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Abstract— This paper addresses the carrier-phase estimation
problem under low SNR conditions as are typical of turbo-
and LDPC-coded applications. In [1], [2] closed-loop carrier
synchronization schemes for error-correction coded BPSK and
QPSK modulation were proposed that were based on feeding
back hard data decisions at the input of the loop, the purpose
being to remove the modulation prior to attempting to track
the carrier phase as opposed to the more conventional decision-
feedback schemes that incorporate such feedback inside the
loop. In this paper, we consider an alternative approach wherein
the soft information from the iterative decoder of turbo or
LDPC codes is instead used as the feedback.

I. INTRODUCTION

In recent years there has been an ever-increasing interest
in highly power efficient error-correction codes such as
turbo codes and low density parity check (LDPC) codes.
These codes approach the Shannon channel capacity of the
system and operate at very low symbol signal-to-noise ratios
(SNRs) thus necessitating the need for carrier synchroniza-
tion schemes that likewise operate efficiently at these SNRs.

A significant research effort is underway in the area
of joint decoding and carrier phase estimation. As clearly
explained by Noels et al. [3] two somewhat distinct groups of
joint decoding and synchronization algorithms have evolved.
The first of these approach the problem by modifying itera-
tive detection/decoding algorithms and/or graphs to include
parameter estimation. A partial list of work on this approach
includes [4]–[9].

Of particular interest has been the work of Colavolpe et al.
[9] where phase-tracking processing nodes were introduced
in the iterative decoding graph. Dauwels et al. also inves-
tigated [7] specially adapted message-passing update rules.
Howard et al. [8] proposed a pilotless modulation technique
for turbo-coded differential 8-PSK modulation which uses
35 iterations to compensate a π/8 phase offset at Eb/No =
4.5 dB. We also note the work of Nuriyev [6] who has
adapted density evolution to evaluate the performance of
joint carrier-phase estimation in a pilot-assisted environment.
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The second group of algorithms pass messages between
an independent phase estimation block and an essentially
unmodified iterative decoder. The resulting architectures are
often said to employ turbo synchronization [3]. Algorithms
of this type can can be found in [10]–[14].

The technique in this paper falls into this second category
and has the potentially attractive feature that little modifica-
tion is required with either the iterative decoder or the carrier
recovery block (which consists primarily of a phase-locked
loop (PLL)). Specifically, the work leverages the fact that
LDPC symbol estimates can ‘wipe-off’ modulated symbols
in a decision directed carrier recovery loop to enhance the
carrier information such that a classic residual carrier PLL
is able to provide increasingly accurate phase estimates over
LDPC iterations. The method incurs a latency penalty (by
way of increased iterations) as carrier phase is acquired.
However, complexity in terms of system description and area
(in the case of a real-time implementation) remains similar
to that of state of the art residual carrier recovery techniques
currently used for BPSK and QPSK modulation in NASA’s
deep-space network.

The authors in [10] propose somewhat similar work but
have described a phase estimate based on the instantaneous
average of an entire block of received symbols. We also note
the work of Lottici et al. [12] who developed a blind recovery
technique for QAM receivers. The work in this paper is also
based on blind, or pilotless, operation and we motivate this
in part by recalling a result from Anastasopoulos [4] who
showed pilotless techniques to be more efficient at lower
SNRs where pilot insertion loss is considerable.

The rest of this paper is organized as follows. The next sec-
tion provides a detailed description of the proposed method.
In Section III, we consider BPSK modulation and derive
the tracking performance of the PLL in terms of its mean-
square phase error when operating in the linear (high loop
SNR) region as is typical. In Section IV we illustrate a
digital implementation that achieves the same performance
as the piecewise constant analog model considered in Section
III. Results for QPSK modulation are presented in Section
V. Section VI presents numerical results derived from a
simulation of the BPSK scheme with a particular LDPC
code. Finally, Section VII documents our conclusions.
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II. SYSTEM DESCRIPTION

The notion of iterative information-reduced carrier
synchronization for coded binary phase-shift-keyed
(BPSK) modulation was first introduced in [1]. The term
“information-reduced” alludes to the use of an estimate of
the instantaneous data symbol (and thus of the instantaneous
phase modulation) to reduce the amount of randomness
(and thus the amount of information) in the signal being
processed in the carrier synchronizer.

