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ABSTRACT

Array codes are error-correcting codes of very low com-
plexity that were initially used for burst and erasure correction
in Redundant Arrays of Inexpensive Disks (RAID) architec-
tures and other storage applications. The structure of these
codes allows a very simple encoding and decoding mechanism.
Although they are very high-rate codes, they do not achieve the
maximum possible rate given their design constraints. In fact
Hamming codes maximize the possible rate given these design
constraints. This paper compares the rate and complexity of
array codes when compared to Hamming codes.

Keywords: Array codes, Low-density parity-check codes,
Hamming codes, burst correction, RAID architectures, disk
arrays.

I. INTRODUCTION

Burst error correcting codes are used in many fields such as
multi-track storage, satellite communications and disk arrays.
Array codes [1], Fire codes [2] and Reed-Solomon [3] codes
are well-known codes that have good burst-error-correcting ca-
pabilities. If an error-correcting code requires operations over a
finite field (as in the case of Reed-Solomon codes) complexity
in the encoder and decoder architecture is increased. Array
code encoding and decoding only requires the use of simple bit
manipulation, reducing the overall complexity. Therefore when
implementation simplicity is an issue and hardware efficient
encoders and decoders are needed, array codes can be the most
attractive option.

In this paper a method for increasing the rate of an array
code is presented based on the relation between Hamming
codes over GF (q = 2(m−1)) and array codes. This is
equivalent to adding columns to the parity check matrix of
a traditional array code. The total number of rows of an
array code, [n − k], is unchanged. The increase in rate is
significant for short code lengths. For a code length n = 42
(that corresponds to m = 7) the rate gain is 35.6%. As n
increases and the code rate approaches one, the gain in rate
becomes much smaller. For n = 506, which corresponding to
m = 23, the rate gain falls to 9.52%.

In the next section an introduction to array codes is pre-
sented. A description of a method for obtaining higher-rate
codes appears in Section III. The encoding and decoding
algorithms are presented in Section IV. Concluding remarks
are made in Section V.
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Fig. 1. Array code for m = 5. The grey shaded row in the array is also
known as the “Imaginary row”.
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Fig. 2. Parity-check matrix for the array code of Fig.1.

II. ARRAY CODES

Array codes are systematic codes whose codewords are
rectangular arrays of dimension [(m − 1) × m] where m is
a prime number. An example array with m = 5 is depicted in
Fig. 1. These codes have minimum (column) distance equal to
3 if and only if m is a prime number (i.e., It can either correct
two erased columns or one column in error). Error-correcting
codes are defined in terms of the total number of information
bits k, and the codeword length n. The parity-check matrix H
of a block code has dimensions [(n−k)×n]. For an array code
both n = (m) ·(m−1) and k = (m−2) ·(m−1) are uniquely
determined by m and so are the dimensions of H . The resulting
rate of an array code is R = k/n = (m− 2)/m. Fig. 2 shows
a parity-check matrix for the case of m = 5. The parity-check
matrix is sparse in general, which allows array codes to be
described as low-density parity-check (LDPC) codes [4], [5],
[6].
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A. Burst Error Correction

Two different types of burst errors can be corrected using
array codes. The first case consists of correcting bursts of
length L ≤ (m−1) that occur within one column of the array.
This type of error is a phased error burst since the burst cannot
spread across columns of the array. Array codes can correct
all error bursts of this type [7]. The second type of burst is a
non-phased error burst. In this case the only constraint is that
the length of the burst is L ≤ (m−1). As the name indicates,
errors can start on one column of the array and propagate to
a neighboring column. In [8] it is shown that although array
codes cannot correct all non-phased bursts, the probability of
finding a burst that cannot be corrected decreases with m.

Array codes were originally designed to be used in Re-
dundant Arrays of Inexpensive Disks (RAID) architectures
[9] or multi-track tape recording for fixing errors or erasures
occurring in one or more disks of the array. In RAID-3 or
RAID-4 type of architectures, a number of disks carry data
and one or more disks carry parity information.

