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Abstract—One advantage of incremental transmissions with
feedback in point-to-point memoryless channels is a reduction in
average blocklength required to approach capacity. This paper
optimizes the size of each incremental transmission for non-
binary (NB) LDPC codes to maximize throughput in VLFT
and two-phase VLF settings. The optimization problem uses
approximation based on the inverse-Gaussian p.d.f. of the block-
length required for successful decoding. By using the optimized
incremental transmission lengths (with an average blocklength
of less than 500 bits), NB-LDPC codes for VLFT limited to 5
transmissions achieve a throughput greater than 96% of that
obtained by an unlimited-transmission VLFT scheme with the
same average blocklength. With a similar average blocklength,
a two-phase VLF system limited to five transmissions (with
optimized lengths) using NB-LDPC codes achieves greater than
90% of the capacity of the 2dB binary-input AWGN channel.
Two-phase VLF does not match the throughput of VLFT, but it
is more practical than VLFT because it does not assume noiseless
transmitter confirmation.

I. INTRODUCTION

The classical results from [1] show that feedback does
not increase the asymptotic capacity of memoryless channels.
Polyanskiy et al. [2] and Chen et al. [3] illustrate that by
using feedback, one can approach capacity in a small number
of channel uses (low latency). Polyanskiy et al. [2] introduce
variable-length coding with termination (VLFT) and without
termination (VLF) which theoretically approach capacity with
average block lengths on the order of a few hundred bits.
Without feedback, similar performance requires a capacity-
approaching coding technique such as LDPC with block-
lengths of several thousand bits.

In VLFT, the receiver provides full noiseless feedback to
the transmitter. The transmitter sends additional incremental
information over the channel until it determines that the
receiver has correctly decoded. Termination, the “T” in VLFT,
occurs when the transmitter sends a noiseless transmitter
confirmation (NTC) to terminate the transmission. The NTC
is sent through a noiseless channel separate from the primary
communication channel. The transmitter’s knowledge of the
decoder state through feedback and the NTC together facilitate
zero probability of error in VLFT.
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In contrast to VLFT, in the VLF framework, the receiver
determines when to stop the transmission and informs the
transmitter via noiseless feedback. The stopping criterion that
the receiver uses can be a CRC, a reliability metric about the
decoded codeword as in [4], or a confirmation message from
the transmitter through the primary communication channel
as in [5]. This last scheme, with each communication phase
followed by a confirmation phase, is called “two-phase” VLF.

Vakilinia et al. [6] show throughput versus latency for
various non-binary (NB) LDPC codes in VLFT with unlimited
transmissions. Additional incremental bits are selected one at
a time, and decoding is attempted after each received bit.

This paper considers a more practical scenario in which the
number of transmissions is limited. The size of the incremental
messages in each transmission significantly affects the overall
throughput of the system. We describe methods to select the
size of each incremental message to maximize the throughput
in VLFT and two-phase VLF schemes.

We approximate the probability density of the blocklengths
that support successful decoding and the corresponding in-
stantaneous rates via inverse-Gaussian and Gaussian densities
respectively. These approximations enable us to formulate an
analytical throughput maximization problem that facilitates
optimization of the sizes of the incremental transmissions.

We compare the throughput achieved by our optimization
applied to NB-LDPC codes with convolutional codes whose
blocklengths were optimized by a coordinate-descent algo-
rithm in [7] for information blocks of k = 12, 24, and 36
GF (256) symbols (k = 96, 192, and 288 bits) with m = 5
transmissions in VLFT and two-phase VLF settings.

The paper proceeds as follows: Sec. II provides an overview
of the VLFT system with NB-LDPC codes and the inverse-
Gaussian approximation for the histogram of the cumulative
blocklengths. Sec. III presents the optimization techniques to
select the size of each incremental transmission in VLFT.
Sec. IV gives an overview of the two-phase VLF scheme
and optimizes the cumulative blocklengths in each decoding
attempt. Sec.V compares the throughput and the expected
latency of NB-LDPC and convolutional codes in VLFT and
two-phase VLF settings. Sec. VI concludes the paper.