Specifically, in information-reduced carrier-
synchronization (IRCS), the reduction of the amount
of information is accomplished by attempting to convert
the received modulated carrier to an unmodulated carrier
(pure tone) before applying it to a phase-tracking loop,
in the hope of improving performance. Traditional IRCS
systems for synchronization with carrier signals modulated
by BPSK include Costas loops, data-aided loops, and
demodulation/remodulation loops. The traditional systems
are designed to implement various approximations of a
closed-loop structure that effects maximum a posteriori
(MAP) estimation of phase. The degradation of tracking
performance of such a loop in the case of BPSK is
represented by a quantity called the “squaring loss”, which
is a measure of the degradation of the receiver signal-to-
noise (SNR) ratio and is associated with the mean-squared
phase error of the loop. In the case of a conventional
in-phase/quadrature (I-Q) carrier-tracking loop, the mean-
square phase error is a result of signal and noise cross
products that are generated in the effort to remove the data
modulation from the loop error signal. At low symbol SNR,
the squaring loss of an I-Q loop can be severe enough to
prevent tracking. Several publications based on this notion
have appeared in the literature that include everything from
the basic idea and accompanying analysis/performance
evaluations [1] to successful application and implementation
for specific block and convolutional codes [15], [16].

If the data sequence and its timing were completely
known, then a BPSK signal could be converted to a pure
tone simply by multiplying the BPSK signal by the data
waveform. One could then track the unmodulated carrier with
improved performance by use of a phase-locked loop, which
does not exhibit squaring loss. Short of complete knowledge
of the data waveform and in the presence of noise, the best
approximation of a pure tone could be obtained by feeding
back an estimate of the data waveform corresponding to
tentative decisions on the data symbols. Such feedback is
called “decision feedback”.

Decision feedback is used within the traditional loops, but
is not used to modify the loop structures. In the proposed
IRCS system (see Fig. ??), decision feedback is introduced
at the input terminal of the loop; simultaneously, the structure
of the loop would be modified (in the sense that its parame-
ters would be modified) on the basis of the associated change
in data-transition statistics in the input. In this scheme, the
input signal would be converted to a close approximation of
a pure tone, with a resultant improvement in carrier-tracking
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Fig. 1. Analog receiver with Information-Reduced Carrier Synchronizer
Using Soft Decision Feedback for BPSK

performance over conventional I-Q loops.
Although initially available data-waveform estimates are

generally of low quality, they can be used to initiate the
IRCS process by reducing the number of data transitions at
the input. Once phase lock is achieved, the improved phase
estimates can be fed back to the data detector, yielding im-
proved symbol estimates for feedback, and thereby achieving
even better phase tracking. This iterative process eventually
leads to virtual elimination of squaring loss, so that the
performance of the system approaches that of a phase-locked
loop operating on an unmodulated carrier signal.

III. TRACKING PERFORMANCE FOR BPSK MODULATION

The sample analog receiver shown in Fig. 1 will aid us
in the derivation of the proposed carrier synchronization
method. An alternative practical implementation of this re-
ceiver is detailed in Section IV. Consider an input BPSK
modulation of the form

y1(t; θc) =
√

2Pm(t)sin (wct + θc) + n1(t) (1)

where wc and θc are the carrier frequency and phase. Carrier
power P is affected by a bandpass AWGN process n1(t) that
can be expressed as

n1(t) =
√

2 [Nc1(t)cos(wct + θc)−Ns1(t)sin(wct + θc)])
(2)

