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Abstract— Certain degraded broadcast channels (DBCs)
have the property that the boundary of the capacity region
can be achieved by an encoder that combines independent
codebooks (one for each receiver) using the same single-
letter function that adds distortion to the channel. We call
this the natural encoder for the DBC. Natural encoders are
known to achieve the capacity region boundary of the broad-
cast Gaussian channel, and the broadcast binary-symmetric
channel. Recently, they have also been shown to achieve
the capacity region of the broadcast Z channel. This paper
shows that natural encoding achieves the capacity region
boundary for discrete multiplicative DBCs. The optimality
of the natural encoder also leads to a relatively simple ex-
pression for the capacity region for discrete multiplicative
DBCs.

Index Terms— Conditional entropy bound, degraded
broadcast channel, discrete multiplicative degraded broad-
cast channel, natural encoding

I. Introduction

In the 70’s, Cover [1], Bergmans [2] and Gallager [3] es-
tablished the capacity region for degraded broadcast chan-
nels (DBCs). The general optimal transmission strategy to
achieve the boundary of the capacity region for DBCs is a
joint encoding scheme. Certain DBCs have the property
that the boundary of the capacity region can be achieved
by an encoder that combines independent codebooks (one
for each receiver) using the same single-letter function that
adds distortion to the channel. We call this the natural en-
coder for the DBC. Natural encoders are known to achieve
the capacity region boundary of the broadcast Gaussian
channel [4], the broadcast binary-symmetric channel [2] [5],
and discrete additive DBCs [6]. Recently, natural encoding
has also been shown to achieve the capacity region of the
two-user broadcast Z channel [7].

The discrete multiplicative degraded broadcast channel
(DM-DBC) is a discrete DBC whose channel outputs are
discrete multiplications (multiplications in a finite field) of
the channel input and noise. This paper decomposes the
DM-DBC into a group-additive DBC with an extra era-
sure (zero) symbol. Based on this decomposition, this pa-
per studies a conditional entropy bound for the DM-DBC,
and proves that the natural encoding approach achieves the
boundary of the capacity region for DM-DBCs.
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This paper is organized as follows: Section II provides
definitions and states some results from [8] that will be
useful. Section III defines the discrete multiplicative DBC
and decomposes it into a group-additive DBC with an extra
erasure (zero) symbol. Section IV computes the optimal
input distribution to achieve the boundary of the capacity
region for DM-DBCs. Section V introduces the natural
encoding approach and proves that it achieves the capacity
region for DM-DBCs. Section VI provides the conclusion.

II. Definitions and Preliminaries

Let X→Y →Z be a discrete memoryless DBC where X∈
{1, 2, · · · , k}, Y ∈ {1, 2, · · · , n} and Z ∈ {1, 2, · · · ,m}. Let
TY X be an n×k stochastic matrix with entries TY X(j, i)=
Pr(Y=j|X= i) and TZX be an m×k stochastic matrix with
entries TZX(j, i)=Pr(Z=j|X= i). Thus, TY X and TZX are
the marginal transition probability matrices of the DBC.

A. Conditional entropy bound F ∗, DBC capacity regions

Our results depend heavily on the function F ∗, which we
will now define. Let vector q in the simplex ∆k of prob-
ability k-vectors be the distribution of the channel input
X. For any H(Y |X) ≤ s ≤ H(Y ), define the function
F ∗TY X ,TZX

(q, s) as the infimum of H(Z|U) with respect to
all discrete random variables U such that
• a) H(Y |U) = s;
• b) U and Y,Z are conditionally independent given X,
i.e., the sequence U,X, Y, Z forms a Markov chain U →
X → Y → Z.
The function F ∗(·) is an extension to the function F (·)
introduced in [5]. We will use F ∗TY X ,TZX

(q, s), F ∗(q, s) and
F ∗(s) interchangeably.

Theorem 1: F ∗TY X ,TZX
(q, s) is jointly convex in (q, s),

and nondecreasing in s. The infimum in its definition is
attainable. (See [8] for proof.)

