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Abstract—After numerous program and erase (P/E) operations
the Flash memory read channel experiences significant degrada-
tion, especially after certain retention time. As the volume of data
programmed and erased from the device increases, successful
recovery of the stored data becomes more difficult. Dynamic
voltage allocation (DVA) allocates the write threshold voltages
of each level as a function of the current degree of channel
degradation to increase the lifetime of Flash memory. Several
real-world constraints can limit the performance of DVA in
practical Flash systems. This paper proposes specific solutions to
address two major constraints: imperfect channel modeling and
quantized voltage levels. The resulting implementation provides
performance close to that of idealized settings.

Index Terms—Flash memory, dynamic voltage allocation, chan-
nel modeling, quantization, adaptive signaling

I. INTRODUCTION

Modern Flash memory provides an energy efficient, high-
throughput and compact storage solution. In the process of
reducing the cost and increasing the capacity of the memory,
the read channel degradation problem has become a major
concern. The read channel experiences significant degradation
over time and eventually is not able to reliably support the
complete recovery of the stored data.

In our research, the effect of channel degradation is charac-
terized by lifetime. The lifetime of Flash memory is defined
as the number of program and erase (P/E) cycles after which
newly stored data will lose its integrity after a certain fixed
retention time. There are two related factors that determine
the lifetime: the degradation that occurs as a function of the
number of P/E cycles and the degradation that occurs during
the retention time. The P/E cycle count essentially represents
the cumulative amount of new data written to the device.
Retention time is the amount of off-line time the memory can
endure before the stored data becomes unrecoverable.

Many different solutions have been proposed to extend the
lifetime of Flash memory. Commonly, channel codes [1]–
[5] are used to provide additional redundancy for the stored
data, and guarantee data integrity for a range of degraded
channels. Recent work shows that three dimensional layout of
the storage cells can dramatically improve the durability of the
channel [6], [7]. Another approach is to reduce the number of
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P/E cycles used to write certain volume of data. Write-once
memory (WOM) codes [8]–[10] and rank modulation [11]–
[13] are two such examples.

In [14], [15], dynamic threshold assignment (DTA) adjusts
the read threshold voltages (similar to [5]) to match the chang-
ing channel characteristics. Dynamic voltage allocation (DVA)
[16], [17] directly adapts write levels to extend Flash memory
lifetime. DVA optimizes the write threshold voltage of each
potential level a memory cell could store. The optimization
result is a channel distribution that provides sufficient mutual
information to guarantee successful data recovery through
error correction coding while reducing the channel degradation
caused by each P/E cycle by writing the least amount of charge
possible.

This paper focuses on analyzing two major constraints when
applying DVA to practical memory systems, quantized voltage
levels and imperfect channel modeling, and shows that DVA
can still perform well despite these constraints. Throughout
the paper Multi-level Cell (MLC) Flash (with four possible
levels) is assumed for all the models and simulations, and the
retention time is fixed to be one year.

The remainder of this paper is organized as follows: Sec. II
presents two models for the Flash read channel. Sec. III
introduces the DVA algorithm and a DVA framework for
practical systems. Sec. IV examines the performance impact
when channel estimation and DVA rely on a simple Gaussian
channel model instead of the detailed channel models pre-
sented in Sec. II . Sec. V analyses the performance impact of a
limited number of levels being available for the read and write
threshold voltage placements. Sec. VI concludes the paper.

II. CHANNEL MODEL & PARAMETERS

Our precursor conference papers [16] and [17] present
a Gaussian-exponential parameterized channel model char-
acterizing the read channel as having three additive noise
components: programming noise, wear-out noise, and retention
noise. In this paper, this model is called Model 1. While
Model 1 characterizes the major Flash read channel distri-
bution properties, this paper also presents Model 2 as an
improved model that adds two noise components: cell-to-
cell interference and programming error. Model 2 provides a
more precise characterization of the read channel in practical
systems.



Fig. 1. Flash read channel PDFs illustrating noise components.

