i during the jth round of communication, and
let Iji be all the information known to node i prior to the
jth round of communication (e.g. I1

i = Pi). The function
f ji is the encoding function for user i during the jth round
of communication (i.e. f ji (Iji ) ∈ Fb

j
i ), and the decoding

functions satisfy:

φi
(
Iri ,∪i′∈Γ(i){fri′(Iri′)}

)
= {p1, . . . , pk}.

Note that, given the encoding functions and the Pi’s, the
Iji ’s can be defined recursively as:

Ij+1
i = Iji ∪

⋃
i′∈Γ(i)

{f ji′(I
j
i′)}.

The functions {f ji } and {φi} can be used to generate a
network coding solution which supports k units of flow from
s to {vr1, . . . , vrN} on GNCT as follows:

For each vertex v ∈ VNC , let IN(v) be whatever v receives
on its incoming edges. Let gv be the encoding function at
vertex v, and gv(e, IN(v)) be the encoded message which
vertex v sends along e (e is an outgoing edge from v).

If e is an edge of infinite capacity emanating from v, let
gv(e, IN(v)) = IN(v).

Let s send pi along edge (s, ui). At this point, we
have IN(v0

i ) = Pi = I1
i . For each i ∈ [N ], let

gv0
i
((v0

i , w
1
i ), IN(v0

i )) = f1
i (I1

i ). By a simple inductive argu-
ment, defining the encoding functions gvj

i
((vji , w

j+1
i ), IN(vji ))

to be equal to f j+1
i yields the result that IN(vri ) =(

Iri ,∪i′∈Γ(i){fri′(Iri′)}
)
. Hence, the decoding function φi can

be used at vri to allow error-free reconstruction of the k-unit
flow.

The equivalence argument is completed by showing that
a network coding solution which supports a k-unit multicast
flow from s to {vr1, . . . , vrN} on GNCT also solves the universal
recovery problem on T . This is argued in a similar manner as
above, and is therefore omitted.

Since we have shown that the universal recovery problem
on T is equivalent to a network coding problem on GNCT , the
celebrated max-flow min-cut result of Ahlswede et. al [4] is
applicable. In particular, a fixed vector {bji} admits a solution
to the universal recovery problem where node i makes at most
bji transmissions during the jth round of communication if and
only if any cut separating s from some vri in GNCT has capacity
at least k.

What remains to be shown is that the inequalities in (2) are
satisfied if and only if any cut separating s from some vri in
GNCT has capacity at least k.



Suppose we have a cut (S,Sc) satisfying s ∈ Sc and vri ∈ S
for some i ∈ [N ]. We will modify the cut (S,Sc) to produce
a new cut (S ′,S ′c) with capacity less than or equal to the
capacity of the original cut (S,Sc).

Define the set S0 ⊆ [N ] as follows: i ∈ S0 iff vri ∈ S (by
definition of S, we have that S0 6= ∅).

Initially, let S ′ = S. Modify the cut (S ′,S ′c) as follows:
M1) If i ∈ Γ(S0), then place wri into S ′.
M2) If i /∈ Γ(S0), then place wri into S ′c.
Modifications M1 and M2 are justified (respectively) by J1
and J2:

J1) If i ∈ Γ(S0), then there exists an edge of infinite
capacity from wri to some vri′ ∈ S. Thus, moving wri
to S ′ (if necessary) does not increase the capacity of
the cut.

J2) If i /∈ Γ(S0), then there are no edges from wri to S,
hence we can move wri into S ′c (if necessary) without
increasing the capacity of the cut.

Modifications M1 and M2 guarantee that wri ∈ S ′ iff i ∈
Γ(S0). Thus, assume that (S ′,S ′c) satisfies this condition and
further modify the cut as follows:
M3) If i ∈ S0, then place vr−1

i into S ′.
M4) If i /∈ Γ(S0), then place vr−1

i into S ′c.
Modifications M3 and M4 are justified (respectively) by J3
and J4:

J3) If i ∈ S0, then there exists an edge of infinite capacity
from vr−1

i to vri ∈ S. Thus, moving vr−1
i to S ′ (if

necessary) does not increase the capacity of the cut.
J4) If i /∈ Γ(S0), then there are no edges from vr−1

i to
S ′ (since wri /∈ S ′ by assumption), hence we can
move vr−1

i into S ′c (if necessary) without increasing
the capacity of the cut.

At this point, define the set S1 ⊆ [N ] as follows: i ∈ S1 iff
vr−1
i ∈ S ′. Note that the modifications of S ′ guarantee that
S1 satisfies S0 ⊆ S1 ⊆ Γ(S0).