where Nc1(t), Ns1(t) have single-sided noise power spectral
density (PSD) equal to No and

m(t) =
∞∑

k=−∞
dkp (t− kTs)

is a baseband modulation with independent, identically dis-
tributed (i.i.d.)±1 data symbols dk and unit rectangular pulse
shape p(t) of duration Ts or a root-raised cosine pulse with
zero crossings a multiples of Ts. For simplicity from this
point forward we will assume a rectangular pulse shape.
Under this assumption matched filters will be equivalent
to integrators. The next step is to delay y1(t; θc) by the
decoder delay ∆ and multiply it by a normalized (by the



signal amplitude A) 1 version of the soft decision feedback
signal corresponding to the extrinsic information derived
from decoding the LDPC code. This can be modeled as a
Gaussian signal [17], [18] , i.e.,

y2(t) = m(t−∆) + n2(t)/A

where n2(t) can be modeled as a piecewise constant base-
band noise process, namely,

n2(t) =
∞∑

k=−∞
n2kp (t− kTs −∆)

where n2k are i.i.d. zero mean Gaussian random variables
(RVs) with variance σ2. Over a single iteration (block of
input symbols), A and σ2 are assumed to be fixed. The
result of this multiplication, whose intent is to remove the
modulation, is

u(t; θc)
∆= y1(t−∆; θc)y2(t)
=

√
2Psin(wct + θc)

+(
√

(2P )/A)m(t−∆)n2(t)sin(wct + θc)
+
√

2m(t−∆)[Nc1(t)cos(wct + θc)
−Ns1(t)sin(wct + θc)]
+(
√

2/A)n2(t)[Nc1(t)cos(wct + θc)
−Ns1(t)sin(wct + θc)]

(3)
which is the sum of a pure sinusoidal tone at the carrier
frequency plus a mixture of (signal × noise) and (noise ×
noise) terms. The signal in (3) is then input to a PLL whose
voltage-controlled oscillator (VCO) output can be expressed
as

rvco(t) =
√

2cos(wct + θ̂c) (4)

then we multiply (3) and (4) together and low-pass filter (to
remove frequency components at 2wc) to obtain

z(t) =
√

Psin(φc) + (
√

P/A)m(t−∆)n2(t)sin(φc)
+m(t−∆)× [Nc1(t)cos(φc)−Ns1(t)sin(φc)]
+(1/A)n2(t)× [Nc1(t)cos(φc)−Ns1(t)sin(φc)]

∆=
√

Psin(φc) + v(t, φc)

where φc = θc− θ̂c denotes the phase error in the loop. Note
that the loop tracks the phase error φc as opposed to twice
the phase 2φc error as in the more conventional Costas loop.

Next we pass z(t) through a matched filter (I&D in the
case of square pulses) to produce (in the kth interval (k +

1The purpose of the normalization is to make the signal component of
the feedback independent of the extrinsic symbol information amplitude,
A. This in turn results in the input to the carrier tracking loop being
independent of this same amplitude thereby not affecting the choice of the
loop bandwidth. In practice, one would need to estimate A per iteration to
perform this normalization. For the purpose of our theoretical discussion
here, we shall assume that this estimation is perfect.

1)Ts ≤ t ≤ (k + 2)Ts) the piecewise constant error signal 2

ek =
∫ (k+1)Ts

kTs
z(t)dt

= Ts

√
Psin(φc) + (

√
P/A)Tsdkn2ksin(φc)

+dk[Nc1kcos(φc)−Ns1ksin(φc)]
+(1/A)n2k[Nc1kcos(φc)−Ns1ksin(φc)]

= Ts

√
Psin(φc) + v(k, φc)

(5)

where

Nc1k =
∫ (k+1)Ts

kTs
Nc1(t)dt

Ns1k =
∫ (k+1)Ts

kTs
Ns1(t)dt

(6)

are zero mean Gaussian noise RVs with variance σn
2 =

NoTs/2. Clearly from the above, the slope of the S−curve,
Kg , is given by

Kg = Ts

√
P (7)