A. Channel Model with Additive Components
Thus, our two Flash memory read channel models are

formulated as follows [16]–[19]:
• Model 1:

y = x+ np + nw + nr. (1)

• Model 2:

y = x+ npe + np + nw + nc2c + nr, (2)

where x is the write threshold voltage, and y is the measured
threshold voltage. Noise np represents the programming noise,
nw represents the wear-out noise, nr represents the retention
noise, nc2c represents the cell-to-cell interference, and npe
represents the programming error. Fig. 1 shows an example
voltage distribution of the five noise components. The arrows
denote delta functions.

1) Programming Error npe: The Programming Error noise
is modeled with a probability mass function (PMF) P (Y =
y|X = x), which is the conditional probability of actually
writing level y when the intended level is x. Note that
programming error, which results from misreading the least
significant bit before writing the most significant bit, always
results in a valid write level.

2) Programming Noise np: Programming noise is modeled
with a Gaussian distribution for each level. The probability
density function (PDF) is

fnp(np|x = l) =

{
N (0, σ2

p) if l = 0

N (0, σ2
e) if l > 0

, (3)

where σe > σp. Index l represents the level corresponding to a
write threshold voltage. For MLC Flash, l ∈ {0, 1, 2, 3} where
l = 0 indicates the erased level.

3) Wear-out Noise nw: Wear-out noise is described by a
positive-side exponential1 noise for each level. The PDF is

fnw(nw) =

{
1
λe

−nw
λ if nw ≥ 0,

0 if nw < 0.
(4)

4) Cell-to-cell Interference nc2c: Cell-to-cell interference
to a certain cell is modeled by a weighted sum of neighboring
cells’ voltage increase due to write operations. For Flash mem-
ories employing the common even-odd structure for writing
and reading operations assuming even cells are written first in
each wordline, the interference can be represented as

Vnc2c,odd = γx,right × Vx,left + γx,left × Vx,right
+ γy × Vy, (5a)

Vnc2c,even = Vnc2c,odd + γxy,upper−left × Vxy,upper−left
+ γxy,upper−right × Vxy,upper−right. (5b)

Voltage Vnc2c,odd is the interference experienced by the odd
cells in each wordline, and Vnc2c,even is the interference
experiences by the even cells. The voltage increases Vx, Vy
and Vxy represent the voltage difference written to the adjacent
cells of the cell of interest. Subscript x indicates adjacent cells
on the same wordline, y indicates the adjacent cell on the
subsequent wordline, but the same bit line, and xy indicates
diagonally adjacent cells on the subsequent wordline and an
adjacent bitline.

5) Retention Noise nr: The retention noise is modeled as
a Gaussian random variable with PDF

fnr (nr) =
1

σr
√
2π
e
− (nr−µr)2

2σ2r . (6)

B. Channel Parameters

The channel parameters in noise components in Sec. II-A
determine both the static and dynamic characteristics of the
channel. The static channel parameters are: σp and σe in
programming noise. These parameters remain constant over
the lifetime of the memory. The dynamic channel parameters
are: the various P (Y = y|X = x) values in programming
noise; the λ values in wear-out noise; the γ values in cell-
to-cell interference; and µr and σr in retention noise. These
parameter values change with the number of P/E cycles and
retention time, representing the channel degradation process.
The channel parameter degradation models used to calculate
dynamic channel paramaters are described in detail in [16],
[18], [19].

III. DYNAMIC VOLTAGE ALLOCATION

Dynamic Voltage Allocation (DVA) [16], [17] optimizes
Flash memory read channel to provide the necessary amount of
mutual information (above the minimum required for reliable
decoding) after a certain number of P/E cycles and for a
specified retention time. The algorithm uses a single factor

1Wear-out noise can also be a negative-side exponential or a Laplace
(double-sided exponential) distribution depending on actual memory imple-
mentation.
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Fig. 2. DVA framework for practical systems.

to scale the write threshold voltage of each level. The effect
of the scaling is a controlled increase of the distance between
the write threshold voltages of adjacent levels. In this paper,
the minimum mutual information limit of the system is 1.9
bits and the target of DVA is set to be 1.94 bits, providing
0.04 bits of margin.