II. VLFT WITH NON-BINARY LDPC CODES

In [6], Vakilinia et al. use NB-LDPC codes in a VLFT
system with 1-bit increments. After the initial transmission, the
transmitter sends one bit at a time until the decoder decodes
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Fig. 1: Histogram and inverse-Gaussian approximation for
blocklength to decode correctly in the VLFT setting for SNR
2.0 dB, k = 96 bits and initial blocklength of N0 = 120 bits.
The corresponding initial coding rate is R0 = k

N0
= 0.8.
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Fig. 2: Histogram of RS = k
NS

computed from Fig. 1 of
RS = k

NS
and Gaussian fit with µS = 0.63 and σ2

S = 0.057.

correctly. In [6], to maximize throughput the initial code-rate
of the NB-LDPC code is chosen so that almost no codeword
is successfully decoded in the initial transmission. Thus, the
histogram of the number of additional increments required to
decode correctly does not have a spike at zero.

For the system of [6], the “VLFT simulation” plot in
Fig. 1 shows the empirical probability mass function (p.m.f.)
of the total blocklength (NS), which includes the size of
the initial block and each of the incremental redundancies,
required for the NB-LDPC code to decode to the transmitted
codeword. The “VLFT simulation” plot in Fig. 2 shows the
empirical histogram of the instantaneous rate

(
RS = k

NS

)
at

which decoding is successful. Fig. 2 shows that RS is well-
approximated by the Gaussian distribution

fRS (r) =
1√
2πσ2

S

e
− (r−µS)

2

2σ2
S (1)

with mean µS = E(RS) and variance σ2
S = var(RS). This

is consistent with the Gaussian approximation of information
density in [8].

Note that µS is not the expected throughput but rather the
average of the instantaneous rates supported by the chan-
nel. The cumulative distribution function (c.d.f.) of NS is
FNS (n) = P (NS ≤ n), and we have

FNS (n) = P
(
k

RS
≤ n
)
= P

(
RS ≥

k

n

)
= 1− FRS (

k

n
). (2)

Taking the derivative of FNS using the Gaussian approx-
imation of FRS produces the following “inverse-Gaussian”
approximation for p.d.f. of NS :

fNS (n) =
k

n2
√
2πσ2

S

e

−(kn−µS)2
2σ2
S . (3)

As shown in Fig. 1, this p.d.f closely approximates the
empirical distribution of NS . For N1 < N2, the probability
of the decoding attempt being successful at blocklength N2
but not at N1 using this approximation is∫ N2

N1

fNS (n)dn =

∫ N2

N1

k

n2
√

2πσ2
S

e

−(kn−µS)
2

2σ2
S dn (4)

= Q

(
k
N2
− µS
σS

)
−Q

(
k
N1
− µS
σS

)
. (5)

The increase in blocklength from N1 to N2 reduces the rate
from k

N1
to k

N2
. Note that (5) gives the probability that the

channel supports rate k
N2

while not supporting the higher rate
k
N1

. The Q functions in (5) are due to the normally-distributed
success rate (RS) at k

N1
and k

N2
.

III. VLFT WITH LIMITED NUMBER OF TRANSMISSIONS

In this section, we use the p.d.f of NS from (3) to find the
optimal blocklengths {N1, N2, . . . , Nm} which maximize the
throughput when at most m transmissions can be accumulated
at the receiver. If decoding is not successful after the mth

decoding attempt, the accumulated transmissions are forgotten
and transmission starts over with a new transmission of the first
block of N1 symbols. Define the throughput as RT = E(K)

E(N) ,
where E(K) is the effective number of information bits
transferred correctly over the channel in one accumulation
cycle (AC) and E(N) represents the expected number of
channel uses in one AC.