We now compute the autocorrelation function of v(k, φc)
(treated as a piecewise continuous process v(t, φc) ) from
which we shall obtain the equivalent noise PSD affecting
the loop. For operation in the neighborhood of φc = 0, it
is reasonable to consider only the autocorrelation function
of v(k, 0). Assuming n1(t) and n2(t) are independent and
the noise samples are independent from symbol interval to
symbol interval, then the autocorrelation is triangular

Rv(τ) = E {v(t, 0)v(t + τ, 0)} =

{
σ2

v

(
1− |τ |

Ts

)
|τ | ≤ Ts

0 otherwise

with

σ2
v = E

{
v2(k, 0)

}
= E

{
N2

c1k

(
dk + n2k

A

)2
}

= σ2
n(1 + σ2/A2) = NoTs

2

(
1 + σ2/A2

)

Thus, the equivalent single-sided noise PSD, Ne, is given by

Ne = 2
∫ −∞

−∞
Rv(τ, 0)dτ = NoT

2
s (1 + σ2/A2) (8)

Finally, the mean-square phase error in the loop is given by

σ2
φc

=
NeBL

K2
g

=
NoBL

P

(
1 +

σ2

A2

)
∆=

1
ρSL

(9)

where BL is the noise bandwidth, ρ = P/(NoBL) is the
loop SNR in a conventional PLL and

SL
∆=

(
1 +

σ2

A2

)−1

(10)

is the degradation of the loop SNR analogous to the “squar-
ing loss” in a conventional Costas loop. The quantity A2/σ2

represents the decoder soft SNR estimate. For iterative de-
coding of LDPC and turbo codes [17]–[19], the mean and
the variance are related by the symmetry condition σ2 = 2A.

2Without loss in generality, we herein ignore the decoder delay ∆.
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Fig. 2. Digital implementation of BPSK Receiver with Information-Reduced Carrier Synchronizer Using Soft Decision Feedback

Using this relation (10) becomes

SIR
L

∆=
(

1 +
2
A

)−1

(11)

As the iteration proceeds, the estimated data SNR increases
and likewise the squaring loss decreases (i.e., SIR

L ap-
proaches unity). By comparison, for a Costas loop, the
expression for the squaring loss is given by

SC
L

∆= (1 + 1/(2Rd))
−1

Rd = P.Ts/No

and thus remains fixed, independent of the iteration process,
for a given symbol SNR. To numerically evaluate the
performance in (11), one needs to quantify the functional
dependence of the decoder soft-estimate of the data SNR
and the input symbol SNR.

IV. A PRACTICAL DIGITAL IMPLEMENTATION

The circuit in Fig. 2, shows a practical implementation of
the carrier recovery loop presented in the previous section.
Once again we assume a rectangular pulse shape although
a bandwidth efficient Nyquist pulse-shape can also be used.
The first difference with the block diagram in Fig. 1 is that
demodulation (convert to baseband) of the input signal (1)
is done with the carrier phase error still present, using the I
and Q reference signals (arbitrarily assuming them to have
zero phase relative to the received signal). We thus multiply
the input by

√
2sin(wct) and

√
2cos(wct), and obtain

xHighF
c (t; θc) =

√
Pm(t). (sin (2wct + θc) + sin(θc))

+
√

2n1(t)cos(wct)
=
√

Pm(t). (sin (2wct + θc) + sin(θc))
+ Nc1(t)cos(2wct + θc) + Nc1(t)cos(θc)
−Ns1(t)sin(2wct + θc)−Ns1(t)sin(θc)

xHighF
s (t; θc) =

√
Pm(t). (−cos (2wct + θc) + cos(θc))

