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Motivation: Multiple Access to Optical Channels
Uncoordinated Multiple Access to the Optical 
Channel.
Optical Channels: 

provide very high data rates, up to tens to hundreds of 
gigabits per second.
Typically deliver a very low Bit Error Rate 

Wavelength Division (WDMA) or Time Division (TDMA) are 
the most common forms of Multiple Access today.

However, they require considerable coordination.   
Goal:

Provide uncoordinated access (for large number of users).
Maximize the rate at feasible complexity for optical speeds.
Satisfy                  .

Strong complexity & latency constraint.
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Model: The OR Multiple Access Channel (OR-MAC)

Basic model for 
multiple-user optical 
channel with non-
coherent combining.
0+X=X, 1+X=1
N users, all 
transmitting with the 
same ones density p: 
P(X=1)=p, 
P(X=0)=1-p.

User 1

User 2

User N

Receiver

1: light 
0: no light

Theoretically: Sum-rate = 1 (100% efficiency) can be 
achieved with a ones density in the transmission of

1/ ln(2)( ) 1 (1/ 2) Np N
N

= − ≈

p’ = 1/2



IDMA-Based Architecture

[Ping et al.’03] for 
general MAC.
With appropriately 
designed codes it 
works over the OR-
MAC.
Joint Iterative 
decoding.
For a large number 
of users joint 
decoding may not be 
computationally 
feasible for optical 
speeds today. 
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Treating other users as noise: Z-Channel
A practical alternative is to treat all but a desired user 
as noise.
When treating other users as noise in an OR-MAC, 
each user “sees” a Z-Channel.

The sum-rate is lower bounded by ln(2) (around 70%), 
for any number of users.
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Non-linear codes are required
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Other users as noise

Joint decoding
p1 = 0.5

ln(2)

Optimal ones 
densities:

Users Joint Others 
noise

2 0.293 0.286

6 0.109 0.108

12 0.056 0.056

1/ ln(2)( ) 1 (1/ 2) Np N
N

= − ≈Optimal ones density: 



Non-linear Trellis Codes
Desired ones density p is given (by number of users N).
(n,1) feed-forward encoder: 1 input, n output bits per trellis section

states.

Outputs are given by a look-up table.
Design: Create the look-up table, assign output values to the 2S 
branches of the trellis
Goal: Maximize the minimum distance of the code maintaining the 
desired ones density p.

2vS =

1 2 0, , ,v vX X X− − L
2 0, , ,0vX X− L

2 0, , ,1vX X− L

0

1

State at trellis section t:

State at section (t+1):

0 : 0001000100
1 : 0100100000 



Metric for Z-Channel
The metric for the Viterbi decoding algorithm 
for the Z-Channel is the number of 0-1 
transitions.
Since the Z-Channel is asymmetric, the 
Hamming distance is not a proper definition 
of distance between codewords. 
Directional distance between two codewords         
and      (denoted              ) is the number  of 
positions at which       has a 0 and      has a 1.   
‘Greedy’ definition of pairwise distance:

1 2( , )Dd c c
2c1c

( ) ( ) ( ) ( ), , min , , ,i j j i D i j D j id c c d c c d c c d c c⎡ ⎤= = ⎣ ⎦

1c
2c



Design technique
1. Choose n, the number of output bits per 

trellis section, to satisfy a certain target sum-
rate N/n. 

2. Assign the Hamming weight of the output of 
each branch, to satisfy the optimal ones 
density p.

3. For each branch, choose the positions of 
each of the w (w+1) ones.

floor( )
1

w p n
w
= ⋅⎧

⎨ +⎩



Extension to Ungerboeck’s rule
Ungerboeck:

Every incorrect codeword, in its trellis 
representation, departs from the correct path 
(split), and returns to the correct path (merge) 
at least once.
Maximize the distance between a split.
Maximize the distance between a merge.

2 00, , ,vX X− L 2 0, , , 0vX X− L
split

2 00, , ,vX X− L

2 01, , ,vX X− L

2 0, , , 0vX X− Lmerge

2 0, , ,1vX X− L

Example: w = 2, n = 10
Maximum possible distance between two branches : 2

0 : 0100100000
1 : 0010000010



Extending Ungerboeck’s rule
One can extend Ungerboeck’s rule into the trellis.

