# **Information-Reduced Carrier**

# Synchronization of BPSK and QPSK Using

# **Soft Decision Feedback**

### Marvin Simon and Christopher Jones

**Jet Propulsion Laboratory** 



Esteban Vallés, Richard Wesel and John Villasenor

Electrical Engineering Department UCLA



# Introduction

- This paper addresses the carrier-phase estimation problem under low SNR conditions in a soft decision-directed LDPC-coded system.
- Two distinct techniques for joint decoding and synchronization :
  - 1. Modifying iterative detection/decoding algorithms and/or graph structure to include parameter estimation
  - Turbo Synchronization: Pass messages between an independent phase estimation block and an essentially unmodified iterative decoder [Noels05]
- The technique in this presentation falls into this second category.
- We propose a soft decision-directed pilotless carrier recovery circuit with little modification to either the iterative decoder or the carrier recovery block.

# Motivation

- When designing communication systems engineers need to decide whether or not to suppress the transmitted carrier power
- Total power = Carrier Power + Data Power  $\rightarrow P_t = P_c + P_d$ 
  - □ Carrier Power: related to the accuracy of the *carrier synch* process
  - Data Power: related to the accuracy of the *data detection* process (in the presence of perfect carrier synchronization).
- System design requires a proper trade off between these power requirements to minimize the *average error probability* of the system [Simon96].
- Traditional synchronization circuits:
  - Residual Carrier: Utilize phase-lock Loops (PLL) to provide an accurate synchronization. (Used in NASA's deep space comm. systems.)
  - □ **Suppressed-carrier:** Tracking loops such as the Costas loop require a larger SNR to track the carrier with a given accuracy.

# **Possible Synchronization Circuits**

## Phase-Lock Loop (PLL):

- Use residual carrier information inside the tracking loop to aid synchronization.
- Loop SNR:  $\frac{1}{\sigma_{\phi}^{2}} = \rho_{PLL} = \frac{P_{c}}{N_{o}B_{L}}$ 

  - $B_I$ : Loop Bandwidth,  $P_c$ : Total Carrier Power,
  - $N_{o}$ : Noise PSD

- $Ø_c$ : Carrier Phase Estimation Error
- There always exists an optimum (in the sense of *minimum average* error probability) split between Data and Carrier power.
  - If  $m^2 = P_c / P_T$ , typical systems require  $m^2 \approx 0.1$  or less [Simon96]
  - This trend suggests using suppressed-carrier systems, i.e.  $m^2=0$



# **Possible Synchronization Circuits**

## Costas Loop

□ Can track fully suppressed-carrier signals.

□ Loop SNR:

$$\frac{1}{\sigma_{\phi_c}^{2}} = \rho_C \ .S_{L_c} = \frac{P_t}{N_o B_L} \left(1 + \frac{1}{2R_d}\right)^{-1} = \frac{P_T}{N_o B_L} \left(1 + \frac{N_o}{2P_T T_s}\right)^{-1}$$

 $B_L$ : Loop Bandwidth,  $R_D$ : Input Data SNR,

 $P_t$ : Total Power,  $S_{LC}$ : Squaring Loss,

*No*: Noise PSD,  $T_s$ : Pulse Duration

□ Requires significantly larger *loop* SNR than a PLL to be able to track.

- At low data SNRs, the SL can be large enough to prevent tracking.
- □ For a fixed input data SNR , SL does not improve with decoder iterations.
- For a wide input data SNR range, Costas loop systems are still more efficient (in the sense of *minimum average error probability*) than PLL circuits.
- Alternative Circuit: design a suppressed carrier system for low data SNR that uses a PLL circuit instead of a Costas loop.

## Information-reduced carrier-synchronization (IRCS)

- Use a soft estimate of the instantaneous data symbol (and thus of the instantaneous phase modulation) to reduce the amount of randomness (information) in the signal being processed in the carrier loop. [Simon97]
- LDPC symbol estimates "wipe-off" modulated symbols in a *decision directed* loop to *enhance the carrier information* such that a classic PLL can provide increasingly accurate phase estimates over LDPC iterations.
- Latency penalty: tracking improves with increased iterations
- <u>System complexity</u>: No significant modifications to the current residual carrier recovery techniques used for BPSK/ QPSK modulation in NASA's deep-space network.