+
√

2n1(t)sin(wct)
=
√

Pm(t). (−cos (2wct + θc) + cos(θc))
−Nc1(t)sin(2wct + θc) + Nc1(t)sin(θc)
+ Ns1(t)cos(2wct + θc)−Ns1(t)cos(θc)

Applying a low-pass filter to remove frequencies at 2wc

yields:

xc(t; θc) =
√

Pm(t)sin(θc) + Nc1(t)cos(θc)−Ns1(t)sin(θc)

xs(t; θc) =
√

Pm(t)cos(θc)−Nc1(t)sin(θc)−Ns1(t)cos(θc)

The demodulated signals are then passed through (I&Ds)
(or matched root raised cosine filters) to give

zck =
√

PTsdksin(θc) + Nc1kcos(θc)−Ns1ksin(θc)

zsk =
√

PTsdkcos(θc)−Nc1ksin(θc)−Ns1kcos(θc)

in the interval (k + 1)Ts ≤ t ≤ (k + 2)Ts. Next multiply
zck and zsk by the normalized soft decision feedback sample
(decoder extrinsic information)

y2k = dk + n2k/A (12)

where as before over a given iteration {n2k} are modeled as
i.i.d. zero mean Gaussian RVs with variance σ2. The result
of this multiplication removes the modulation and produces

uck = zcky2k =
√

PTssin(θc)
+[(dk + n2k/A)(Nc1kcos(θc)−Ns1ksin(θc))+
n2k/A

√
PTsdk.sin(θc)]

=
√

PTssin(θc) + vck,



usk =
√

PTs.cos(θc)
+[(dk + n2k/A)(−Nc1ksin(θc)−Ns1kcos(θc))+
n2k/A

√
PTsdkcos(θc)]

=
√

PTscos(θc) + vsk,

which is then input to a digital PLL whose number-controlled
oscillator (NCO) produces an estimate of the carrier phase
denoted by θ̂c. Multiplying uck and usk by wck = cos(θ̂c)
and wsk = sin(θ̂c), respectively, and then differencing the
results of these products provides the error signal

ek = uckwck − uskwsk

= 1
2

√
PTs

(
sin(φc) + sin(θc + θ̂c)

)

− 1
2

√
PTs

(
−sin(φc) + sin(θc + θ̂c)

)

vckcos(θ̂c)− vsksin(θ̂c)
=

√
PTs.sin(φc) + vckcos(θ̂c)− vsksin(θ̂c)

(13)
where as before φc = θc − θ̂c denotes the phase error in the
loop. Comparing (13) with (5) we see that they are identical
and thus the performance of the digital PLL would also be
described by (9) together with (10).

V. TRACKING PERFORMANCE FOR QPSK MODULATION

As we did in Section III, we now present a sample receiver
for QPSK signals shown in Fig. 3. Consider an input QPSK
modulation of the form

y1 (t; θc) =
√

PmI (t) sin (ωct + θc)
+
√

PmQ (t) cos (ωct + θc) + n1 (t)

where, analogous to (2), the noise is modeled by

n1 (t) =
√

2 [Nc1 (t) cos (ωct + θc)−Ns1 (t) sin (ωct + θc)]

and the I and Q modulations are given by

mI (t) =
∞∑

k=−∞
dIkp (t− kTs)

mQ (t) =
∞∑

k=−∞
dQkp (t− kTs)

As before, multiply y1 (t; θc) (again ignoring the decoder
delay) by a normalized version of the soft decision feedback
signal corresponding to the extrinsic information for the I
data stream, namely,

y2I (t) = mI (t) + n2I (t) /A

where n2(T ) is again modeled as a piecewise constant
baseband noise process, namely,

n2I (t) =
∞∑

k=−∞
n2Ikp (t− kTs) (14)

with {n2Ik} being i.i.d. zero mean Gaussian RVs with
variance σ2. Now also phase shift the received signal by
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Fig. 3. QPSK receiver with Information-Reduced Carrier Phase Synchro-
nizer Using Soft Decision Feedback

