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Input-Invariance Symmetry

X— ryyw F—Y

e Letl,(X;Y) bel(X;Y) when input distribution is p;.

e Suppose that for any p;, 3 {p,,... p,} such that:
k

L(XY)=L0GY) > e
i=1

89« Then the uniform distribution u is capacity-achieving.
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Proof that uniform is optimal

L(XGY) =231 (X:)
gIU(IX;Y)

K
by Jensen's since U = %Z D,
1=1
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Cyclic-shifts

aifx=1
p(x)=sbifx=2
CIfx=3
p(x)=[a b c]

Y(x)=[c a b

p
p(x)=[b ¢ a
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Cyclic-shift symmetry

* |f for every p, p and p(") have the same
mutual information, then the uniform
distribution is optimal

* Proof: p@... p® also have the same mutual
Information and the average of all cyclic shifts
Is the uniform.
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Cyclic-shift symmetry IS common
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Wang-Kulkarni-Poor (WKP) cyclic symmetry
o [WKP-2007] An n-input, m-output memory-

less channel matrix T is WKP cyclic

symmetric If there exists a permutation matrix
Q such that:

T@j)=|TQ™|(i,])

 WKP cyclic symmetry is identical to cyclic-
Shift symmetry.
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Permutation-symmetry

 Now we generalize the permutation beyond
cyclic shifts.

* If there are k permutations /] 1=1,...k such
that each permutation of the input distribution
preserves the mutual information and the
average of these permutations is the uniform

 Then the uniform distribution is capacity-
achieving.

Eleetrical Engineering Department Communication Systems Laboratory




nannel without cyclic-shift symmetry
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Cover & Thomas (CT) Symmetry

o [CT-1991]Rows of transition matrix
are permutations of each other.

e Columns are permutations of each
other.

e Does not include the erasure

channel. o o 0
0 a 0
a b ¢ d e
 Includes channels that do not have b a d e c
Input-invariance permutation
symmetry ceabd
' d ¢c e a b
e d b ¢ a
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CT Weak Symmetry

ICT-1991]Rows of transition
matrix are permutations of each
other.

Columns all have the same sum.

Does not include the erasure
channel (except a=1/3). {1—05 a 0 }

Includes even more channels 0 a l-a
that do not have input-

Invariance permutation

symmetry.
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Witsenhausen-Wyner Symmetry [WW-1975]

A, Witsenhausen-Wyner symmetry

Let @, denote the representation of the symmetric group of
permutations of n objects by the n x n permutation matrices.
For an n x m stochastic matrix 7" (an n mput, m output
channel), let G; be the set {G € ¢, : dr € Py s.t. GT =
TTI} and G, be the set {Il € &, : 3G € ¢, s.t. GT = T1I}.
If G471 =TI, GoT = T1ls, then G1G2T = T'111 112, which
shows that G; and G, are subgroups of the finite groups @,
and &, respectively [1].

Definition 4 Witsenhausen-Wyner (WW) Input Symmetry [1]:
A discrete memorviess channel T is WW input svmmetric if

the set G; is transitive, Le., each element of {1. ‘. .-n} can be
mapped to every other element of {1,--- ,n} by some member
aof Gi.

All channels with WW input symmetry also have
input-invariance permutation symmetry.
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Matrix interpretation of WW input Symmetry

 The channel transition matrix can be
decomposed into sub-matrices each of which
has CT symmetry.

* There exists a set of column-preserving row
permutations /1, 1=1,...k (including the identity)
such that for any input distribution p, the
average of the permuted distributions is the
uniform.

 Any WW input symmetric matrix has these

properties, and they imply input-invariance
permutation symmetry.
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Gallager Symmetry [G-1968]

 The channel transition matrix can be
decomposed into sub-matrices each of which
has CT symmetry.

o A larger class than cover symmetry, certainly
larger than input-invariance permutation
symmetry.
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Chen-Yang Symmetry

 The channel transition matrix can be
decomposed into sub-matrices each of which
has CT weak symmetry.

 An even larger class. The most general form
of symmetry.
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Input-Invariance Symmetry

o Of course, every channel that has the uniform
as a capacity achieving distribution obeys the
most general formulation of input-invariance
symmetry.

 However, this most general formulation is not
operationally helpful (yet)...
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