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Introduction

This paper addresses the carrier-phase estimation problem under low
SNR conditions in a soft decision-directed LDPC-coded system.

Two distinct techniques for joint decoding and synchronization :

Modifying iterative detection/decoding algorithms and/or graph structure
to include parameter estimation

Turbo Synchronization: Pass messages between an independent
phase estimation block and an essentially unmodified iterative decoder
[Noels05]

The technique in this presentation falls into this second category.

We propose a soft decision-directed pilotless carrier recovery
circuit with little modification to either the iterative decoder or the
carrier recovery block.



Motivation

m  When designing communication systems engineers need to decide
whether or not to suppress the transmitted carrier power

m Total power = Carrier Power + Data Power - P=P_+P,
Carrier Power: related to the accuracy of the carrier synch process

Data Power: related to the accuracy of the data detection process (in the
presence of perfect carrier synchronization).

m  System design requires a proper trade off between these power
requirements to minimize the average error probability of the system
[SImon96] .

m Traditional synchronization circuits:

Residual Carrier: Utilize phase-lock Loops (PLL) to provide an accurate
synchronization. (Used in NASA'’s deep space comm. systems.)

Suppressed-carrier: Tracking loops such as the Costas loop require a
larger SNR to track the carrier with a given accuracy.



Possible Synchronization Circuits

m Phase-Lock Loop (PLL):

Use residual carrier information inside the tracking loop to aid
synchronization.

Loop SNR: 1 P,
2T PP T o
o, N,B,
= B,: Loop Bandwidth, P.: Total Carrier Power,
= N,: Noise PSD @.. Carrier Phase Estimation Error

There always exists an optimum (in the sense of minimum average
error probability) split between Data and Carrier power .

» If m?=P_/ P;, typical systems require m?=0.1or less [Simon96]
= This trend suggests using suppressed-carrier systems, i.e. m?=0
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Possible Synchronization Circuits

m Costas Loop
Can track fully suppressed-carrier signals.

Loop SNR:
1 P 1) P N, )
7= P S = £1+ j =—1 [1+ 2 ]
o, N.B, 2R, N, B, 2R T,
B, : Loop Bandwidth, P, Total Power, No: Noise PSD,
R,: Input Data SNR, S.c: Squaring Loss, T,: Pulse Duration

Requires significantly larger loop SNR than a PLL to be able to track.
m Atlow data SNRs, the SL can be large enough to prevent tracking.

For a fixed input data SNR , SL does not improve with decoder iterations.

For a wide input data SNR range, Costas loop systems are still more
efficient (in the sense of minimum average error probability) than PLL
circuits.

Alternative Circuit: design a suppressed carrier system for low data SNR
that uses a PLL circuit instead of a Costas loop.



Information-reduced carrier-synchronization (IRCS)

m Use a soft estimate of the instantaneous data symbol (and thus of
the instantaneous phase modulation) to reduce the amount of
randomness (information) in the signal being processed in the carrier
loop. [Simon97]

m LDPC symbol estimates “wipe-off ” modulated symbols in a decision
directed loop to enhance the carrier information such that a classic
PLL can provide increasingly accurate phase estimates over LDPC
iterations.

m Latency penalty: tracking improves with increased iterations

m  System complexity: No significant modifications to the current
residual carrier recovery techniques used for BPSK/ QPSK
modulation in NASA's deep-space network.




IRCS BPSK System Description
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-Demodulator
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Carrier Detection Process

m Assume N=5 transmitted BPSK symbols
m Sample transmitted waveform=[1,-1,1,-1,1]

m Plot shows received waveform affected by symbol-wise
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Carrier Detection Process

m Modulation is removed by multiplying the received
waveform by soft-estimated symbols from the decoder

m Symbol Information randomness is reduced
m Plot shows “IR” waveform after the first iterations
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Carrier Detection Process

m As the number of iterations increase, soft-symbol
estimation becomes more accurate.

m Freqguency spectrum has a distinctive tone that a PLL
based circuit can now track.
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Proposed Synchronization Circuit

m Information Reduced Carrier Synchronization (IRCS)
Can track fully suppressed-carrier signals

Loop SNR:
-1 1

1 P o P 2

—2 = Plres Ol = (1+—] = |Lopc —(1+_j
2 IRCS 2
o, N,B |~ A NB L A
= B: Loop Bandwidth, P,: Total Power,
S, res- Squaring Loss, A: Estimated Signal Amplitude

2

The ratio iz represents the decoder soft-estimate data SNR.

Symmetry condition: For decoding of LDPC and turbo codes o?=2A. [Chung01]

Decoder data SNR increases with iterations causing:
B S s > 1

m Loop SNR approaches PLL performance using the total transmitted power for
carrier estimation
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Loop SNR Summary

s PLL: R
O_¢c2 PLL NOBL

Loop SNR exhibits No squaring loss
Utilizes carrier power for carrier estimation

o)

= Costas Loop: _1 i (1+ 1 J

i " N,B, 2R,

SL is independent of the iteration process, for a given SNR.
Suppressed carrier scenario

m |[RCS: 1 P 2 -1
>
;Cﬁpmcs Stpes = N.B, [1 Kj

SL approaches unity as the number of LDPC iterations increase
Suppressed carrier scenario
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BPSK Digital Circuit Implementation