Theorem 2: The capacity region for the discrete memo-
ryless DBC X → Y → Z is the closure of the convex hull
of all rate pairs (R1, R2) satisfying

0 ≤ R1 ≤ I(X;Y ), (1)
R2 ≤ H(Z)− F ∗TY X ,TZX

(q, R1 + H(Y |X)), (2)

for some q ∈ ∆k. (See [8] for proof.)

B. Definitions of C, C∗q, and the (ξ, η)-plane for DBCs

For any choice of the integer l ≥ 1, w = [w1, · · · , wl]T ∈
∆l and pj ∈ ∆k, j = 1, · · · , l, let U be an l-ary random
variable with distribution w, and let TXU = [p1, · · · , pl]
be the transition probability matrix from U to X. We can
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compute

p = pX = TXUw =
l∑

j=1

wjpj , (3)

ξ = H(Y |U) =
l∑

j=1

wjhn(TY Xpj), (4)

η = H(Z|U) =
l∑

j=1

wjhm(TZXpj), (5)

where hn : ∆n → R is the entropy function, i.e.,
hn(p1, · · · , pn) = −∑

pi ln pi.
Let C be the set of all (p, ξ, η) satisfying (3) (4) and

(5) for some choice of l, w and pj . C is compact, con-
nected, and convex. Let C∗ = { (ξ, η) | (q, ξ, η) ∈ C } be
the projection of the set C onto the (ξ, η)-plane. Define
C∗q ={(ξ, η)|(q, ξ, η) ∈ C} as the projection onto the (ξ, η)-
plane of the subset of C where p = q. C∗ and C∗q are also
compact and convex. By definition, F ∗TY X ,TZX

(q, s) is the
infimum of all η, for which C∗q contains the point (s, η).
Fig. 1(a) shows how F ∗TY X ,TZX

(q, s) forms a lower bound-
ary of the region C∗q .

C. U’s that achieve F ∗ and optimal U’s for DBCs

In Fig. 1(a), the line with slope λ in the (ξ, η)-plane
supporting C∗q has the equation η = λξ + ψ(q, λ), where
ψ(q, λ) is the η-intercept of the tangent line with slope λ
for F ∗TY X ,TZX

(q, s). Let φ(q, λ) = hm(TZXq)−λhn(TY Xq).
As illustrated in Fig. 1(b), ψ(q, λ) is the lower convex en-
velope of φ(q, λ) on ∆k as shown in [8]. For any λ ≥ 0,
the associated point on the boundary of the capacity re-
gion may be found (from its unique value of R2 + λR1) as
follows

max
q∈∆k

max{R2 + λR1|pX = q}
= max

q∈∆k

max{H(Z)− F ∗(q, s) + λs− λH(Y |X)}
= max

q∈∆k

(H(Z)− λH(Y |X)−min{F ∗(q, s)− λs})
= max

q∈∆k

(H(Z)− λH(Y |X)− ψ(q, λ)). (6)

Theorem 3: This theorem has two parts:
i) For any fixed 0 ≤ λ ≤ 1, if a point of the graph of

ψ(·, λ) is the convex combination of l points of the graph of
φ(·, λ) with arguments pj and weights wj for j = 1, · · · , l,
then

F ∗
( ∑

j

wjpj ,
∑

j

wjhn(TY Xpj)
)

=
∑

j

wjhm(TZXpj).

Furthermore, for a fixed input distribution q =
∑

j wjpj ,
the optimal transmission strategy to achieve the maximum
of R2 + λR1 is determined by l,wj and pj . In particular,
the optimal transmission strategy is |U|= l, Pr(U =j)=wj

and pX|U=j = pj , where pX|U=j denotes the conditional
distribution of X given U =j.

ii) For a predetermined channel input distribution q, if
the transmission strategy |U| = l, Pr(U = j) = wj and

(b)
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Fig. 1. (a) The illustrations of the curve F ∗(q, s) shown in bold,
the region C∗q , and the point (0, ψ(q, λ)), (b) The illustrations of
φ(·, λ) and ψ(·, λ) for the broadcast Z channel.

pX|U=j = pj achieves max{R2 + λR1|
∑

j wjpj = q}, then
the point (q, ψ(q, λ)) is the convex combination of l points
of the graph of φ(·, λ) with arguments pj and weights wλ

for j = 1, · · · , l. (See [8] for proof.)

