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Introduction

This work addresses the problem of joint carrier-phase estimation and
symbol timing recovery under low SNR conditions in a soft decision-
directed LDPC-coded system.

Timing Recovery:
Previous treatments in the literature focus on the use of output codewords

We exploit information available from constraint node metrics of an LDPC
code

Carrier-Phase Synchronization: Two basic trends:
Classis Synchronization techniques: Costas Loop, PLL, squaring loops.

Iterative Synchronization techniques

Modifying iterative detection/decoding algorithms and/or graph structure to
include parameter estimation

Turbo Synchronization: Pass messages between an independent phase
estimation block and an essentially unmodified iterative decoder [Noels05]

We propose a soft decision-directed pilotless joint carrier-phase
and symbol-timing recovery circuit with little modification to either the
iterative decoder or the timing recovery block.



Joint Estimation Algorithm

Decoder has a carrier phase-synchronization block and
a timing-recovery block that interact as follows:

Estimate carrier phase

This can be done using a Costas Loop (CL) or an iterative
Decision Directed Carrier Synchronization (DDCS) algorithm

For BPSK and QPSK constellation, BER/FER performance is
similar using any of CL or DDCS since these constellations are
not severely affected by carrier phase |jitter.

Estimate Symbol Timing parameters

For symbol frequency and symbol time-delays use iterative
timing recovery circuit that uses information from the constraint
side of an LDPC graph to aid recovery process

For random walk effects, use a phase-lock loop (PLL)
Restart the iterative estimation process



Transmission Model
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Joint Symbol Timing and Carrier Phase Recovery

m Block Diagram for DDCS
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BPSK Digital Circuit Implementation
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Carrier Phase Recovery: Motivation

When designing communication systems engineers need to decide
whether or not to suppress the transmitted carrier power

Total power = Carrier Power + Data Power 2> P=P_+P,
Carrier Power: related to the accuracy of the carrier synch process

Data Power: related to the accuracy of the data detection process
(in the presence of perfect carrier synchronization).

System design requires a proper trade off between these power
requirements to minimize the average error probability of the system.

Suppressed-carrier circuits:

Costas loop
m Require a larger SNR to track the carrier with a given accuracy.
= Phase estimation has jitter
Decision Directed Carrier Synchronization:
m Parameter estimation improves with the iteration process
m Squaring loss tends to unity as iterations increase



Decision Directed Carrier-Synchronization (DDCS)

m Use a soft estimate of the instantaneous data symbol (and thus of
the instantaneous phase modulation) to reduce the amount of
randomness (information) in the signal being processed in the carrier
loop.

m LDPC symbol estimates “wipe-off ” modulated symbols in a decision
directed loop to enhance the carrier information such that a classic
PLL can provide increasingly accurate (very low jitter) phase
estimates over LDPC iterations.

m Latency penalty: tracking improves with increased iterations

m  System complexity: No significant modifications to the current
residual carrier recovery techniques used for BPSK/ QPSK
modulation in NASA's deep-space network.




DDCS BPSK System Description
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Carrier Detection Process

m Assume N=5 transmitted BPSK symbols
m Sample transmitted waveform=[1,-1,1,-1,1]

m Plot shows received waveform affected by symbol-wise
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Carrier Detection Process

m  Modulation is removed by multiplying the received waveform by
soft-estimated symbols from the decoder

m  Symbol Information randomness is reduced
m Plot shows “IR” waveform after the first iterations
m As iterations increase, soft-symbol estimation becomes more accurate
m Frequency spectrum has a distinctive tone that a PLL based circuit
can now track.
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Loop SNR

N PLL 1 PC B,: Loop Bandwidth
— = PpL T o Pc: Carrier Power,
Oy, N,B. No: Noise PSD

Loop SNR exhibits No squaring loss
Utilizes carrier power for carrier estimation

-1 Pt: Total Power,
m Costas Loop: 1 _ S = R 1+ 1 SL res: Squaring Loss,
o, ~ e L T N B, 2R, Rd: Input Data SNR

SL is independent of the iteration process, for a given SNR.
Suppressed carrier circuit

m DDCS! B,: Loop Bandwidth
1 P o2 - Pt: Total Power,
— = Poocs Ol = T 1+— SL jrcs: Squaring Loss, |
o, N.B, A A: Estimated Decoder Amplitude

SL approaches unity as the number of LDPC iterations increase
Suppressed carrier circuit
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Averaging Costas Loop

Phase Error at EbNo=1.5dB
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m The idea is to eliminate the phase jitter present in the
estimation

m Observe that the mean of the error is in both cases very
close to zero.



Larger Gains

Loop SNR
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1st . 2nd Moments & Variance
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FER/BER
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BER / FER results for 50 iterations assuming no symbol timing
offsets

Results show that for small M-PSK constellations jitter effects do not
affect average error symbol performance



BER /FER GAP from Genie Performance
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m BER/FER results for 50 iterations assuming no symbol timing
offsets
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Timing Offset

m Symbol-wise Offsets

m The traditional method used in the literature introduces an offset
to each of the conforming pulses of s(t) before any superposition
IS done

m The major drawback of this method is that it introduces
unnecessary ISI

r(t) = j e (17, ~1T) + N (1)

m Sample-wise Timing Offsets:

m Proposed models applies timing shifts to the superimposed signal
after superposition is done. This is done by having a time-varying
timing perturbation function t(t) independent of the sample number.