This procedure can be repeated for each layer of the graph
resulting in a sequence of sets ∅ ( S0 ⊆ · · · ⊆ Sr ⊆ [N ]
satisfying Sj ⊆ Γ(Sj−1) for each j ∈ [r].

We now perform a final modification of the cut (S ′,S ′c):
M5) If pj ∈ ∪i∈SrPi, then place uj into S ′.
M6) If pj /∈ ∪i∈Sr

Pi, then place uj into S ′c.
Modifications M5 and M6 are justified (respectively) by J5
and J6:

J5) If pj ∈ ∪i∈Sr
Pi, then there is an edge of infinite

capacity from uj to S ′ and moving uj into S ′ (if
necessary) does not increase the capacity of the cut.

J6) If pj /∈ ∪i∈SrPi, then there are no edges from uj to S ′,
hence moving uj (if necessary) into S ′c cannot increase
the capacity of the cut.

A quick calculation shows that the modified cut (S ′,S ′c)
has capacity greater than or equal to k iff:

r∑
j=1

∑
i∈Sc

j
∩Γ(Sj−1)

br+1−j
i ≥

∣∣∣∣∣ ⋂
i∈Sr

Pci

∣∣∣∣∣ . (8)

Since every modification of the cut either preserved or
reduced the capacity of the cut, the original cut (S,Sc) also
has capacity greater than or equal to k if the above inequality
is satisfied.

By the equivalence of the universal recovery problem on a
network T to the network coding problem on GNCT and the
max-flow min-cut theorem for network information flow, if
a transmission scheme permits universal recovery in T , then
the associated bji ’s must satisfy the constraints of the form
given by (8). Conversely, for any set of bji ’s which satisfy the
constraints of the form given by (8), there exists a transmission
scheme using exactly those numbers of transmissions which
permits universal recovery.

Remark 3: Since
∣∣∣⋂i∈[N ] Pci

∣∣∣ = 0, constraints where Sr =
[N ] are trivially satisfied. Therefore, we can restrict our
attention to sequences of sets where Sr ( [N ].

Proof of Theorem 2: Fix {bi} and assume that

∑
i∈Sc∩Γ(S)

bi ≥ τ (PcS + ε)

for some sufficiently small ε > 0 and all subsets S ⊆ [N ].
Take k sufficiently large so that PcS ≥ 1

k |∩i∈SP
c
i (k)| − ε

2

for all S and also so that k ε2 ≥
∑N
i=1 bi. Then, if bji ≥ bi,

the following string of inequalities together with Theorem 1
proves that {bji} permits universal recovery.

r∑
j=1

∑
i∈Sc

j
∩Γ(Sj−1)

bji ≥
r∑
j=1

∑
i∈Sc

j
∩Γ(Sj−1)

bi

=
r∑
j=1

∑
i∈Sc

j−1∩Γ(Sj−1)

bi −
∑

i∈Sc
0∩Sr

bi

≥ τ
r∑
j=1

(
PcSj−1

+ ε
)
−

N∑
i=1

bi

≥ rτ
(
PcSr

+ ε
)
−

N∑
i=1

bi

≥ k

(
1
k

∣∣∣∣∣ ⋂
i∈Sr

Pci (k)

∣∣∣∣∣+
ε

2

)
−

N∑
i=1

bi

≥

∣∣∣∣∣ ⋂
i∈Sr

Pci (k)

∣∣∣∣∣ .

Proof of Theorem 3: Take Si = S for i ∈ [r]∪{0}. This



yields the following string of inequalities:
r∑
j=1

∑
i∈Sc

j
∩Γ(Sj−1)

bji =
r∑
j=1

∑
i∈Sc∩Γ(S)

bji

≤
r∑
j=1

∑
i∈∂(S)

bi

<

∣∣∣∣∣ ⋂
i∈Sr

Pci

∣∣∣∣∣ .
Thus, universal recovery is not possible by Theorem 1.

Proof of Theorem 4: Suppose
∑r
j=1 b̂

j
i = δi(k), then∑

i,j b̂
j
i is a lower bound on the minimum number of trans-

missions required because
r∑
j=1

∑
i∈∂(i)

b̂ji = |Pci (k)| for all i.