We assume, for illustrative purposes, that each column in
the array represents a disk. One disk stores the column-wise
parity of the data disks and the rest carry data information.
Let us further assume that even parity is used. If one disk
is erased, the lost information can be recovered using the
remaining disks and knowing that the horizontal parity of the
array has to be even. On the other hand, when one disk is
read in error, more parity information is required in order to
recover our original data. In general a code that can correct s
errors can correct 2s erasures.

The ways in which the additional parity columns are en-
coded define different types of array codes like the ones
presented by Blaum and Roth in [7] or the later EvenOdd
codes [10]. This family of codes uses one column of the array
to store horizontal (slope=0) parity and uses an additional col-
umn to store parity bits computed along diagonals (slope=1).
It is also possible to create a lower rate code and add an
additional diagonal parity column with slope=2 [11]. However,
in this paper we will only consider array codes with two parity
columns of slope 0 and 1.

In Blaum-Roth codes [7] the two parity columns are de-
pendent. On the other hand EvenOdd codes have independent
horizontal and diagonal parities. Horizontal parity is always
even while diagonal parity can be even or odd depending
on the data stored in the array. When data bits are updated,
because of the dependence between parity columns, Blaum-
Roth codes require a higher number of updates in the parity
columns of the array than EvenOdd codes. From this point
forward when referencing array codes, it will be assumed that
the code has a Blaum-Roth structure [7].

Having parity equations among diagonals of different
slopes is a very important characteristic of array codes, since
it defines the encoding and decoding algorithms. We assume
an (m − 1) · m array A such that two columns carry parity
information, like the one shown in Fig. 1. The code has even
parity on rows and on diagonals (with a toroidal topology).

There is an extra row added at the bottom of the array,that
is often referred to as the imaginary row. This row does not
carry any information and is assumed to have all zeros. As
will be shown shortly, the reason for its existence is to solve
an indexing problem on the diagonal parity equations (1) and
(2). These equations are as follows:

• Horizontal Parity:

m−1∑
j=0

ai,j = 0 0 ≤ i ≤ (m − 2), (1)

• Diagonal Parity:

m−1∑
l=0

a〈j−l〉m,l = 0 0 ≤ j ≤ (m − 1). (2)

where 〈k〉n denotes k modulo n. In order to have a better
understanding of the diagonal parity equation and the reason
to define the imaginary row, the equation for j=1 for the array
in Fig. 1 will be expanded:

a〈1−0〉5,0 + a〈1−1〉5,1 + a〈1−2〉5,2 + a〈1−3〉5,3 + a〈1−4〉5,4 =

a1,0 + a0,1 + a4,2 + a3,3 + a2,4 = 0.
(3)

Note that if the imaginary row was not defined, there would
be an indexing problem since the entry a4,2 does not belong
to the original array.

B. Syndrome Decoding Analysis

A syndrome-decoding analysis provides insight into the
efficiency of array codes. Syndrome decoding of a block
code consists of multiplying the received vector r by the
parity check matrix. In the event of a phased error burst,
the resulting syndrome vector s = r · HT is unique and
contains all the available information of the error event. For
the case of non-phased errors, unique syndrome decoding of
array codes cannot always be accomplished, since bursts that
occur on different positions of the array sometimes yield the
same syndrome.

The dimensions of r, H and s are as follows:
• dim(r) = n = m · (m − 1)
• dim(H) = (n − k, n) = (2 · (m − 1),m · (m − 1))
• dim(s) = n − k = 2 · (m − 1).

Thus there are 22(m−1) distinct syndromes, which implies that
at most 22(m−1) distinct error events (including the “no-error”
error event) can be corrected for array codes. However, for
array codes there are only m ·(2(m−1)) phased errors possible.
Hence array codes have some syndromes (and hence some
error correction capability) left over.

Raphaeli pointed out in [8] that array codes can correct
some non-phased error bursts. This is possible by making use
of left over syndromes. Correcting non-phased error bursts
might be beneficial. However, if the specific purpose of the
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code is to correct only phased error bursts, the non-phased
correction capability introduces a needless reduction in rate.