I’(t) = nZi a; - hRRC (t +T(t)_ I )+ N (t)
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Timing Offset

Symbol-wise Perturbations

m Timing perturbations occur in the channel
due to:
Relative motion between transmitter and
receiver
Mismatch between clock crystal
frequencies
Receiver-side timing estimation errors

Amplitude

m  Symbol-wise modeling introduces
inter-symbol interference (ISI) in the
transmitted waveform (even though an ISl
free pulse shape is modulated e.g. RRC)
as shown in the eye diagram

Amplitude

m  Symbol-wise perturbation model is not
well suited for our channel model
assumptions




Timing Error Modalities

Constant Time Offset: All pulses affected by the same constant delay with respect to
their ideal sampling time

7[k]=D

where k indexes the k" received sample.

Random Walk: Models an accumulation process. Timing error is equal to previous error
plus a perturbation:

r[k]=r[k 1]+ N (0,07)

Frequency Offset: Produced by
Mismatch between transmitter and receiver clock crystals
Doppler shift due to relative motion between transmitter and receiver

r[k]=7[k —1]+ T, (Freq %)
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Random Walk Timing Perturbation

m Timing offset which is tracked on a sample-by-sample basis

(a) Perturbation Profile
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Timing Offset

Constant Frequency Offset

Amplitude

Amplitude

Frequency tracking is done in a Quasi-Static manner (ie. frequency offsets are
tracked on a block-by-block basis).

Positive frequency offset causes a time-compression on the received waveform
Samples are still ISI-free
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Symbol Timing Recovery Model
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Tracks large scale phase and frequency offset
Interpolator 1 corrects arbitrary frequency mismatch in LDPC block
Interpolator 2 corrects arbitrary phase offset in LDPC block

m Loop 2

Fine interpolation of frequency/phase compensated matched filter output
Dynamic tracking within a block: random walk and residual loop 1 error
Use Miller-Mueller timing error detector (M&M TED) is used
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Frequency Offset & Time Delay Search Example: Method A

m Offers very accurate estimations but requires a large number of iterations

m  Complexity grows linearly with offset

Search Iteration 1

® Real ppm =940

Window = 3200 ppm 2
Center = 0 ppm ®
Mn = -1600 ppm jo T
Max = 1600 ppm S Best
Step = 400 ppm 3 Estim ate
E 800ppm
- Center next search » Estimation Error
at 800ppm = 140 ppm
- Reduc_e window and | : | : | : P : :
stepsize -1600  -1200 800 400 0 400 800 1200 1600
e.g. by afactor of 2
- Perform | LDPCiterations Estimate [ppm)
(I<4) for each estimate
Search Iteration 2
0 ® Real ppm = 940
Window = 1600 ppm -%
Center = 800 ppm §
Min = 0 ppm 8 Estimate
Max f 1600 ppm 5 1000ppm
Step = 200 ppm B Estimation Error
' g =60ppm
: —t—t—t————————
E O 200 400 600 800 1000 1200 1400 1600
\%

Estimate [ppml
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Frequency Offset & Time Delay Search Example: Method B

m Use a smaller step but only one frequency search
m Produce closer estimates that allow a curve fitting interpolation to reduce
the initial estimation error

Search Iteration 1
® Real ppm =820
Window = 3500 ppm 2 PP
Center = 0 ppm I T
Mn = -1750 ppm )
Max = 1750 pom 3 Best
Step = 250 ppm B Edgimate
5 750ppm
§ Initial Estimation Error
=120 ppm
INTERPOLATE —t—t—+——t—+—+—+—+—+—+o—+—+— :
-1500 -1000 -500 0 500 1000 1500
m Method A

Diminishing returns after 3 search iterations and 3 LDPC iterations
Estimation accurate within 40 ppm

Initial search window of =1600ppm
m 3 search iter * 3 LDPC iterations * 9 estimates per search = 81 total LDPC iterations

m Method B
Estimation accurate within =60 ppm

Initial search window of =1750ppm
m 3 searchiter * 1 LDPC iterations * 15 estimates per search = 45 total LDPC iterations
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Tracking Random Walks

m Tracked with a 15t order PLL-based circuit (loop 2)

Muller-Mueller timing error detector (M&M TED) is used
= M&M TED updates its timing error estimate according to:

ufi] = s[ild[i —1] - s[i — 1]d[i]

where s][i] is the symbol from the interpolator and d[i] is the decoded symbol from
LDPC decoder

u[i] is noisy, hence attenuated with a 1st order loop filter:
c[i]=c[i-1]+ K xuli]

where K is the proportional gain and ufi] is the output of the
M&M TED

m This circuit also corrects residual time delay and frequency
offset
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Effects of Timing Errors (No Correction)
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Symbol Timing & Carrier Recovery
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Summary

Carrier synchronization circuit overcomes the performance loss due to a
noisy signal reference at low SNRs, characteristic of suppressed carrier
loops such as the Costas loop.

Steady state operation is reached after around 15 joint DDCS/LDPC
iterations.

Two-stage pilotless symbol timing recovery model for tracking time
delay, frequency offsets and random walks

15t stage: LDPC constraint feedback to track large-scale time delays and
symbol frequency offsets
Windowed search method
Complexity grows linearly with offset
Can track any time delay frequency offset as long as it is within the initial
search window
2"d stage: decoded LDPC symbols to track random walks and residual
errors from the 15t stage

Simulations results show within 0.4 dB of the ideal code performance for

time delays and frequency offsets o
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