D. Example: the two-user broadcast Z channel

An important example, because of the decomposition we
will apply to the discrete multiplicative DBC, is the broad-
cast Z channel with marginal transition probability matri-
ces

TY X =
[
1 α1

0 β1

]
and TZX =

[
1 α2

0 β2

]
, (7)

where 0 < α1 ≤ α2 < 1, β1 + α1 = β2 + α2 = 1.
Let β∆

∆= β2/β1. For β∆ ≤ λ ≤ 1, φ′′(p, λ) ≥ 0 for
all 0 ≤ p ≤ 1. Therefore, φ(p, λ) is convex in p and thus
φ(p, λ) = ψ(p, λ) for all 0 ≤ p ≤ 1. For 0 ≤ λ < β∆,
φ(p, λ) is concave in p for p ∈ [ 0, β2−λβ1

β1β2(1−λ) ] and convex

in p for p∈ [ β2−λβ1
β1β2(1−λ) , 1]. The graph of φ(·, λ) in this case

is shown in Fig. 1(b). Since φ(0, λ) = 0, ψ(·, λ), the lower
convex envelope of φ(·, λ), is constructed by drawing the
tangent through the origin. Let (pλ, φ(pλ, λ)) be the point
of contact. The value of pλ is determined by the equation
φ′p(pλ, λ) = φ(pλ, λ)/pλ, i.e.,

ln(1− β2pλ) = λ ln(1− β1pλ). (8)

E. Input-symmetric degraded broadcast channels

Let Φn denote the set of all n×n permutation matrices.
An n-input m-output channel with transition probability
matrix Tm×n is input-symmetric if the set

GT = {G ∈ Φn|∃Π ∈ Φm, s.t. TG = ΠT}, (9)

where Π and G are permutation matrices, is transitive,
which means each element of {1, · · · , n} can be mapped
to every other element of {1, · · · , n} by some permutation
matrix in GT [5] [9]. An important property of input-
symmetric channel is that the uniform distribution achieves
capacity.

Definition 1: Input-Symmetric Degraded Broadcast Chan-
nel: A discrete memoryless DBC X → Y → Z with
|X | = k, |Y| = n and |Z| = m is input-symmetric if the set

GTY X ,TZX

∆= GTY X
∩ GTZX

(10)

=
{
G ∈Φk|∃ΠY X ∈ Φn, ΠZX ∈ Φm,

s.t. TY XG = ΠY XTY X , TZXG = ΠZXTZX

}
(11)
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Fig. 2. The group-additive degraded broadcast channel.
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Fig. 3. The group-addition encoding approach.

is transitive.
Lemma 1: For any permutation matrix G ∈ GTY X ,TZX

and (p, ξ, η) ∈ C, one has (Gp, ξ, η) ∈ C. (See [8] for proof.)
Corollary 1: ∀p ∈ ∆k and G ∈ GTY X ,TZX

, one has
C∗Gp = C∗p, and so F ∗(Gp, s) = F ∗(p, s) for any H(Y |X) ≤
s ≤ H(Y ). (See [8] for proof.)

Corollary 2: A uniform distribution on the alphabet of
X achieves the capacity region of any input-symmetric
DBC. (See [8] for proof.)

III. Group-additive and Multiplicative DBCs

A. Group-additive DBC

Definition 2: Group-additive (GA) Degraded Broadcast
Channel: A DBC X → Y → Z with X, Y, Z ∈ {1, · · · , n}
is a group-additive DBC if there exist two n-ary random
variables N1 and N2 such that Y ∼ X⊕N1 and Z ∼ Y ⊕N2

as shown in Fig. 2, where ∼ denotes identical distribution
and ⊕ denotes group addition.

The group-additive DBC is input-symmetric. It includes
the broadcast binary-symmetric channel and the discrete
additive degraded broadcast channel [6] as special cases.