π/2 rad. to form the quadrature input

y1 (t; θc − π/2) = −√PmI (t) cos (ωct + θc)
+
√

PmQ (t) sin (ωct + θc) + n1Q (t)

where

n1Q (t) =
√

2 [Nc1 (t) sin (ωct + θc) + Ns1 (t) cos (ωct + θc)]

and multiply this by a normalized version of the extrinsic
information for the Q data stream, namely,

y2Q (t) = mQ (t) + n2Q (t) /A

where, analogous to (14),

n2Q (t) =
∞∑

k=−∞
n2Qkp (t− kTs)

and the sequence {n2Qk} is assumed to have the same prop-
erties as the sequence {n2Ik}. Furthermore, it is reasonable
to assume the two sequences independent of each other. The
results of the above-mentioned multiplications are given by

uI (t; θc) =
√

P sin (ωct + θc)
+
√

PmI (t)mQ (t) cos (ωct + θc)
+

(√
P/A

)
mI (t)n2I (t) sin (ωct + θc)

+
(√

P/A
)

mQ (t)n2I (t) cos (ωct + θc)

+
√

2mI (t) [Nc1 (t) cos (ωct + θc)
−Ns1 (t) sin (ωct + θc)]
+

(√
2/A

)
n2I (t) [Nc1 (t) cos (ωct + θc)

−Ns1 (t) sin (ωct + θc)]

uQ (t; θc) =
√

P sin (ωct + θc)
−√PmI (t)mQ (t) cos (ωct + θc)
−

(√
P/A

)
mI (t) n2Q (t) cos (ωct + θc)

+
(√

P/A
)

mQ (t) n2Q (t) sin (ωct + θc)

+
√

2mQ (t) [Nc1 (t) sin (ωct + θc)
+Ns1 (t) cos (ωct + θc)]
+

(√
2/A

)
n2Q (t) [Nc1 (t) sin (ωct + θc)

+Ns1 (t) cos (ωct + θc)]



Adding uI(t; θc) and uQ(t; θc) eliminates the cross-
modulation signal term and produces a signal that is again
the sum of a pure sinusoidal tone at the carrier frequency
plus a mixture of (signal×noise) and (noise×noise) terms.
The signal u(t; θc) is input to a PLL which after demodula-
tion by the reference signal in (4) gives

z (t) =
√

2P sin (φc)

+
(√

P/2/A
)

[mI (t) n2I (t) + mQ (t)n2Q (t)] sin (φc)

+
(√

P/2/A
)

[mQ (t)n2I (t)−mI (t)n2Q (t)] cos (φc)

+ [mI (t)Nc1 (t) + mQ (t) Ns1 (t)] cos (φc)
+ [mQ (t)Nc1 (t) −mI (t)Ns1 (t)] sin (φc)
+ (1/A) [n2I (t) Nc1 (t) + n2Q (t) Ns1 (t)] cos (φc)
+ (1/A) [n2Q (t) Nc1 (t)− n2I (t) Ns1 (t)] sin (φc)

As in the BPSK case, next we pass z(t) through a matched
filter (I&D in the case of square pulses) to produce (in the
kth interval ) (k + 1) Ts ≤ t ≤ (k + 2) Ts the piecewise
constant error signal

ek =
∫ (k+1)Ts

kTs

z (t) dt = Ts

√
2P sin (φc)

+
(√

P/2/A
)

Ts [dIkn2Ik +dQkn2Qk] sin (φc)

+
(√

P/2/A
)

Ts [dQkn2Ik − dIkn2Qk] cos (φc)

+ [dIkNc1k + dQkNs1k] cos (φc)
+ [dQkNc1k − dIkNs1k] sin (φc)
+ (1/A) [n2IkNc1k + n2QkNs1k] cos (φc)
+ (1/A) [n2QkNc1k −n2IkNs1k] sin (φc)