Im (VPT )2
S
t oy, LDPCLLR Qu = ——(ZyWy +Z, W, ) Where o7, = c
0 Inputs: OLR 95
A \ N,
Re >
v > LbPC [
Decoder Detected
Data
Yao =i+ /A 44
(k+D)T, Sample & Ug
LTS XAt T Holg ;
sk
J2sin (wt) W, :cos(@C)
N NCO ACC «—{1)
2 &
V2 cos(w,t)
(k+1)Ts Sample &
—> X(t, 9C)dt Hold T ~
X (t:0) LTS ° Z,, Ug e, =T.\2P sin(@c ~ 0, )+ Noise

X, (t;0,) = /PT.m(t)sin(6,) + Noise(t;8,)  Zy = d, sin(dc)+ Noise

Uy = Asin(d.) + Noise
X,(t;0,) = VPT,m(t)cos(d,) + Noise(t;§,)  Zs = di cos(dc)+ Noise

Uy = Acos(6.)+ Noise
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BPSK : Algorithm Initialization

m Step 1. Resolve initial phase ambiguity

m Measure average power across a single codeword of the
signals z, and z..

Choose component with higher power to initialize the phase
estimation process

An error of 180 degrees may remain

Im Im

\ 4

© Ambiguity
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BPSK : Pilotless Phase Ambiguity Correction

m Step 2. Remove possible 180° offset

Sat.Constraints %

Run a single PLL pass

Run up to 4 LDPC iterations and choose the orientation that
produces the maximum percentage of satisfied constraints on
odd degree check nodes (even degree checks remain satisfied

after a « rotation of its inputs)
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BPSK Main Decoding Algorithm

2
Q= T(Zskwck + chWsk)

H Step 3: OLLR
For i=1 to Max_Iterations rere o :(\/ETS)2
1. Estimate Carrier Phase Offset L E
>. Forj=1to LDPC_iter N,
Update Variables +
Update Constraints
3. Update Variables n
4. Gotol
n
m  Performance plots in the next Constraint
slides are shown for Nodes
LDPC iter ={1,2}
m BER/FER performance vanable

starts to degrade for cases
where phase estimates are computed

after a higher number of decoder iterations. .
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Experimental Results: Loop SNR

m Plot shows loop SNR vs lterations. §,=0° and 6.=45°
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Note the curious performance for the 4. = 0° case.
In this region the initially correct PLL’s phase estimate is affected by poor initial

LDPC soft-symbol estimates.

Both LDPC estimates and loop-SNR dramatically improve after the 10th iter.
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Loop SNR

Experimental Results

Loop SNR Difference

1 Loop Update every 2 LDPC lterations
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O Steady State is reached after 50 iterations

a As we will see in the next slide this means that

O Some loss occurs with a reduced number of iterations.

Q After 50 iterations, a small marginal degradation in loop-SNR remains
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FER

BPSK Frame Error Rate Performance

FER performance

FER performance

10 10 g——=6
L 20 iter. .
107 ¢ 4 107¢
107+ 4107k
i @
r L
L LL
10° 1 1 108 —©— Stand-alone Code ]
- | —#—FER 20it.Code ~ & (1 Update-2 Iter) $=0
| | —B— FER (20-10)it.¢=r/4 Eb \ No =2.25 [dB] = (1 Update-2 ter) g=n/4
10™ | | —®—FER (20-20)it.¢=r/4 1l (1 Update-1 lter) ¢p=n'4 ||
- | —©— FER 50it.Code 50 iter.
|| —&—FER (50-25)it.¢=r/4 — e s
o )
| | —*— FER (50-50)it.¢=r/4 1
10'5 1 1 1 1 | | | 10'5 | | | | | | I I
04 06 08 1 1.2 14 16 1.8 2 22 24 5 10 15 20 25 30 35 40 45 50
Eb \ No [dB] Iterations [dB]

20 Iterations
0 Loop did not reach Steady State
a Performance loss at a FER of 1e-3 is
0 0.15dB with a (20-10) = (1 Loop update every 2 LDPC iterations) scheduling
0 0.07dB in the (20-20) = (1 Loop update every 2 LDPC iterations) scheduling

50 Iterations
Q Loop in Steady State

0 Small performance difference after 50 iterations due to loop-SNR marginal degradation 19



QPSK Analog Circuit Description

BPSK
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m The QPSK IRCS carrier recovery circuit follows the same

principles as its BPSK counterpart

m Symbol feedback is now done for the real and imaginary

signal components
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Squaring Loss (SL) for QPSK systems

m Recall the BPSK SL expression:

o2 - 2\
S, 2| 1+— =(1+—j
A A

m For our QPSK system :
2\1 -1
. - [1+ (1+R))o j :(1+ 2(1+ Rd)j

A? A

where the noise variance factor (1+R,) (Ry: Input Data SNR ) comes
from the presence of a quadrature (signal x noise) term. [Simon06]

m The penalty in performance due to the R, term becomes insignificant
for low symbol SNR scenarios.

m No 4" order (signal x noise) or (noise x noise) in the loop as in QPSK
Costas or hard-decision IRCS loops.
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Conclusions

m We have demonstrated a method for improving the
carrier synchronization function for iterative BPSK using
soft output information from an LDPC decoder .

m Motivation is to overcome the performance loss due to a
noisy signal reference at low SNRs, characteristic of
suppressed carrier loops such as the Costas loop.

m Steady state operation is reached after around 45 LDPC
iterations.

m Performance degradation with respect to the perfect
phase information case, in steady state and with a
proper loop update schedule, is smaller than 0.1dB.
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