C. Decoding Algorithm

Observe that the parity check matrix can be divided
into an upper and a lower part, both of dimension
((m − 1),m · (m − 1)). The upper part consists of sub-
matrices that are equal to identity matrices with columns
being repeated every m positions. When syndrome decoding
is performed, the first m−1 bits of the syndrome are the exact
received burst error pattern.

The decoding algorithm uses the remaining m − 1 bits to
determine the position of the error burst within the packet.
The bottom part of the parity check matrix, is formed by m
square sub-matrices of dimension m − 1. When referring to
a particular sub-matrix i in the bottom half of H , notation
HBOT (i) will be used. The traditional method for decoding
array codes consists of extracting the first m−1 bits from the
syndrome, create a vector with these m − 1 bits plus a zero
added at the end,

T =
[

s (1) s (2) . . . s (m − 1) 0
]
, (4)

and apply left cyclic shifts to this vector until the first m − 1
bits of the shifted vector match the last m − 1 bits of the
syndrome s. The number of cyclic shifts applied is equal to
the column of the array code where the error burst occurred.
Let T (i) indicate T left-shifted i times. The bit position where
the detected error burst starts is equal to i ·(m−1). Algorithm
1 summarizes the procedures mentioned above.

Algorithm 1 Array Code Decoding Algorithm

1: s = r · HT

2: Burst-Type=s (1 : m − 1)
3: T = [Burst-Type 0]
4: for i = 1 to m do
5: if T (i−1) [1 : m − 1] = s [m : end] then
6: Position =i
7: break
8: end if
9: end for

III. HAMMING CODES AS ARRAY CODES

Hamming codes were the first major class of linear binary
codes designed for error correction [12]. The parameters for
the family of binary Hamming codes are typically expressed as
a function of a single integer mh ≥ 2, not necessarily prime.
A Hamming code on GF (2) has code length n = 2mh − 1,
message length k = 2mh − 1 − mh, redundancy n − k = mh

and error correcting capability t = 1 bit. The parity-check
matrices for binary Hamming codes has all nonzero binary
mh−tuples as columns.

To construct non-binary Hamming codes the same approach
is used. There are exactly (qmh − 1) distinct nonzero q−ary

TABLE I

DIMENSIONS OF HIGHEST-RATE PHASED-ERROR-BURST CORRECTING

CODES FOR BURST SIZE m AND REDUNDANCY 2(m − 1). SECOND ROW IS

EXPRESSED IN UNITS OF BITS AND THE THIRD ROW HAS UNITS OF

SUB-MATRICES.

m 3 5 7 11
(k, n) (6, 10) (60, 68) (378, 390) (10230, 10250)

(MSB − 2, MSB) (3, 5) (15, 17) (63, 65) (1023, 1025)

mh−tuples, but not all pairs of these mh−tuples are linearly
independent. For each q−ary mh−tuple there are (q− 1) dis-
tinct nonzero mh−tuples that are multiples of that mh−tuple,
pairs of which are clearly dependent. The q−ary Hamming
code parity-check matrix H is constructed by selecting exactly
one mh−tuple from each set of multiples. This can be done by
selecting as columns of H all distinct q−ary mh−tuples for
which the uppermost nonzero element is 1. The parity-check
matrix thus has n = (qm̃ − 1)/(q − 1) columns and defines a
q−ary Hamming code with k = (qmh − 1)/(q − 1)−mh and
t = 1 symbol of mh bits.