In other words, each node can receive at most the number
of packets it is missing. Therefore, if

∑r
j=1 b

j
i = dδi(k)e,

and {bji} is feasible, then it describes a transmission strategy
must be within N transmissions of optimal since

∑
i,j b

j
i ≤∑

i,j b̂
j
i + N . Thus, it just remains to be shown that {bji} is

feasible when the conditions of the theorem are met.
Note that we can always choose bji so that bji ≥ b 1

r δi(k)c
and

∑r
j=1 b

j
i = dδi(k)e. By this definition of {bji}, we have

that {bji} satisfies (2) when |Sr| = 1, therefore, in what follows
we only consider |Sr| ≥ 2.

r∑
j=1

∑
i∈Sc

j
∩Γ(Sj−1)

bji ≥
r∑
j=1

∑
i∈Sc

j
∩Γ(Sj−1)

⌊
1
r
δi(k)

⌋

≥ 1
r

r∑
j=1

∑
i∈Sc

j
∩Γ(Sj−1)

δi(k)− rN

≥

∣∣∣∣∣ ⋂
i∈Sr

Pci (k)

∣∣∣∣∣ .
Therefore, {bji} ∈ Rr, and permits universal recovery by

Theorem 1.
Proof of Theorem 5: Since the packet distributions are

well behaved, for any ε > 0 we have that k
d (1 − ρ − ε) ≤

δi(k) ≤ k
d (1− ρ+ ε) for all i when k is sufficiently large. By

the hypothesis that the network is d-connected, |∂(S)| ≥ d
whenever |S| ≤ N − d and |∂(S1)| ≥ N − |S2| whenever
|S2| ≥ N − d and S1 ⊆ S2. We consider the cases where
2 ≤ |Sr| ≤ N − d and N − d < |Sr| ≤ N − 1 separately.

First, note the following inequality:
r∑
j=1

∑
i∈Sc

j
∩Γ(Sj−1)

δi(k) =
r∑
j=1

∑
i∈∂(Sj−1)

δi(k)−
∑

i∈Sr∩Sc
0

δi(k)

≥ k

d
(1− ρ)

 r∑
j=1

|∂(Sj−1)| −N


− kν(ε),

where limε→0 ν(ε) = 0. Noting that (1 − ρ) = Pci , in order
to verify the conditions of Theorem 4, it is sufficient to check
that

1
d

Pci

 r∑
j=1

|∂(Sj−1)| −N

 > r · PcSr
.

Or equivalently, that the following holds:

1
rd

r∑
j=1

|∂(Sj−1)| >
PcSr

Pci
+
N

rd
.

Assume that 1 < |Sr| ≤ N−d, then we have the following:

1
rd

r∑
j=1

|∂(Sj−1)| ≥ 1
rd

r∑
j=1

d

= 1

>
PcSr

Pci
+
N

rd
.

Where the last inequality holds if r is taken sufficiently large
(how large depends only on N , d, and maxS:|S|>1 PcS ).

Next, assume that |Sr| > N − d, then by hypothesis, we
have:

1
rd

r∑
j=1

|∂(Sj−1)| ≥ N − |Sr|
d

>
PcSr

Pci
+
N

rd
.

Where the last inequality again holds for sufficiently large r
(depending only on N , d, and maxS:|S|>N−d PcS ).

The bounds on
∑
i,j b

j
i are a result of direct computation.

Proof of Corollary 1: Note that Pi < 1
d+1 implies that

Pci > d
d+1 . Then, note that we have the following string of

inequalities:

d · PcS ≤ d · PSc

≤ d ·
∑
i∈Sc

Pi

= d · (N − |S|) · Pi

<
d

d+ 1
· (N − |S|)

< Pci · (N − |S|).

Thus, d · PcS < (N − |S|) · Pci and the conditions of Theorem
5 are satisfied.

Proof of Corollary 2: This trivially implies that PcS = 0.
Thus, d · PcS = 0 < (N − |S|) · Pci and the conditions of
Theorem 5 are satisfied.

Lemma 1: If 0 < q < 1 is fixed, then there exists some
δ > 0 such that the following inequality holds for all ` ∈
{2, . . . , N − 1}:

N − `
N − 1

≥ (1− q)` − (1− q)N

1− q − (1− q)N
+ δ.



Proof: We write ` = θ · 1 + (1− θ) ·N , where θ = N−`
N−1 .

Since (1− q)x is strictly convex in x, by Jensen’s inequality
we have:

(1− q)` − (1− q)N

1− q − (1− q)N
<
N − `
N − 1

.

Taking

δ = min
`∈{2,...,N−1}

[
N − `
N − 1

− (1− q)` − (1− q)N

1− q − (1− q)N

]
completes the proof.

Proof of Corollary 3: Under the assumption that

PS =
1− (1− q)|S|

1− (1− q)N
, ∀S ⊆ [N ],

we have the following by Lemma 1:

N − |S|
d

≥ N − |S|
N − 1

>
(1− q)|S| − (1− q)N

(1− q)− (1− q)N

=
PcS
Pci
.

Thus, d · PcS < (N − |S|) · Pci and the conditions of Theorem
5 are satisfied.

Proof of Theorem 6: The theorem is an immediate
consequence of Corollaries 1-3 and the weak law of large
numbers.
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