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Introduction
This work addresses the problem of joint carrier-phase estimation and 
symbol timing recovery under low SNR conditions in a soft decision-
directed LDPC-coded system.

Timing Recovery:
Previous treatments in the literature focus on the use of output codewords
We exploit information available from constraint node metrics of an LDPC 
code

Carrier-Phase Synchronization: Two basic trends:
1. Classis Synchronization techniques: Costas Loop, PLL, squaring loops.
2. Iterative Synchronization techniques

Modifying iterative detection/decoding algorithms and/or graph structure to 
include parameter estimation
Turbo Synchronization: Pass messages between an independent phase 
estimation block and an essentially unmodified iterative decoder [Noels05]

We propose a soft decision-directed pilotless joint carrier-phase 
and symbol-timing recovery circuit with little modification to either the 
iterative decoder or the timing recovery block.
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Joint Estimation Algorithm

Decoder has a carrier phase-synchronization block and 
a timing-recovery block that interact as follows:

1. Estimate carrier phase
This can be done using a Costas Loop (CL) or an iterative 
Decision Directed Carrier Synchronization (DDCS) algorithm
For BPSK and QPSK constellation, BER/FER performance is 
similar using any of CL or DDCS since these constellations are 
not severely affected by carrier phase jitter.

2. Estimate Symbol Timing parameters
For symbol frequency and symbol time-delays use iterative 
timing recovery circuit that uses information from the constraint 
side of an LDPC graph to aid recovery process
For random walk effects, use a phase-lock loop (PLL)

3. Restart the iterative estimation process



4

Transmission Model

Parameters:
di = BPSK symbols (Code length = n) 
hRRC(t) = Root-raised cosine (RRC) pulse 
T = Symbol period
τ(t) = Timing perturbation
θc = Carrier Phase

Analog transmitted waveform s(t)
comprised of a superposition of RRC pulses

( ) ( ) ( )
1

0

( ) ( ) 2 sin
n

i RRC c c
i

r t d h t iT t P w t N tτ θ
−

=

⎛ ⎞= − + + +⎜ ⎟
⎝ ⎠
∑ Received waveform

( )
1

0
( )

n

i RRC
i

s t d h t iT
−

=

= −∑

LDPC
Encoder

im

AWGN

Const.
Mapper

ix
hRRC(t)

id
+

Symbol  &
Carrier

Perturbations

( )2 sin
ccP w t θ+

( )r t

( )s t



5

Joint  Symbol Timing and Carrier Phase Recovery

Block Diagram for DDCS
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BPSK Digital Circuit Implementation
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Carrier Phase Recovery: Motivation
When designing communication systems engineers need to decide 
whether or not to suppress the transmitted carrier power

Total power = Carrier Power + Data Power Pt=Pc+Pd
Carrier Power: related to the accuracy of the carrier synch process
Data Power: related to the accuracy of the data detection process 
(in the presence of perfect carrier synchronization).

System design requires a proper trade off between these power 
requirements to minimize the average error probability of the system.

Suppressed-carrier circuits: 
Costas loop 

Require a larger SNR to track the carrier with a given accuracy.
Phase estimation has jitter 

Decision Directed Carrier Synchronization:
Parameter estimation improves with the iteration process
Squaring loss tends to unity as iterations increase
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Decision Directed Carrier-Synchronization (DDCS)

Use a soft estimate of the instantaneous data symbol (and thus of 
the instantaneous phase modulation) to reduce the amount of 
randomness (information) in the signal being processed in the carrier 
loop. 

LDPC symbol estimates “wipe-off ” modulated symbols in a decision 
directed loop to enhance the carrier information such that a classic 
PLL can provide increasingly accurate (very low jitter) phase 
estimates over LDPC iterations.

Latency penalty: tracking improves with increased iterations

System complexity: No significant modifications to the current 
residual carrier recovery techniques used for BPSK/ QPSK 
modulation in NASA's deep-space network.
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Carrier Detection Process

Assume N=5 transmitted BPSK symbols
Sample transmitted waveform = [ 1, -1, 1, -1 ,1 ] 
Plot shows  received waveform affected by symbol-wise 
noise
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Carrier Detection Process
Modulation is removed by multiplying the received waveform by 
soft-estimated symbols from the decoder
Symbol Information randomness is reduced
Plot shows “IR” waveform after the first iterations
As iterations increase, soft-symbol estimation becomes more accurate
Frequency spectrum has a distinctive tone that a PLL based circuit 
can now track.
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PLL:

Loop SNR exhibits No squaring loss
Utilizes carrier power for carrier estimation

Costas Loop:

SL is independent of the iteration process, for a given SNR.
Suppressed carrier circuit