Careful analysis of the 4x4 sub-matrices in the bottom half
of Fig.2 reveals that other possible 4x4 sub-matrices will yield
as yet unused values of s [m : end] for a given error burst. This
means that more sub-matrices can be added to the parity-check
matrix, obtaining a higher rate code, while still being able to
uniquely decode phased error bursts. The maximum number
of phased error bursts of length L that can be corrected is

Ep = m · (2L − 1) ≤ m · (2(m−1) − 1) (5)

which is clearly much smaller than the 22(m−1) − 1 possible
non-zero syndromes that can be generated with n−k bits. Let
MSB be the maximum number of sub-matrices that a parity
check matrix can have, then

MSB =
(

22(m−1) − 1
2m−1 − 1

)
. (6)

Table I shows the dimensions of array codes for different
values of m. The second row shows the relationship between
input and output bits, while the third row expresses the same
relation in units of sub-matrices instead of bits. Since each sub-
matrix in an array code is a square matrix of size (m−1), the
third row is obtained by diving the second row by (m − 1).

Consider the case of m = 5 as an example to describe the
modified array codes as Hamming codes. For this example the
field where the Hamming code is defined is GF (q = 2(m−1) =
16). In GF (16), every nonzero element has order that divides
15. An element may have order 1, 3, 5, or 15. An element
with order 15 is primitive. We can construct GF (16) with the
polynomial p(z) = z4 +z +1, and the element α as primitive.
The elements of GF (16)are shown on Table II.

The parity check matrix for this Hamming code on GF (16)
is

HGF (16) =
[

0 1 1 1 · · · 1
1 0 α α2 · · · α15

]
. (7)
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TABLE II

REPRESENTATION OF ELEMENTS OF GF (16). Vαi INDICATES THE BINARY

VECTOR REPRESENTATION OF THE ELEMENT αi

Element Polynomial in α Vαi

α = α =
ˆ

0 0 1 0
˜

α2 = α2 =
ˆ

0 1 0 0
˜

α3 = α3 =
ˆ

1 0 0 0
˜

α4 = α + 1 =
ˆ

0 0 1 1
˜

α5 = α2 α =
ˆ

0 1 1 0
˜

α6 = α3 + α2 =
ˆ

1 1 0 0
˜

α7 = α3 + α + 1 =
ˆ

1 0 1 1
˜

α8 = α2 + 1 =
ˆ

0 1 0 1
˜

α9 = α3 + α =
ˆ

1 0 1 0
˜

α10 = α2 + α + 1 =
ˆ

0 1 1 1
˜

α11 = α3 + α2 + α =
ˆ

1 1 1 0
˜

α12 = α3 + α2 + α + 1 =
ˆ

1 1 1 1
˜

α13 = α3 + α2 + 1 =
ˆ

1 1 0 1
˜

α14 = α3 + 1 =
ˆ

1 0 0 1
˜

α15 = 1 =
ˆ

0 0 0 1
˜

An equivalent multiplication operation to the ones appearing
on Table II needs to be defined for GF (2). To accomplish this
a binary matrix Aα of dimension m − 1 will be used. Aα is
such that multiplying by a binary vector Vαi on the right by
Aα, is equivalent to multiplying the corresponding element αi

in GF (2m−1) by α. This matrix needs to satisfy the following:

Aαi = (Aα)i ↔ αi = (α)i
, (8)

Vαi · Aα = Vαi+1 ↔ αi · α = αi+1. (9)

Using the vector representation shown in Table II, the matrix
Aα can be derived and is equal to the first four vectors in
Table II in reverse order :

Aα =




0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0


 . (10)

By means of this primitive sub-matrix we can now generate the
parity check matrix of a rate-efficient array code by computing
the different powers of Aα. Since α is a primitive element
in the Galois field, all the 2m−1 − 1 powers of Aα are
different from each other. (It has to have order 15.) The binary
equivalent of (7) is

HGF (2) =
[

0 I I I · · · I
I 0 Aα Aα2 · · · Aα15

]
, (11)

where all the square sub-matrices above are of size (m−1) =
4. In GF (16) some of the matrix-elements are :

Aα2 =




0 1 1 0
0 0 1 1
1 0 0 0
0 1 0 0


 Aα3 =




1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 0


 (12)

TABLE III

DIMENSIONS OF HAMMING CODES OVER GF (q) AS A FUNCTION OF m,

FOR mh = n − k = 2

m 3 5 7 11

q = 2m−1 4 16 64 1024

(k, n) (3,5) (15,17) (63,65) (1023,1025)