Fig. 3 shows the group-addition encoding approach,
which is to independently encode the message for each
of the two users and broadcast the group addition of the
two resulting codewords. The group-addition encoding ap-
proach achieves the boundary of capacity region for GA-
DBCs [8].

B. Discrete multiplicative DBC

Definition 3: Discrete Multiplicative Degraded Broad-
cast Channel: A discrete memoryless DBC X → Y → Z
with X, Y, Z ∈ {0, 1, · · · , n} is a discrete multiplicative
DBC if there exist two (n + 1)-ary random variables N1

and N2 such that Y ∼ X ⊗N1 and Z ∼ Y ⊗N2 as shown
in Fig. 4, where ⊗ denotes discrete multiplication.

X Y Z

1
N

2
N

Fig. 4. The discrete multiplicative degraded broadcast channel.
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Fig. 5. The channel structure of a discrete multiplicative degraded
broadcast channel.

By the definition of field and group, the discrete multi-
plication of zero and any element in {0, 1, · · · , n} is always
zero. Also {1, · · · , n} forms a group under discrete mul-
tiplication. Hence, the DM-DBC X → Y → Z has the
channel structure as shown in Fig. 5. The sub-channel
X̃ → Ỹ → Z̃ is a GA-DBC with marginal distributions
TỸ X̃ and TZ̃X̃ = TZ̃Ỹ TỸ X̃ , where X̃ , Ỹ, Z̃ = {1, · · · , n}.
For the DM-DBC X → Y → Z, if the channel input X is
zero, then the channel outputs Y and Z are zeros. If the
channel input is a non-zero symbol, the channel output Y
is zero with probability α1 and Z is zero with probability
α2, where α2 = α1 + (1− α1)α∆. Therefore, the marginal
transmission probability matrices for X → Y → Z are

TY X =
[
1 α11T

0 (1− α1)TỸ X̃

]
, (12)

TZY =
[
1 α∆1T

0 (1− α∆)TZ̃Ỹ

]
, (13)

and

TZX = TZY TY X =
[
1 α11T

0 (1− α1)TỸ X̃

] [
1 α∆1T

0 (1− α∆)TZ̃Ỹ

]

=
[
1 α21T

0 (1− α2)TZ̃Ỹ

]
, (14)

where 1 is an all-one vector and 0 is an all-zero vector.

IV. Optimal Input Distribution for DM-DBCs

The sub-channel X̃ → Ỹ → Z̃ is a group-additive DBC,
which is input-symmetric, and hence, GTỸ X̃ ,TZ̃X̃

is transi-
tive. For any n × n permutation matrix G̃ ∈ GTỸ X̃ ,TZ̃X̃

with TỸ X̃G̃ = ΠỸ X̃TỸ X̃ and TZ̃X̃G̃ = ΠZ̃X̃TZ̃X̃ , the
(n + 1)× (n + 1) permutation matrix

G =
[
1 0T

0 G̃

]
(15)

has

TY XG=
[
1 α11T

0 (1−α1)TỸ X̃

][
1 0T

0 G̃

]
=

[
1 0T

0 ΠỸ X̃

]
TY X (16)

and so G ∈ GTY X
. Similarly, G ∈ GTZX

, and hence
G ∈ GTY X ,TZX . Therefore, any non-zero element in
{0, 1, · · · , n} can be mapped to any other non-zero element
in {0, 1, · · · , n} by some permutation matrix in GTY X ,TZX

,
however, no matrix in GTY X ,TZX

maps zero to non-zero
element or non-zero element to zero. Hence, any permu-
tation matrix G ∈ GTY X ,TZX has the structure (15) for
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some G̃ ∈ GTỸ X̃ ,TZ̃X̃
. These results are summarized in the

following Lemma:
Lemma 2: Let GTỸ X̃ ,TZ̃X̃

= {G̃1, · · · , G̃l}. Hence,
GTY X ,TZX

= {G1, · · · , Gl}, where

Gj =
[
1 0T

0 G̃j

]
, for j = 1, . . . , l. (17)

Now we state and prove that the uniform distributed X̃
is optimal for the DM-DBC.

