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Outline
The Big Question

When is natural encoding scheme optimal?
A Useful Tool 

function and the region
function and its dual

Discrete Multiplicative (DM) DBC
Binary case
General case

Conclusion
Natural encoding is optimal for DM-DBC.
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Capacity Region [Cover72][Bergmans73][Gallager74]

The capacity region is the convex hull of the 
closure of all rate pairs (R1, R2) satisfying

for some joint distribution                           , 
where the auxiliary random variable U has 
cardinality bounded by                             .
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Natural Encoding Scheme
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The natural encoding (NE) scheme combines 
independent codebooks (one for each 
receiver) using the same single-letter function 
that adds distortion to the channel.
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Natural Encoding Scheme
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The natural encoding (NE) scheme combines 
independent codebooks (one for each 
receiver) using the same single-letter function 
that adds distortion to the channel.
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Known Cases of Optimal 
Natural Encoding

Broadcast Gaussian channel [Bergmans74]
Broadcast binary-symmetric channel [Wyner73] 
[Witsenhausen74]
Broadcast Z channel [Xie08]
Discrete additive degraded broadcast channels 
[Benzel79]
Our approach is inspired by [Witsenhausen74] 
and [Witsenhausen & Wyner 75], which are also 
seminal to [Benzel79] and [Liu&Ulukus07].
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Main Result

Natural encoding achieves the boundary 
of the capacity region for discrete 
multiplicative DBC.
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Given an input distribution         ,

Introduce s and F*(q,s) to 
optimize (R1, R2)

~X q
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Definition of F*

F* is increasing in s for any fixed q.
F* is jointly convex in (q,s).
Definition of C*

q

C*
q is a convex set.

Defining F* and C*
q
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F* is the lower (optimal) 
boundary of C*

q.
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Introduce ψ(q, λ) to maximize R2+λR1

λ
~X q
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Given an input distribution         ,
Given a non-negative number    , 
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ψ(q, λ) is theη-intercept of the 
tangent line with slope λ for F*.
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Evaluate ψ(q, λ)

( , ) min{ ( | ) ( | ) | ~ }.H Z U H Y U Xψ λ λ= −q q. 
Define
.         is the lower convex envelope of          

in q for each   . 

{ }( , ) ( ) ( ) | ~ .H Z H Y Xφ λ λ= −q q
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Key Theorem

An encoding scheme (U X) is determined by

An encoding scheme (U X) maximizes 
R2+λR1 and achieves X~q if and only if the 
point on the graph of ψ(q, λ) is the linear
combination of the l points                                 
with weights                 .{ }1, , lw wL

[ ]1 ,U lw w= Lp

{ }1( , ), , ( , )lφ λ φ λLq q

[ ]1 .U X lP → = Lq q
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Discrete Multiplicative DBC

General Case
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Binary DM-DBC
Channel Model

The graph of ψ(q, λ) 
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Binary DM-DBC
Optimal Encoding Scheme

Natural encoding is optimal.
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1Ŵ

2Ŵ
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General DM-DBC
Channel Model

Decompose it into a binary DM-DBC with 
a group-additive degraded broadcast sub-
channel.
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General DM-DBC
X Y

1α

Z
αΔ

X% Z%Y%
X% Z%

N Δ
%

1N%

+ +Y%

U

U%

U%
V%

+



Communication Systems Laboratory, UCLA 20

Conclusion

Natural encoding achieves the boundary 
of the capacity region for discrete 
multiplicative DBC.
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The rest of the story…

Natural encoding is optimal for several 
classes of DBCs. [arXiv:0811.4162v4]

A more general approach, permutation 
encoding, is optimal for all input-symmetric 
DBCs. [arXiv:0811.4162v4]
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Remaining Problems
Can we find some general result for 
discrete DBC?

Natural encoding is optimal if the channel 
function f has properties …?

How about continuous DBC?
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Thank you.
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Natural Encoding Scheme
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