The ideal DVA algorithm relies on perfect knowledge of
channel distribution. In reality, this information is not readily
available. We propose a DVA framework to provide the
channel information by estimating the channel parameters in
the channel model. The framework is depicted in Fig. 2. In
the first step, a histogram is read from the memory using read
threshold placements optimized for channel estimation. In the
second step, a least squares algorithm estimates the channel
parameters based on the measured histogram. In the third
step, DVA calculates the scaling factor based on the channel
model induced by the estimated parameters. The process
is repeated regularly to provide the channel with sufficient
mutual information. In all the simulations in this paper, the
repetition period is set to be 100 P/E cycles.

From [17], a nine-read equal-probability bin-placement
scheme is the optimal choice for the first step. This bin-
placement scheme places reads used to measure the histogram
such that each bin has approximately the same height. For the
second step, the Levenberg-Marquardt algorithm is shown in
[17] to have the optimal parameter estimation performance.

For Flash memory systems which do not need to consider
cell-to-cell interference and programming error, the framework
shown in Fig. 2 can be used directly to implement DVA. The
channel model in this case is Model 1. For more common
systems characterized by Model 2, the implementation of DVA
needs to take into account the performance difference between
even cells and odd cells in each wordline. We propose a DVA
system for this type of memory based on Fig. 2 but with
two modifications. The first additional procedure for the DVA
system is the switching of write order between even and odd
cells. The order will be switched in each wordline every 100
P/E cycles in sync with the period of the DVA framework to
equalize the channel degradation of the even and odd cells.

P/E Cycle
0 1000 2000 3000 4000 5000 6000

M
ut
ua
lI
nf
or
m
at
io
n
pb
it
G

1.8

1.85

1.9

1.95

2

Mutual Information with DVA pMatching AssumptionG
Mutual Information with DVA pGaussian AssumptionG
Mutual Information with Fixed Allocation
Mutual Information Target

Fig. 3. DVA’s performance with Gaussian model. (Ground truth model is
Model 1.)

The second modification is that there are two DVA instances
and correspondingly two scaling factors, one for even cells
and one for odd cells.

IV. DVA WITH SIMPLIFIED CHANNEL MODELING

In this section, DVA is implemented using a Gaussian
distribution as a simplified channel model for each level. Thus,
the channel parameters need to be estimated are the means and
variances of the Gaussian distributions. Note that Models 1 and
2 are still used as the ground truth read distribution in both
our analysis and our simulations. Thus there is a mismatch
between the simple Gaussian model (GM) used for channel
estimation and DVA and the actual channel.

Perfect matching between the estimated channel and the
actual channel can only be achieved under two conditions:

1) The channel model exactly matches the actual channel.
2) The estimated channel parameters are precise.

These two conditions are hard to satisfy in reality because
many factors are involved in shaping the channel characteris-
tics. Even if the exact channel model is known, the complexity
of the model may make its application in practical DVA
systems impossible because of the computational complexity.
A simple but capable channel model which can significantly
increase the computational efficiency of the DVA system is
desired in practical implementations. The performance loss
caused by the channel model mismatch can be controlled when
the optimization target of the DVA algorithm, which is the
mutual information target of the process, are set properly.

A. Model 1

Fig. 3 shows a comparison of the performance difference
between using the actual channel of Model l for channel
estimation and GM-DVA. The performance of the simplified
GM-DVA system is comparable to the performance of the
model-matching system. This is expected as Model 1 is similar
to the multi-modal Gaussian model. The lifetime of the device
is extended by 74.2% from 3020 P/E cycles to 5260 P/E cycles
using GM-DVA.
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Fig. 4. DVA performance with Gaussian model. Ground truth model is Model
2.

Note that in Fig. 3, the performance of the model-
mismatching system is slightly better than that of the model-
matching system. Also, the deviation of the two curves rep-
resenting the two systems grows in the second half of the
device’s lifetime. The deviation represents that the mismatch
between Gaussian distribution and Model 1 increases with P/E
cycles. Furthermore, the deviation shows Gaussian distribu-
tion underestimates the degree of channel degradation as the
channel worsens. This tendency of underestimation leads the
GM-DVA algorithm to provide voltage allocation results which
utilize the built-in 0.04 bits margin more aggressively.