# **IRCS BPSK System Description**



BPSK Modulation: 
$$m(t) = \sum_{k=-\infty}^{\infty} d_k p(t - kT_s)$$
Signal Input:  $y_1(t; \theta_c) = \sqrt{2Pm(t)} \sin(\omega_c t + \theta_c) + n_1(t)$ 

• AWGN Noise:

$$n_1(t) = \sqrt{2} \left[ N_{c1}(t) \cos\left(w_c t + \theta_c\right) - N_{s1}(t) \sin\left(w_c t + \theta_c\right) \right]$$

IR Signal:

$$u(t;\theta_c) = \sqrt{2P} \sin(w_c t + \theta_c) + \text{[Noise terms]}$$

# **Carrier Detection Process**

- Assume N=5 transmitted BPSK symbols
- Sample transmitted waveform = [1, -1, 1, -1, 1]
- Plot shows received waveform affected by symbol-wise noise



# **Carrier Detection Process**

- Modulation is removed by multiplying the received waveform by soft-estimated symbols from the decoder
- Symbol Information randomness is reduced
- Plot shows "IR" waveform after the first iterations



# **Carrier Detection Process**

- As the number of iterations increase, soft-symbol estimation becomes more accurate.
- Frequency spectrum has a distinctive tone that a PLL based circuit can now track.



# **Proposed Synchronization Circuit**

## Information Reduced Carrier Synchronization (IRCS)

- Can track fully suppressed-carrier signals
- □ Loop SNR:

$$\frac{1}{\sigma_{\phi_c}^{2}} = \rho_{IRCS} \cdot S_{L_{IRCS}} = \frac{P_T}{N_o B_L} \left( 1 + \frac{\sigma^2}{A^2} \right)^{-1} = \left|_{LDPC} \cdot \frac{P_T}{N_o B_L} \left( 1 + \frac{2}{A} \right)^{-1} \right|_{LDPC}$$

$$B_L: \text{ Loop Bandwidth, } P_t: \text{ Total Power, } A: \text{ Estimated Signal Amplitude}$$

$$A^2$$

□ The ratio  $\frac{A}{\sigma^2}$  represents the decoder soft-estimate data SNR.

- Symmetry condition: For decoding of LDPC and turbo codes  $\sigma^2 = 2A$ . [Chung01]
- Decoder data SNR increases with iterations causing:
  - $\bullet \ S_{LIRCS} \rightarrow 1$
  - Loop SNR approaches PLL performance using the total transmitted power for carrier estimation

# **Loop SNR Summary**

• PLL: 
$$\frac{1}{\sigma_{\phi_c}^2} = \rho_{PLL} = \frac{P_c}{N_o B_L}$$

□ Loop SNR exhibits No squaring loss

□ Utilizes carrier power for carrier estimation

• Costas Loop: 
$$\frac{1}{\sigma_{\phi_c}^2} = \rho_C \cdot S_{L_c} = \frac{P_t}{N_o B_L} \left( 1 + \frac{1}{2R_d} \right)$$

SL is independent of the iteration process, for a given SNR.
 Suppressed carrier scenario

IRCS: 
$$\frac{1}{\sigma_{\phi_c}^2} = \rho_{IRCS} \cdot S_{L_{IRCS}} = \frac{P_T}{N_o B_L} \left(1 + \frac{2}{A}\right)^{-1}$$

SL approaches unity as the number of LDPC iterations increase
 Suppressed carrier scenario

# **BPSK Digital Circuit Implementation**



# **BPSK : Algorithm Initialization**

- Step 1: Resolve initial phase ambiguity
- Measure average power across a single codeword of the signals z<sub>c</sub> and z<sub>s</sub>.
  - Choose component with *higher power* to initialize the phase estimation process
  - □ An error of 180 degrees may remain



## **BPSK : Pilotless Phase Ambiguity Correction**

## Step 2: Remove possible 180° offset

- Run a single PLL pass
- Run up to 4 LDPC iterations and choose the orientation that produces the maximum percentage of satisfied constraints on odd degree check nodes (even degree checks remain satisfied after a π rotation of its inputs)



# **BPSK Main Decoding Algorithm**

## Step 3:

### For i=1 to *Max\_Iterations*

- 1. Estimate Carrier Phase Offset
- 2. For j=1 to *LDPC\_iter* 
  - Update Variables
  - Update Constraints
- 3. Update Variables
- 4. Go to 1
- Performance plots in the next slides are shown for LDPC\_iter ={1,2}
- BER/FER performance
   starts to degrade for cases
   where phase estimates are computed
   after a higher number of decoder iterations.



