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Input-Invariance Symmetry
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Proof that uniform is optimal
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Cyclic-shifts
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Cyclic-shift symmetry
• If for every p, p and p(1) have the same 

mutual information, then the uniform 
distribution is optimal

• Proof: p(2)… p(k) also have the same mutual 
information and the average of all cyclic shifts 
is the uniform.
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Cyclic-shift symmetry is common
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Wang-Kulkarni-Poor (WKP) cyclic symmetry

• [WKP-2007] An n-input, m-output memory-
less channel matrix T is WKP cyclic 
symmetric if there exists a permutation matrix 
Q such that:

• WKP cyclic symmetry is identical to cyclic-
shift symmetry.

nQ I=
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Permutation-symmetry
• Now we generalize the permutation beyond 

cyclic shifts.

• If there are k permutations Πi i=1,…k such 
that each permutation of the input distribution 
preserves the mutual information and the 
average of these permutations is the uniform

• Then the uniform distribution is capacity-
achieving.
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A channel without cyclic-shift symmetry
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And the four permutations…
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Cover & Thomas (CT) Symmetry
• [CT-1991]Rows of transition matrix 

are permutations of each other.

• Columns are permutations of each 
other.

• Does not include the erasure 
channel.

• Includes channels that do not have 
input-invariance permutation 
symmetry.
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CT Weak Symmetry
• [CT-1991]Rows of transition 

matrix are permutations of each 
other.

• Columns all have the same sum.
• Does not include the erasure 

channel (except α=1/3).
• Includes even more channels 

that do not have input-
invariance permutation 
symmetry.
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Witsenhausen-Wyner Symmetry [WW-1975]

All channels with WW input symmetry also have 
input-invariance permutation symmetry. 
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Matrix interpretation of WW input Symmetry

• The channel transition matrix can be 
decomposed into sub-matrices each of which 
has CT symmetry.

• There exists a set of column-preserving row 
permutations Πi i=1,…k (including the identity) 
such that for any input distribution p, the 
average of the permuted distributions is the 
uniform.

• Any WW input symmetric matrix has these 
properties, and they imply input-invariance 
permutation symmetry.
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Gallager Symmetry [G-1968]
• The channel transition matrix can be 

decomposed into sub-matrices each of which 
has CT symmetry.

• A larger class than cover symmetry, certainly 
larger than input-invariance permutation 
symmetry.
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Chen-Yang Symmetry
• The channel transition matrix can be 

decomposed into sub-matrices each of which 
has CT weak symmetry.

• An even larger class.  The most general form 
of symmetry.
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Input-Invariance Symmetry
• Of course, every channel that has the uniform 

as a capacity achieving distribution obeys the 
most general formulation of input-invariance 
symmetry.

• However, this most general formulation is not 
operationally helpful (yet)…