The procedure to obtain rate-efficient array codes by de-
scribing them as Hamming codes has now been completely
defined. This shows that rate-efficient array codes are Ham-
ming codes defined over GF (q = 2(m−1)). In general Aα

is equal to a
(
2m−1 − 1

)th
root of the identity matrix. The

general form of (11) has square sub-matrices of size m − 1
and can be expressed as:

HGF (q=2(m−1)) =
[

0 I I I · · · I
I 0 Aα Aα2 · · · Aα(q−1)

]
.

The requirement of m being prime is only necessary for
array codes to have a cyclic-shift decoder. Out of all possible
Hamming codes defined over a Galois field, the ones with
mh = n − k = 2 are considered since this is the relationship
between input and output symbols in the case of array codes
with two parity columns. The dimensions of Hamming codes
as a function of m is shown on Table III where it can be
seen that the values of k and n for Hamming codes match the
(MSB − 2,MSB) values of array codes.

The rate of a Hamming Code code is

RHamming =
2m−1 − 1
2m−1 + 1

. (13)

The increase in rate compared to original array codes is shown
in Fig. 3. As was mentioned in Section I, there is a great
increase in code rate for short code lengths but the gain is
reduced as the code length grows. Fig. 3 shows that for a
code length n = 42 (m = 7), the rate increase is 35.6% but
that gain falls to 9.52% when the code length is increased to
n = 506 (m = 23).

IV. ENCODING AND DECODING ALGORITHMS

The systematic parity-check matrix of Hamming codes
allows a very simple encoder implementation. If the first and
second sub-matrices of HGF (2) in (11) are interchanged, a
systematic parity-check matrix is obtained

HSY S =
[

I 0 I I · · · I
0 I Aα Aα2 · · · Aα15

]
. (14)

For the binary parity-check matrix HSY S =
[

In−k PT
]

the corresponding generator matrix is GSY S =
[

P Ik

]
that allows linear-time encoding.

The decoding algorithm for array codes was presented in
Section II-C. The burst appeared on the first m−1 bits of the
syndrome. The position of the burst was derived by using the
last m−1 bits of the syndrome by means of shift and compare
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Fig. 3. Comparison of original array codes and rate efficient array codes

operations. Since Hamming codes modify the structure of the
bottom half of H , a new decoding algorithm needs to be
defined.

Algorithm 2 Hamming Code Decoding Algorithm

1: s = r · HT

2: BurstType=s (1 : m − 1)
3: if Burst-Type �= �0 then
4: for i=1 to MSB do
5: if (Burst-Type · HBOT (i)) = s(m : end) then
6: Position=i
7: break
8: end if
9: end for

10: else
11: Burst-Type =s(m : end)
12: end if

Algorithm 2 is a universal decoding algorithm that can be
applied to any type of array code. It is actually an extension
of Algorithm 1 for the general case when the bottom half
of the parity-check matrix is unconstrained. The simple bit
shifts of the original array codes are replaced by XOR and
adding operations required for vector multiplication. The close
relation between both algorithms can be seen by observing the
similarities of their pseudo-codes.

V. CONCLUSIONS

The most rate-efficient codes that meet the original burst-
error-correction requirement of array codes with two parity
columns are simply Hamming codes. These codes can correct
all phased error bursts of length L ≤ (m − 1). Unlike the

original array codes, m need not be prime. An encoding algo-
rithm was presented along with a decoding procedure which
is a generalization of the decoding algorithm for traditional
array codes. Both encoding and decoding procedures consist
of simple additions and XOR operations. Still this is more
complex than what the original array codes require. For very
short code lengths the gain in rate obtained is significant, but
as the code length increases and the code rate approaches
one, the rate increase introduced by expressing array codes
as Hamming codes is greatly reduced. For a length n = 42
code, the rate increase is 35.6% but that gain falls to 9.52%
when the code length is increased to n = 506.
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