B. Model 2

Fig. 4 shows the Monte Carlo simulation performance of
GM-DVA with Model 2 as the ground truth distribution.
The result indicates that the periodic switching of the write
order in each wordline effectively reduces the performance
difference between the even-cell channel and the odd-cell
channel. Similar to the case in Sec. IV-A, the downward
bend of the curves suggests that GM-DVA underestimates the
channel degradation. The overall lifetime extension is about
87.4% from 2460 P/E cycles to 4609 P/E cycles in this case.

V. DVA WITH QUANTIZED VOLTAGE LEVELS

In the analysis and simulations presented above, both write
and read threshold voltages have floating point precision. In
practice, hardware limitations only allow the thresholds to be
placed at certain voltage values, and the originally calculated
values need to be quantized. This constraint adversely impacts
DVA performance.

In this paper, the performance of DVA with quantized
voltage levels is analyzed under three practical quantization
schemes: 256, 128 and 64-level uniform quantization. The
mutual information v.s. P/E cycle curves under these quanti-
zation schemes are compared with Fig. 4 to see if they cause a
premature dip below the minimum 1.9 bits mutual information
target. Uniform quantization means adjacent voltage place-
ments are separated by a constant difference. In the following
simulations, the quantization range is set to be from -1 Volt to
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Fig. 5. DVA’s performance with quantized placements. (128-level uniform
quantization. Ground truth model is Model 2. The overall lifetime is extended
by 87.0% from 2460 P/E cycles to 4600 P/E cycles.)
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Fig. 6. DVA performance with quantized placements. (64-level uniform
quantization. Ground truth model is Model 2.)

8 Volts. The desired system should have a quantization scheme
with the smallest possible total number of possible voltage
placements.

The simulations suggest that quantization with 128 possible
values strikes a nice balance between DVA performance and
the number of potential voltage values. When using 128-level
quantization, the overall lifetime is extended by 86.1% from
2460 P/E cycles to 4578 P/E cycles as shown in Fig. 5. The
quantization interval is 0.0714 Volts. Figs. 6 suggests 64-level
quantization with an interval of 0.1452 Volts will prohibit the
system from functioning properly. In this case, we observed
that two or more read threshold voltages would be in the same
place. This reduces the effective resolution of the measured
histogram, as a result, DVA performance suffers from less
reliable channel estimations.

The read and write quantization processes have very dif-
ferent properties. Write threshold quantization affects the sys-
tem’s performance directly. Read threshold quantization affect
the system’s performance through the reliability of channel
estimations. We conducted simulations to determine which
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Fig. 7. DVA performance with quantized bin placements only. (64-level
uniform quantization. Ground truth model is Model 2.)
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Fig. 8. DVA performance with quantized DVA placements only. (64-level
uniform quantization. Ground truth model is Model 2.)

quantization is the major factor of the performance loss when
quantizing to 64 levels. Fig. 7 shows GM-DVA performance
with no quantization of write levels and 64-level uniform
read threshold quantization. The curves show many excur-
sions below the target mutual information and performance
differs significantly from Fig. 4. In contrast, Fig. 8 suggests
that the GM-DVA system functions well in most P/E cycle
conditions (and generally tracks Fig. 4) with only 64-level
uniform write threshold quantization when the read levels are
unquantized. We conclude that read threshold quantization has
a more critical impact on the performance of DVA. Practical
DVA implementation needs to provide sufficiently fine-grain
quantization, especially for read thresholds.

VI. CONCLUSION

This paper studies two important practical implementation
constraints of Dynamic Voltage Allocation (DVA), imperfect
channel modeling and quantized voltage levels for reading and
writing thresholds. Analysis and simulation results demon-
strate that the a Gaussian channel model can be used to
estimate complex Flash channels for DVA without significantly

degrading performance. Similarly, we found that quantizing
to 128 voltage levels for reading and writing does not sig-
nificantly impact the performance of DVA. Thus, DVA can
function properly under these two practical constraints and
extend Flash memory lifetime significantly.
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