0

1

Maximize



Extending Ungerboeck’s rule
One can extend Ungerboeck’s rule into the trellis.

0

1

Maximize

0

1

0

1



Note that by maximizing the 
distance  between the 8 
branches, coming from a 
split 2 trellis section before, 
we are maximizing all groups 
of 4 branches coming from a 
split in the previous trellis 
section, and all splits.

Extending Ungerboeck’s rule
One can extend Ungerboeck’s rule into the trellis.

0

1
Maximize

0

1

0

1

The same idea can be applied for the merge, moving 
backwards in the trellis.
If we move h trellis sections forward from a split (including the 
split), and g sections backwards from a merge (including the 
merge), then:

min ( 1)( ) 1d w h g v≥ − + + +

Of course, there is a limit for h and g, given by the 
Hamming weights of the outputs, n, and the number of 
states (branches).



Bit Error Bound for the Z-Channel
We use the transfer function bound technique on 
[Viterbi ‘71] for linear codes, and extended by [Biglieri
‘90] for non-linear codes, modifying the pairwise error 
probability measure. 
Given two codewords

Replace                                                       and the 

transfer function bound technique can be readily 
applied to the NLTC to yield an upper bound to its 
BER over the Z-Channel. 
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Results : 6-user OR-MAC
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64-State non-linear trellis code.



Results : 6-user OR-MAC
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Large number of users
Main result:

For any number of users, we achieve the 
same sum-rate with similar performance.

N n SR BER

6 20 0.3 0.439

100 344 0.291 0.4777

300 1000 0.3 0.4901

900 3000 0.3 0.4906

1500 5000 0.3 0.4907

α

51.1046 10−×
51.2157 10−×
51.2403 10−×
51.2508 10−×

51.0214 10−×



Large number of users

For any number of users we achieve the same 
sum-rate with similar performance.
Intuitive explanation:

As the number of users increases:
The optimal ones density decreases.
The individual rate decreases: n increases.
The output Hamming weight w stays the same.
The cross-over probability      increases.
We can extend further into the trellis Ungerboeck’s idea, 

increasing the minimum distance.
There is a point in which all the outputs have maximum 
distance between each other, and the minimum distance 
code can no longer be increased. However,       doesn’t 
increase much either.

α

α



Concatenation with Outer Block Code
A concatenation of an NLTC with a high rate block code provides 
a very low BER, at low cost in terms of rate.

Results:       
A concatenation of the rate-1/20 NL-TCM code with (255 
bytes,247 bytes) Reed-Solomon code has been tested for the 
6-user OR-MAC scenario.
This RS-code corrects up to 8 erred bits.

Although we don’t have simulations for the 100-user case, it 
may be inferred that a similar BER would be achieved. 

Block-Code Encoder NL-TC Encoder

Z-Channel

Block-Code Decoder NL-TC Decoder

Rate Sum-rate p BER

0.0484 0.29 0.125 0.4652

α
102.48 10−×



System Implementation

Winner of 1st Prize on Student Design Contest organized jointly by the 2006 ACM-DAC 
and IEEE International Solid State Circuits.



Conclusions
We have presented an IDMA-based architecture, 
where every user treats the others as noise, to 
provide uncoordinated multiple access to the OR-
Channel.
The goal is to provide access to a large number of 
users with feasible complexity.
Non-linear trellis codes

Very low complexity and latency, not capacity 
achieving. 
Efficiency of 30% with very low BER

when concatenated with Reed-Solomon Code.
Tight bit error bounds for NLTC over the Z-
Channel have been presented.
Real implementation for 6-user Optical MAC. 
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Ongoing work
Non-linear turbo codes: parallel 
concatenation of NLTCs.

To be presented in Globecom’06.
We achieve similar BER at sum-rates of 
~60%.

More general models:
Allow 1-0 transitions: Binary Asymmetric 
Channel.
Soon to be submitted to Trans. on Comm.



Thank you!
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