Lemma 3: Let pX = (1 − q, qpX̃) ∈ ∆n+1 be the dis-
tribution of channel input X, where pX̃ is the distribu-
tion of X̃. For any DM-DBC, C∗pX

⊆ C∗(1−q,quT )T and
C∗ =

⋃
q∈[0,1] C∗(1−q,quT )T , where u ∈ ∆n denotes the uni-

form distribution. (See [8] for proof.)
Theorem 4: The capacity region of the DM-DBC can

be achieved by using the transmission strategies such that
X̃ is uniformly distributed, i.e., the distribution of X has
pX = (1− q, quT )T for some q ∈ [0, 1]. As a consequence,
the capacity region is the convex hull of the closure of all
(R1, R2) satisfying

R1 ≤s− qhn(TỸ X̃e1), (18)
R2 ≤h((1− α2)q) + (1− α2)q ln(n)

− F ∗TY X ,TZX
((1− q, quT )T , s), (19)

for some 0 ≤ q ≤ 1 and

qhn(TỸ X̃e1) ≤ s ≤ h((1− α1)q) + (1− α1)q ln(n).

Proof : Let pX = (1−q, qpX̃)T be the distribution of the
channel input X, where pX̃ = (p1, · · · , pn)T . Since GTỸ X̃

is transitive and the columns of TỸ X̃ are permutations of
each other,

H(Y |X) =
n∑

i=0

H(Y |X = i) (20)

= (1− q)H(Y |X = 0) +
n∑

i=1

qpihn(TỸ X̃ei) (21)

=
n∑

i=1

qpihn(TỸ X̃e1) (22)

= qhn(TỸ X̃e1), (23)

which is independent with pX . Let GTY X ,TZX
={G1,· · ·,Gl}.

H(Z) = hn+1(TZXpX) (24)

=
1
l

l∑

i=1

hn+1(TZXGipX) (25)

≤ hn+1(TZX
1
l

l∑

i=1

GipX) (26)

= hn+1

(
TZX(1− q, quT )T

)
(27)

= h((1− α2)q) + (1− α2)q ln(n) (28)

where (26) follows from Jensen’s inequality. Since C∗pX
⊆

C∗(1−q,quT )T from Lemma 3,

F ∗(pX , s) ≥ F ∗((1− q, quT )T , s). (29)
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Fig. 6. The natural encoding approach for DM-DBCs.

Plugging (23), (28) and (29) into Theorem 2, the capacity
region for DM-DBCs is

c̄o
[ ⋃

pX∈∆k

{
(R1, R2) : R1 ≤ s−H(Y |X),

R2 ≤ H(Z)− F ∗TY X ,TZX
(q, s)

}]
(30)

⊆ c̄o
[ ⋃

pX∈∆k

{
(R1, R2) : R1 ≤ s− hn(TỸ X̃e1),

R2 ≤ h((1− α2)q) + (1− α2)q ln(n)

− F ∗TY X ,TZX
((1− q, quT )T , s)

}]
(31)

= c̄o
[ ⋃

q∈[0,1]

{
(R1, R2) : R1 ≤ s− qhn(TỸ X̃e1),

R2 ≤ h((1− α2)q) + (1− α2)q ln(n)

− F ∗TY X ,TZX
((1− q, quT )T , s)

}]
(32)

= c̄o
[ ⋃

pX=(1−q,quT )T

{
(R1, R2) : R1 ≤ s−H(Y |X),

R2 ≤ H(Z)− F ∗TY X ,TZX
(q, s)

}]
(33)

⊆ c̄o
[ ⋃

pX∈∆k

{
(R1, R2) : R1 ≤ s−H(Y |X),

R2 ≤ H(Z)− F ∗TY X ,TZX
(q, s)

}]
, (34)

where c̄o denotes the convex hull of the closure. Note that
(30) and (34) are identical, hence (30 - 34) are all equal.
Therefore, (32) expresses the capacity region for the DM-
DBC, which also means that the capacity region can be
achieved by using the transmission strategies such that the
broadcast signal X has distribution pX = (1−q, quT )T for
some q ∈ [0, 1]. Q.E.D.