Variable Nodes

# **Experimental Results: Loop SNR**

Plot shows loop SNR vs Iterations.  $\theta_c = 0^\circ$  and  $\theta_c = 45^\circ$ 



- Note the curious performance for the  $\theta_c = 0^\circ$  case.
- In this region the initially correct PLL's phase estimate is affected by poor initial LDPC soft-symbol estimates.
- Both LDPC estimates and loop-SNR dramatically improve after the 10th iter.

Loop SNR

# **Experimental Results: Loop SNR**



□ Steady State is reached after 50 iterations

□ As we will see in the next slide this means that

□ Some loss occurs with a reduced number of iterations.

□ After 50 iterations, a small marginal degradation in loop-SNR remains

# **BPSK Frame Error Rate Performance**



#### **20 Iterations**

Loop did not reach Steady State

□ Performance loss at a FER of 1e-3 is

□ 0.15dB with a (20-10) = (1 Loop update every 2 LDPC iterations) scheduling

□ 0.07dB in the (20-20) = (1 Loop update every 2 LDPC iterations) scheduling

#### **50 Iterations**

Loop in Steady State

□ Small performance difference after 50 iterations due to loop-SNR marginal degradation

# **QPSK Analog Circuit Description**

**BPSK** 

QPSK



- The QPSK IRCS carrier recovery circuit follows the same principles as its BPSK counterpart
- Symbol feedback is now done for the real and imaginary signal components

# Squaring Loss (SL) for QPSK systems

Recall the BPSK SL expression:

$$S_L \triangleq \left(1 + \frac{\sigma^2}{A^2}\right)^{-1} = \left(1 + \frac{2}{A}\right)^{-1}$$

• For our QPSK system :

$$S_{L} \triangleq \left(1 + \frac{(1+R_{d})\sigma^{2}}{A^{2}}\right)^{-1} = \left(1 + \frac{2(1+R_{d})}{A}\right)^{-1}$$

where the noise variance factor  $(1+R_d)$  ( $R_D$ : Input Data SNR ) comes from the presence of a quadrature (signal x noise) term. [Simon06]

- The penalty in performance due to the R<sub>d</sub> term becomes insignificant for low symbol SNR scenarios.
- No 4<sup>th</sup> order (signal x noise) or (noise x noise) in the loop as in QPSK Costas or hard-decision IRCS loops.

# Conclusions

- We have demonstrated a method for improving the carrier synchronization function for iterative BPSK using soft output information from an LDPC decoder.
- Motivation is to overcome the performance loss due to a noisy signal reference at low SNRs, characteristic of suppressed carrier loops such as the Costas loop.
- Steady state operation is reached after around 45 LDPC iterations.
- Performance degradation with respect to the perfect phase information case, in steady state and with a proper loop update schedule, is smaller than 0.1dB.

# References

- M. Simon and S. Million, "Residual versus Suppressed-Carrier Coherent Communications" *TDA Progress Report*, vol. 42-127, Nov. 15, 1996.
- N. Noels, V. Lottici, A. Dejonghe, H. Moeneclaey, M. Luise, and M. Vandendorpe, "A theoretical framework for soft-information-based synchronization in iterative (turbo) receivers," *EURASIP Journal on Wireless Communications and Networking*, vol. 2005, pp. 117–129, 2005.
- M. Simon and V. A. Vilnrotter, "Iterative information-reduced carrier synchronization using decision feedback for low SNR applications," *TDA Progress Report*, vol. 42-130, Aug. 15, 1997. [Online]. Available: http://tmo.jpl.nasa.gov/progress report/42-130/130A.pdf
- M. Simon and A. Tkacenko, "An iterative information-reduced QPSK carrier synchronization scheme using decision feedback for low SNR applications," *TDA Progress Report*, vol. 42-164, Feb. 15, 2006. [Online] Available: http://tmo.jpl.nasa.gov/progress report/42-164/164H.pdf
- S. Chung, T. Richardson, and R. Urbanke, "Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation," *IEEE Trans. Inform. Theory*, vol. 47, pp. 657–670, Feb. 2001.