= Ts

√
2P sin (φc) + v (k, φc)

(15)

where Nc1k,Ns1k are defined in (6).
Once again we must compute the slope of the S-curve and
the equivalent noise PSD. From (15), the slope of the S-curve
is immediately given by

Kg = Ts

√
2P . (16)

The variance of the additive noise v(k, 0) is readily deter-
mined to be 3

σ2
v = N0Ts

[
1 + (1 + Rd)σ2/A2

]
(17)

and thus from (8), the equivalent noise PSD is

Ne = 2Tsσ
2
v = 2N0T

2
s

[
1 + (1 + Rd)σ2/A2

]
(18)

Finally, applying (16) and (17) to (9), the mean-square phase
error in the loop becomes

σ2
φc

=
NeBL

K2
g

=
NoBL

P

[
1 + (1 + Rd)

σ2

A2

]
∆= 1

ρSL

3The additional noise variance factor (1+Rd) comes from the presence
of a quadrature signal×noise term that is absent in the BPSK case.

or equivalently, the “squaring loss” is given by

SL =
[
1 + (1 + Rd) σ2/A2

]−1

which applying A/σ2 = 1/2 simplifies to

SIR
L = [1 + (1 + Rd) (2/A)]−1 (19)

Comparing (19) with (11) we immediately observe the
additional penalty (dependent now on symbol SNR: Rd)
in carrier tracking performance using a PLL for QPSK
relative to BPSK. For small symbol SNRs, this penalty
becomes insignificant. Furthermore, note that because of
the creation of a pure tone by the soft decision feedback,
thus allowing the use of a PLL, there are no fourth order
(signal×noise) or (noise×noise) products in the loop as in
the conventional QPSK Costas loop or information-reduced
carrier synchronization loop with hard decision feedback.
Thus, the “squaring loss” penalty is inherently smaller than
the “quadrupling loss” penalty associated with the above-
mentioned loops.

As was the case for BPSK, it is also possible to construct
an alternative digital implementation that once again would
yield the same performance as its piecewise continuous
analog counterpart discussed above.

VI. ITERATIVE PROCESSING AND NUMERICAL RESULTS

We have evaluated the performance of the all-digital BPSK
baseband approach described in Section IV via joint decod-
ing with an rate-1/2 (1944, 972) irregular low-density parity-
check (LDPC) code developed in [20]. After a complex
rotation to resolve phase ambiguity (discussed below), the
signals zck and zsk are multiplied by the decoder output
y2k to form uck and usk. As described in previous sections
and shown in [1], if the PLL input has a small fraction of
total modulated symbols in a block successfully removed
then it can begin to produce a reasonable phase estimate,
even at relatively low SNRs. We have found that the es-
timation/decoding process can be successfully started by
assigning y2k = zsk (Subsequent iterations derive y2k from
the decoder as described by (12)). After this assignment,
the PLL operates once across all symbols in a codeword.
LDPC decoder log-likelihood ratio inputs are then produced
by combining the updated PLL phase estimates with zck and
zsk

Qk = 2
σ2

llr

(zskwck + zckwsk)

= 2
σ2

llr

(√
PTsdkcos(φc)−Nc1ksin(φc)−Ns1kcos(φc)

)

where σ2
llr = PT 2

s /(2Es/No).
An “extrinsic” LLR feedback mechanism was employed

in which prior LDPC inputs are subtracted from current
outputs before new inputs (from the most recent PLL up-
date) are added. Also, state information in the decoder (in
particular the most recent extrinsic information arriving from
check-nodes) is preserved between LDPC-to-PLL-to-LDPC
iterates. The accumulator in Fig. 2 implements the first order
transfer function
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Fig. 4. IRCS BER/FER performance with a maximum of (a) 20 and (b) 50 LDPC iterations.

H(z) =
Kp + Kiz

−1

1− z−1

where Kp = 10−6 and Ki = 10−8 were selected.