V. Natural Encoding and Capacity Region for
DM-DBCs

The natural encoding approach for the discrete multi-
plicative DBC is shown in Fig. 6. W1 is the message for
User 1 who sees the better channel TY X and W2 is the
message for User 2 who sees the worse channel TZX . The
natural encoding approach is first to independently encode
these two messages into two codewords X1 and X2 respec-
tively, and then to broadcast X which is obtained by apply-
ing the single-letter multiplication function X = X2 ⊗X1

on the symbols of the codewords X1 and X2.
The distribution of X2 is constrained to be pX2

= (1 −
q, quT )T for some q ∈ [0, 1] and hence the distribution of
the broadcast signal X also has pX = (1 − q, quT )T for
some q ∈ [0, 1], which the previous section proved to be
the optimal input distribution for the DM-DBC.
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User 2 receives Z and decodes the desired message di-
rectly. User 1 receives Y and successively decodes the mes-
sage for User 2 and then for User 1.

Let pX = (1−q, qpX̃)T be the distribution of the channel
input X, where pX̃ is the distribution of sub-channel input
X̃. For the DM-DBC X → Y → Z,

φ(pX , λ) = hn+1(TZXpX)− λhn+1(TY XpX) (35)

=hn+1

([
1− q + qα2

q(1− α2)TZ̃X̃pX̃

])

− λhn+1

([
1− q + qα1

q(1− α1)TỸ X̃pX̃

])
(36)

=h(q(1− α2))− q(1− α2)hn(TZ̃X̃pX̃)
− λ (h(q(1− α1))− q(1− α1)hn(TỸ X̃pX̃)) (37)

=h(qβ2)− λh(qβ1)

+ qβ2

(
hn(TZ̃X̃pX̃)− λ

1− α∆
hn(TỸ X̃pX̃)

)
, (38)

where β1 = 1− α1 and β2 = 1− α2.
For the sub-channel X̃ → Ỹ → Z̃, define φ̃(pX̃ , λ

1−α∆
) =

hn(TZ̃X̃pX̃)− λ
1−α∆

hn(TỸ X̃pX̃). Define ϕ(q, pX̃ , λ) as fol-
lows:

ϕ(q, pX̃ , λ) = h(qβ2)−λh(qβ1)+qβ2ψ̃(pX̃ ,
λ

1− α∆
), (39)

where ψ̃ is the lower envelope of φ̃(pX̃ , λ
1−α∆

) in pX̃ . With
this definition, note that ψ(pX , λ), the lower envelope of
φ(pX , λ), is also the lower envelope of ϕ(q, pX̃ , λ).

Lemma 4: ψ((1 − q, quT )T , λ), the lower envelope of
φ(pX , λ) in pX at pX = (1 − q, quT )T is on the lower
envelope of ϕ(q, u, λ) in q. (See [8] for proof.)

Lemma 4 indicates that the lower envelope of φ(·, λ) at
pX = (1 − q, quT )T can be decomposed into two steps.
First, for any fixed q, the lower envelope of φ(pX , λ) in pX̃

is ϕ(q, pX̃ , λ). Second, for pX̃ = u, the lower envelope of
ϕ(q, u, λ) in q coincides with ψ(pX , λ), the lower envelope
of φ(pX , λ) in pX .

Theorem 5: The natural encoding approach with time
sharing achieves the boundary of the capacity region for
the discrete multiplicative DBC.

Proof : Theorem 4 shows that the boundary of the
capacity region for the DM-DBC can be achieved by us-
ing transmission strategies with uniformly distributed X̃,
i.e., the input distribution pX = (1 − q, quT )T . For
pX = (1−q, quT )T , ψ((1−q, quT )T , λ) can be attained by
the convex combination of points on the graph of ϕ(q, u, λ).
Since ϕ(q, u, λ) = h(qβ2)−λh(qβ1)+qβ2ψ̃(u, λ

1−α∆
), which

is the sum of φ(q, λ) for the broadcast Z channel and q
times the constant β2ψ̃(u, λ

1−α∆
). Hence, by a discussion

analogous to Section II-D, ψ((1 − q, quT )T , λ) can be at-
tained by the convex combination of 2 points on the graph
of ϕ(q, u, λ). One point is at q = 0 and ϕ(0,u, λ) = 0. The
other point is at q = pλ, where pλ is determined by (8).

