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2×2 space-time channel
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:  i.i.d. complex additive white Gaussian noise 
      (AWGN) at receive antenna .
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2×2 space-time channel
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The normalized 2x2 channel can be represented as 

Capacity (Mutual Information) of a Single Cnannel
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The normalized 2x2 channel can be represented as 

The Mutual Information (MI) is the highest rate 
theoretically possible for a fixed transmit power spectrum.

Capacity (Mutual Information) of a Single Cnannel
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The normalized 2x2 channel can be represented as 

The Mutual Information (MI) is the highest rate 
theoretically possible for a fixed transmit power spectrum.

MI only depends on the eigenvalue skew K and Es/N0.

Capacity (Mutual Information) of a Single Cnannel
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Universal Coding for MIMO Channels
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Universal Codes work whenever MI is sufficient.

All six channels have the same quality, 
the same mutual information,
but they have distinct eigenvalue skews K.

K=0

K=0.1
K=0.2 K=0.5

K=0.8

K=1.0

[Root & Varaiya, 1968] A single code can reliably 
transmit R bits/symbol over all such channels with MI > R.
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Alamouti is not universal for 2x2 systems
(suffers on unitary channels)
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Current Space-Time Turbo Codes aren’t Universal
(suffer on singular channels)
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Notice Variation for a fixed Eigenvalue Skew
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The angles θ and φ (eigenvectors) do not affect MI,
but they result in different convergence behavior 
for the turbo decoder because the favorability of 
the initial reliability distribution hinges on θ and φ
for small K.
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We had universal behavior for single antennas [ICC 03].

Universal codes for three rates over period-2 periodic fading.
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Space-Time SCTCM System

Output symbols of the SCTCM are de-multiplexed to 
the antennas. 
The inner SISO is based on the collapsed trellis which 
combines 2 trellis stages together into a super-trellis.
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Design of Universal SCTCM for periodic fading

Universal SCTCM for PFC considers:
a. Constituent code complexity
b. Outer code
c. Inner code
d. Constellation and labeling
e. Interleaver design

De-multiplexed space-time SCTCM working on diagonal 
channels with κ = |q|2, and φ = θ =0 is equivalent to
SCTCM working on the [1 q] periodic fading.

The universal SCTCMs for the [1 q] periodic fading 
deliver consistent EMI over κ for φ = θ =0, but there is 
still the issue of non-diagonal channels.



8

GLOBECOM 2006 15

0 0.2 0.4 0.6 0.8 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

SC-11

κ

EM
I p

er
 a

nt
en

na
w/o TVLT

EMI depends on φ and θ for turbo codes.

3 bits per 2x2 symbol

Our universal periodic turbo code for 1.5 bits per symbol 
used as a space time turbo code for 3 bits per 2x2 symbol 
has the same variation for near-singular channels as the Stefanov code.
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Time-Varying Linear Transformation

First proposed by Wei Shi et al., TVLT rotates the 
channel to different angles, hoping that the 
dependence on the angles can be “averaged out”.

In the current work, we generalized the TVLT concept 
to improve the averaging effect. 
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Time-Varying Linear Transformation

First proposed by Wei Shi et al., TVLT rotates the 
channel to different angles, hoping that the 
dependence on the angles can be “averaged out”.

In the current work, we generalized the TVLT concept 
to improve the averaging effect. 

A time-varying unitary matrix, Qt, is multiplied to the 
signal vector before it is transmitted.

Sweep α, β, and γ uniformly over the interval [0, 2π].
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EMI after TVLT

EMI difference over eigenvectors can be largely mitigated, 
but not completely eliminated,
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Why can’t TVLT remove all variation?

Multiplying  by Qt(α,β,γ) changes φ and θ : 

where

• For fixed α and β,     ~ u(0,2π) if γ ~ u(0,2π).

• is not uniform over [0,2π) without CSI at TX.
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Modeling the variation of EMI over φ
From simulation results, 

where EMImin, K1, K2 only depend on κ and are found 
to minimize the mean square error.
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Analysis shows residual variation is expected.
Assume that the EMI is the average of the instantaneous 
EMIs and α, β, and γ are uniformly distributed. 

The average EMI with TVLT is given by

Dependence on θ is eliminated but the average EMI still 
depends on φ, although with a smaller variance.
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Analysis shows residual variation is expected.

A relaxed sufficient condition for the values of α, β, and γ
where the above equation holds is: 
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TVLT Granularity
Fine-sampled TVLT (F-TVLT): Use the minimum step 
size for α, β, and γ as 

For example, a 10,000 bit block with R=3.0 bits per 
(space-time) symbol has 3,333 symbols/ block. Then 
the step size is about 2π/15.

Simplified TVLT (S-TVLT): Under the cosine cost 
function model, a minimum of 8 TVLT matrices with 
α = [0 π/4], β = [0 π/2], γ = [0 π/2] can achieve the same 
average performance as the uniform-(α,β,γ) scheme.

Simulation results show that the EMI with S-TVLT is 
almost identical to that with F-TVLT.
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Comparison of F-TVLT and S-TVLT
R=2.0 bits/s/Hz. Blocklength=10,000 bits, 12 iterations.
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Universal SCTCMs at 3 rates with/without F-TVLT
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Our universal SC-TCM with F-TVLT is 1.5 dB away from Pout.
Stefanov (PCCC-BICM); Benedetto (SCCC); Shi (PCTCM).

Rayleigh Fading Performance
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Channel-to-Channel Performance
Average performance (Rayleigh fading) are similar but  
the universal SCTCM performs more consistently.
Universal code requires approx. 0.26 bits of EMI for any 
quasi-static fading channel.
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We tried to apply TVLT 
To Stefanov’s codes but
it provided minimal improvement.
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Conclusions

The proposed universal SCTCMs of 1.0, 2.0 and 3.0 
bits per channel use require a consistent normalized 
EMI of 0.11-0.18 bits.  They are 1.1, 1.5, and 2.1 dB 
respectively from the outage probability at FER=10-2 on 
the Rayleigh fading channel.

Universal SCTCMs for periodic fading on a de-
multiplexed space-time scheme provides consistent 
EMI over eigenvalue skew. 

TVLT mitigates the EMI dependence of these codes on 
channel eigenvectors for the same eigenvalue skew.

Universal SCTCMs perform well on the Rayleigh fading 
channel and are robust on any quasi-static fading 
channel.