DDCS:

SL approaches unity as the number of LDPC iterations increase
Suppressed carrier circuit 

Loop SNR
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Averaging Costas Loop

The idea is to eliminate the phase jitter present in the 
estimation
Observe that the mean of the error is in both cases very 
close to zero.
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Loop SNR: Larger Gains

Larger gains
Phase estimation 
process 
converges faster 

DDCS Gains:
Kp=8.92E-5
KI=-8.75E-5

Costas Gains:
Kp=8.85E-4
KI=-8.75E-4
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1st , 2nd Moments & Variance

Costas Variance =
2.8E-2  
LS ≈15 dB
DDCS Variance = 
6E-4 
LS ≈32 dB

Loop SNR performance 
shows a difference of 
around 15dB for DDCS 
and Costas Loop
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FER/BER 
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Results show that for small M-PSK constellations jitter effects do not 
affect average error symbol performance
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BER /FER GAP from Genie Performance
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Symbol-wise Offsets
The traditional method used in the literature introduces  an offset 

to each of the conforming pulses of s(t) before any superposition 
is done 

The major drawback of this method is that it introduces 
unnecessary ISI

Sample-wise Timing Offsets:
Proposed models applies timing shifts to the superimposed signal 

after superposition is done.  This is done by having a time-varying 
timing perturbation function t(t) independent of the sample number.
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Timing Offset

Timing perturbations occur in the channel 
due to:

Relative motion between transmitter and 
receiver
Mismatch between clock crystal 
frequencies
Receiver-side timing estimation errors

Symbol-wise modeling introduces 
inter-symbol interference (ISI) in the 
transmitted waveform (even though an ISI 
free pulse shape is modulated e.g. RRC)
as shown in the eye diagram 

Symbol-wise perturbation model is not 
well suited for our channel model 
assumptions 
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Timing Error Modalities

Constant Time Offset: All pulses affected by the same constant delay with respect to
their ideal sampling time

where k indexes the kth received sample.

Random Walk: Models an accumulation process. Timing error is equal to previous error 
plus a perturbation:

Frequency Offset: Produced by 
Mismatch between transmitter and receiver clock crystals
Doppler shift due to relative motion between transmitter and receiver
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Constant Frequency Offset
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Frequency tracking is done in a Quasi-Static manner (ie. frequency offsets are 
tracked on a block-by-block basis). 
Positive frequency offset causes a time-compression on the received waveform
Samples are still ISI-free
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Symbol Timing Recovery Model

Loop 1
Tracks large scale phase and frequency offset
Interpolator 1 corrects arbitrary frequency mismatch in LDPC block
Interpolator 2 corrects arbitrary phase offset in LDPC block

Loop 2
Fine interpolation of frequency/phase compensated matched filter output
Dynamic tracking within a block: random walk and residual loop 1 error
Use Müller-Mueller timing error detector (M&M TED) is used
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Tracking Random Walks

Tracked with a 1st order PLL-based circuit (loop 2)

Müller-Mueller timing error detector (M&M TED) is used
M&M TED updates its timing error estimate according to:

where s[i] is the symbol from the interpolator and d[i] is the decoded symbol from 
LDPC decoder

u[i] is noisy, hence attenuated with a 1st order loop filter:

where Kp is the proportional gain and u[i] is the output of the 
M&M TED

This circuit also corrects residual time delay and frequency 
offset
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Effects of Timing Errors (No Correction)
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Symbol Timing & Carrier Recovery

Fig.(a) FER 50 
Iterations(solid) / FER 20 
Iterations(dashed) 
performance.
Legend format 

[Carr.] indicates the 
presence of a  =π/4 
carrier phase offset,
(Freq.) Symbol-
frequency offset
(TD) Symbol Time delay
(Rw.) Random walk

Fig.(b) Shows the SNR 
gap with respect to the 
“genie-aided”
performance for the same 
set of curves
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Summary
Carrier synchronization circuit overcomes the performance loss due to a 
noisy signal reference at low SNRs, characteristic of suppressed carrier 
loops such as the Costas loop.
Steady state operation is reached after around 15 joint DDCS/LDPC 
iterations.
Two-stage pilotless symbol timing recovery model for tracking time 
delay, frequency offsets and random walks
1st stage: LDPC constraint feedback to track large-scale time delays and 
symbol frequency offsets 
Windowed search method

Complexity grows linearly with offset
Can track any time delay frequency offset as long as it is within the initial 
search window

2nd stage: decoded LDPC symbols to track random walks and residual 
errors from the 1st stage
Simulations results show within 0.4 dB of the ideal code performance for 
time delays and frequency offsets
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