Note that the point (0,0) on the graph of ϕ(q, u, λ) is
also on the graph of φ(pX , λ). By Theorem 3, the point
(pλ, ϕ(pλ, u, λ)) is the convex combination of n points on

0 0 0
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Y Z

Y ZU
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0

1 p
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Fig. 7. The optimal transmission strategy for the discrete multiplica-
tive degraded broadcast channel.

the graph of φ(pX , λ), which corresponds to the group-
addition encoding approach for the sub-channel X̃ → Ỹ →
Z̃ because the group-addition encoding approach is optimal
for the group-additive DBC X̃ → Ỹ → Z̃. Therefore, by
Theorem 3, an optimal transmission strategy for the DM-
DBC X → Y → Z has the structure as shown in Fig. 7.

If the auxiliary random variable U = 0, then the channel
input X = 0. If U is a non-zero symbol, then X = 0 with
probability 1 − pλ. In the case where U and X are both
non-zero, X̃ can be obtained as X̃ = Ũ ⊕ Ṽ , where ⊕ is
the group addition in the group-additive degraded broad-
cast sub-channel X̃ → Ỹ → Z̃, Ũ is uniformly distributed
and Ṽ is an n-ary random variable. By the definition of
group addition and discrete multiplication, the transmis-
sion strategy with the structure in Fig. 7 is the natural
encoding approach. Q.E.D.

VI. Conclusion

This paper shows that the natural encoding of Fig. 6 is
optimal for two-user DM-DBCs. Its achievable rate region
is also a single-letter characterization of the capacity region
for DM-DBCs. Hence, the capacity region for the DM-DBC
in Fig. 4 is

c̄o
[ ⋃

pU ,pV

{
(R1, R2) : R2 ≤ H(U⊗V ⊗N2)−H(U⊗V ⊗N2|U)

R1≤H(U⊗V ⊗N1|U)−H(U⊗V ⊗N1|U⊗V )
}]

. (40)

References

[1] T. M. Cover. Broadcast channels. IEEE Trans. Inform. Theory,
IT-18:2–14, January 1972.

[2] P. P. Bergmans. Random coding theorem for broadcast channels
with degraded components. IEEE Trans. Inform. Theory, IT-
19:197–207, March 1973.

[3] R. G. Gallager. Capacity and coding for degraded broadcast chan-
nels. Probl. Pered. Inform., 10:3–14, July–Sept. 1974.

[4] P. P. Bergmans. A simple converse for broadcast channels with
additive white Gaussian noise. IEEE Trans. Inform. Theory, IT-
20:279–280, March 1974.

[5] H. Witsenhausen and A. Wyner. A conditional entropy bound for
a pair of discrete random variables. IEEE Trans. Inform. Theory,
IT-21(5):493–501, Sep 1975.

[6] R. Benzel. The capacity region of a class of discrete additive
degraded interference channels. IEEE Trans. Inform. Theory,
25:228–231, Mar 1979.

[7] B. Xie, M. Griot, A. I. Vila Casado and R. D. Wesel. Optimal
transmission strategy and capacity region for broadcast Z chan-
nels. In IEEE Information Theory Workshop 2007, Lake Tahoe,
USA, Sep 2007.

[8] B. Xie and R. D. Wesel. Optimal Independent-Encoding Schemes
for Several Classes of Discrete Degraded Broadcast Channels. In
ArXiv:0811.4162v2, Jan. 14 2009.

[9] B. Xie and R. D. Wesel. A mutual information invariance ap-
proach to symmetry in discrete memoryless channels. In Infor-
mation Theory and Application 2008, UCSD, San Diego, USA,
Jan. 27-Feb. 1 2008.

5


