UCLA Graduate School of Engineering - Electrical Engineering Program

Communication Systems Laboratory

Trellis Codes With Low Ones Density For The OR Multiple Access Channel

M. Griot, A.I. Vila Casado, W.-Y. Weng, H. Chan, J. Basak, E. Yablanovitch, I. Verbauwhede, B. Jalali, and R. Wesel

Outline

- Motivation : Uncoordinated Multiple Access to the Optical Channel : the OR Channel.
- IDMA-based architecture.
 - Treating other users as noise : The Z channel.
- The need for non-linear codes in this application.
- Non-linear Trellis Codes (NLTC).
 - Design.
 - Analytical bounds for the BER.
 - Concatenation Block Code + NLTC.
- Simulations
- Conclusions
- Ongoing work

Motivation: Multiple Access to Optical Channels

- Uncoordinated Multiple Access to the Optical Channel.
- Optical Channels:
 - provide very high data rates, up to tens to hundreds of gigabits per second.
 - Typically deliver a very low Bit Error Rate $(BER < 10^{-9})$
- Wavelength Division (WDMA) or Time Division (TDMA) are the most common forms of Multiple Access today.
 - However, they require considerable coordination.
- Goal:
 - Provide uncoordinated access (for large number of users).
 - Maximize the rate at feasible complexity for optical speeds.
 - Satisfy $BER < 10^{-9}$
- Strong complexity & latency constraint.

Model: The OR Multiple Access Channel (OR-MAC)

- Basic model for multiple-user optical channel with noncoherent combining.
- 0+X=X, 1+X=1
- N users, all transmitting with the same ones density p: P(X=1)=p,

P(X=0)=1-p.

Theoretically: Sum-rate = 1 (100% efficiency) can be achieved with a ones density in the transmission of

$$p(N) = 1 - (1/2)^{1/N} \approx \frac{\ln(2)}{N}$$

IDMA-Based Architecture

[Ping *et al.*'03] for general MAC.

- With appropriately designed codes it works over the OR-MAC.
- Joint Iterative decoding.
- For a large number of users joint decoding may not be computationally feasible for optical speeds today.

Treating other users as noise: Z-Channel

- A practical alternative is to treat all but a desired user as noise.
- When treating other users as noise in an OR-MAC, each user "sees" a Z-Channel.

The sum-rate is lower bounded by In(2) (around 70%), for any number of users.

Non-linear codes are required

• Optimal ones density: $p(N) = 1 - (1/2)^{1/N} \approx \frac{\ln(2)}{N}$

Optimal ones densities:

Users	Joint	Others noise
2	0.293	0.286
6	0.109	0.108
12	0.056	0.056

Non-linear Trellis Codes

- Desired ones density p is given (by number of users N).
- (n,1) feed-forward encoder: 1 input, n output bits per trellis section
- $S = 2^{\nu}$ states.

- Outputs are given by a look-up table.
- Design: Create the look-up table, assign output values to the 2S branches of the trellis
- Goal: Maximize the minimum distance of the code maintaining the desired ones density p.

Metric for Z-Channel

- The metric for the Viterbi decoding algorithm for the Z-Channel is the number of 0-1 transitions.
- Since the Z-Channel is asymmetric, the Hamming distance is not a proper definition of distance between codewords.
- Directional distance between two codewords c₁ and c₂ (denoted d_D(c₁,c₂)) is the number of positions at which c₁ has a 0 and c₂ has a 1.
 'Greedy' definition of pairwise distance:

$$d(c_i, c_j) = d(c_j, c_i) = \min\left[d_D(c_i, c_j), d_D(c_j, c_i)\right]$$

Design technique

- 1. Choose *n*, the number of output bits per trellis section, to satisfy a certain target sumrate *N/n*.
- 2. Assign the Hamming weight of the output of each branch, to satisfy the optimal ones density *p*. $\begin{cases} w = \text{floor}(p \cdot n) \\ w+1 \end{cases}$
- 3. For each branch, choose the positions of each of the w (w+1) ones.

Extension to Ungerboeck's rule Ungerboeck: Every incorrect codeword, in its trellis representation, departs from the correct path (split), and returns to the correct path (merge) at least once. Maximize the distance between a split. Maximize the distance between a merge. $0, X_{\nu-2}, \cdots, X_0$ split merge $\rightarrow X_{\nu-2}, \cdots, X_0, 0 \qquad \qquad 0, X_{\nu-2}, \cdots, X_0$ $X_{v-2}, \cdots, X_0, 0$ $X_{\nu-2}, \cdots, X_0, 1$ $1, X_{\nu-2}, \cdots, X_0$ 0:0100100000 1:0010000010 Example: w = 2, n = 10

Maximum possible distance between two branches : 2

Extending Ungerboeck's rule

One can extend Ungerboeck's rule into the trellis.