The bit and frame error rate performance of the system
are shown in Fig. 4 for different update schedules between
the decoder and the PLL circuit and for two cases of phase
error φc. Simulations with φc = 0 and φc = π/4 represent
cases of minimum and maximum initial phase error. Cases
with φc = 0 are not shown in the figure since they always
achieve the same performance as the stand-alone code. All
other initial phase offsets have error rate performance that
lies between these two cases. The total number of LDPC
iterations was set to either 20 or 50. The set of curves labeled
(20-20) and (50-50) shows the error rate performance when a
decoder iteration is followed by a PLL update. An alternative
schedule (20-10) and (50-25) where a PLL update is done
after two decoder iterations is also shown.

A plot of loop SNR, 1/σ2
φc

(the inverse of the measured
average squared estimation error), as a function of the
number of iterations where φc = 0 and φc = π/4 is
shown in Fig. 5 in conjunction with (50-25) scheduling (up
to 50 LDPC iterations, with PLL updates on every other
iteration). Fig. 5(b) explicitly shows the difference in loop
SNR between cases with initial offsets of φc = 0 and
φc = π/4 radians. Note that steady state operation is reached
after 40 iterations when φc = 0 and SNR varies between 1
and 2 dB. Up to 10 more iterations are required when the
initial error is φc = π/4. Note that even with these additional
iterations, the loop SNR does not quite reach the levels
observed in the in φc = 0 case. This marginal degradation in
loop-SNR explains the small (< 0.1 dB) performance loss in

BER/FER performance in Fig. 4(b). Fig. 5 also shows that in
the case of only 20 iterations (for either initial phase offset)
the PLL has not reached steady state. The associated loss
BER/FER in performance is shown in Fig. 4(a) where at a
frame error rate of 10−3 the (20-10) schedule loses 0.15 dB
and the (20-20) schedule loses 0.07 dB.

Note the curious performance in Fig. 5(a) of the zero-
phase offset case during the first 10 LDPC iterations. In this
region the PLL’s phase estimate (which is initially correct) is
highly noised by poor initial LDPC soft-symbol estimates.
Both LDPC soft-symbol estimates and loop-SNR begin to
improve dramatically after the 10th iteration.

We conclude this section by noting that phase ambiguity
(for offsets greater than ±π/2 can be resolved by first
measuring the average power across a single codeblock of
the signals zc and zs. If the sine component (zc) has average
power greater than the cosine component (zs), then these
two components are swapped. This procedure may leave
(or induce) a remaining error of π radians. To resolve this
ambiguity we run a single PLL pass followed by several
(up to 4) LDPC iterations. The orientation that produces the
maximum number of satisfied odd-degree check equations is
selected and the decoding procedure is reinitialized 4. Similar
techniques are proposed in [10], [11].

VII. CONCLUSIONS

We have demonstrated a means for improving the carrier
synchronization function for iterative decoded BPSK using
information derived from the decoder extrinsics to remove
the modulation (information-reduction) prior to the carrier
tracking operation. The motivation for doing this is to

4Even degree checks remain satisfied under a rotation of all inputs by π.



overcome the penalty in noisy reference loss attributed to
the large squaring loss at low SNRs that is characteristic
of the traditional BPSK carrier sync loops such as the
Costas-type loop. In comparison to the information-reduced
carrier synchronization loop with hard decision feedback as
proposed in [1] and [2], the scheme described in this work
makes use of soft decision extrinsic information and does not
require estimating the decoder error probability. This occurs
as a consequence of the assumption here of a fixed carrier
synchronization structure, i.e., a PLL, whose design does not
change with knowledge obtained from the decoder. While
in the soft decision feedback case considered here such a
structure would only be asymptotically optimum (in the MAP
motivation sense) at high SNR, it nevertheless provides a
simple yet performance efficient carrier synchronization loop
in SNR regions of interest for coded applications.
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