0

1

Extending Ungerboeck's rule

One can extend Ungerboeck's rule into the trellis.

Extending Ungerboeck's rule

One can extend Ungerboeck's rule into the trellis.

Note that by maximizing the distance between the 8 branches, coming from a split 2 trellis section before, we are maximizing all groups of 4 branches coming from a split in the previous trellis section, and all splits.

The same idea can be applied for the merge, moving backwards is the trelling a limit for h and g, given by the If we may have the sections backwards from a merge (including the split), and g sections backwards from a merge (including the merge), then: $d_{\min} \ge (w-1)(h+g) + v + 1$

Bit Error Bound for the Z-Channel

- We use the transfer function bound technique on [Viterbi '71] for linear codes, and extended by [Biglieri '90] for non-linear codes, modifying the pairwise error probability measure.
 - Given two codewords X^n, \hat{X}^n

$$\begin{split} P_e\left(X^n \to \hat{X}^n\right) + P_e\left(\hat{X}^n \to X^n\right) &= \\ \alpha^{\max\left(d_D(X^n, \hat{X}^n), d_D(\hat{X}^n, X^n)\right)} &\leq \frac{\alpha^{d_D(X^n, \hat{X}^n)}}{2} + \frac{\alpha^{d_D(\hat{X}^n, X^n)}}{2} \\ \text{Replace } P_e\left(X^n \to \hat{X}^n\right) \text{ with } \frac{\alpha^{d_D(X^n, \hat{X}^n)}}{2} \text{ and the } \end{split}$$

transfer function bound technique can be readily applied to the NLTC to yield an upper bound to its BER over the Z-Channel.

Results : 6-user OR-MAC

64-State non-linear trellis code.

Results : 6-user OR-MAC

Large number of users

Main result:

For any number of users, we achieve the same sum-rate with similar performance.

N	n	SR	α	BER
6	20	0.3	0.439	1.0214×10^{-5}
100	344	0.291	0.4777	1.1046×10^{-5}
300	1000	0.3	0.4901	1.2157×10^{-5}
900	3000	0.3	0.4906	1.2403×10^{-5}
1500	5000	0.3	0.4907	1.2508×10^{-5}

Large number of users

For any number of users we achieve the same sum-rate with similar performance.

- Intuitive explanation:
 - As the number of users increases:
 - The optimal ones density decreases.
 - The individual rate decreases: n increases.
 - The output Hamming weight w stays the same.
 - The cross-over probability α increases.
 - We can extend further into the trellis Ungerboeck's idea, increasing the minimum distance.
 - There is a point in which all the outputs have maximum distance between each other, and the minimum distance code can no longer be increased. However, *A* doesn't increase much either.

Concatenation with Outer Block Code

A concatenation of an NLTC with a high rate block code provides a very low BER, at low cost in terms of rate.

- Results:
 - A concatenation of the rate-1/20 NL-TCM code with (255 bytes,247 bytes) Reed-Solomon code has been tested for the 6-user OR-MAC scenario.
 - This RS-code corrects up to 8 erred bits.

Rate	Sum-rate	р	α	BER
0.0484	0.29	0.125	0.4652	2.48×10^{-10}

Although we don't have simulations for the 100-user case, it may be inferred that a similar BER would be achieved.

System Implementation

System

High Speed Electronic

Logic Implementation

Channel coding implemented on VirtexII-Pro FPGAs Interleaver:

Logical System

- 1600 bit interleaver
- · Use novel random write-byrow, read-by, column scheme

64 state parallel Viterbi decoding

Optical System

Heavily pipelined

Received

Optical Receiver

- Lightwave detector converts optical signal to multilevel electrical signal
- Threshold level of flip flop converts to two level signal output
- · Variable delay line matches clock phase to that of desired transmitter.

Winner of 1st Prize on Student Design Contest organized jointly by the 2006 ACM-DAC and IEEE International Solid State Circuits.

Conclusions

- We have presented an IDMA-based architecture, where every user treats the others as noise, to provide uncoordinated multiple access to the OR-Channel.
- The goal is to provide access to a large number of users with feasible complexity.
- Non-linear trellis codes
 - Very low complexity and latency, not capacity achieving.

• Efficiency of 30% with very low BER $(BER < 10^{-9})$ when concatenated with Reed-Solomon Code.

- Tight bit error bounds for NLTC over the Z-Channel have been presented.
- Real implementation for 6-user Optical MAC.

Ongoing work

- Non-linear turbo codes: parallel concatenation of NLTCs.
 - To be presented in Globecom'06.
 - We achieve similar BER at sum-rates of ~60%.
- More general models:
 - Allow 1-0 transitions: Binary Asymmetric Channel.
 - Soon to be submitted to Trans. on Comm.

Thank you!