The expression for E(N) is

E(N) = N1Q

(
k
N1
− µS
σS

)
(6)

+

m∑
i=2

Ni

[
Q

(
k
Ni
− µS
σS

)
−Q

(
k

Ni−1
− µS

σS

)]
(7)

+Nm

[
1−Q

( k
Nm
− µS
σS

)]
(8)

The right hand side of (6) shows the expected latency for suc-

cessful decoding on the first attempt in the AC. Q
(

k
N1
−µS
σS

)
is

the probability decoding successfully with the initial block of
N1; or alternatively, the probability that the channel supports
the highest rate k

N1
. Similarly, the terms in (7) account for the

latency of decoding that is first successful at total blocklength
Ni (at the ith decoding attempt). Finally, the probability of not

being able to decode even at Nm is 1−Q
(

k
Nm
−µS
σS

)
which is

shown in (8). Even when the decoding has not been successful
at Nm, the channel has been used for Nm channel symbols.



The expected number of successfully transferred informa-
tion bits E(K) is

E(K) = kQ

( k
Nm
− µS
σS

)
, (9)

where Q
(

k
Nm
−µS
σS

)
is the probability of successful decod-

ing at some point in the AC. Note that E(K) depends only
upon Nm. In fact, E(K) ≈ k and thus not sensitive to the
choice of Nm for large values of Nm.

We optimize {N1, N2, . . . , Nm} to maximize RT = E(K)
E(N) .

The order of complexity for the exhaustive search (ES) algo-
rithm is O

(
Nmax−N0

m

)
, where Nmax is the maximum allowable

overall blocklength for an AC. Since E(K) ≈ k, maximization
of RT is equivalent to minimization of E(N).

Over the range of possible N1 values, {N2, . . . , Nm} are
optimized to minimize E(N) for each fixed value of N1 by
setting derivatives to zero as follows:{

N2, . . . , Nm :
∂E(N)

∂Ni
= 0, ∀i = 1, . . . ,m−1

}
. (10)

For each i ∈ {2, . . . ,m}, the optimal value of Ni is found
by setting ∂E(N)

∂Ni−1
= 0, yielding a sequence of relatively simple

computations. In other words, we select the Ni that makes our
previous choice of Ni−1 optimal in retrospect. Thus, to find
N2 we compute the derivative

∂E(N)

∂N1
= Q

(
k
N1
− µS
σS

)
+(N1−N2)Q

′

(
k
N1
− µS
σS

)
= 0 (11)

and solve for N2 as

N2 =

Q

(
k
N1
−µS
σS

)
+N1Q

′
(

k
N1
−µS
σS

)
Q′

(
k
N1
−µS
σS

) (12)

where Q′
(

k
Ni
−µS
σS

)
=

∂Q

(
k
Ni

−µS
σS

)
∂Ni

= k
N2
i
σS

1√
2π
e

(
k
Ni

−µS

)2
2σ2
S .

For i > 2, ∂E(N)
∂Ni−1

= 0 depends only on {Ni−2, Ni−1, Ni}
as follows:

∂E(N)

∂Ni−1
=Q

(
k

Ni−1
−µ
σ

)
+(Ni−1−Ni)Q′

(
k

Ni−1
−µ
σ

)
−Q

(
k

Ni−2
−µ

σ

)
.

Thus we can solve for Ni as

Ni =

Q

(
k

Ni−1
−µ

σ

)
+Ni−1Q

′
(

k
Ni−1

−µ

σ

)
−Q
(

k
Ni−2

−µ

σ

)
Q′

(
k

Ni−1
−µ

σ

) . (13)

Table I shows the optimized throughput (RT ) and the
expected latency, λ = k/RT , for various m. The optimized
blocklengths and RT obtained from the sequential differential
approximation (SDA) algorithm are very close to the true
optimized values obtained by exhaustive search (ES).

TABLE I: Optimized blocklengths, maximum RT , and mini-
mum λ obtained from ES and SDA for k = 96 bits for VLFT.

Alg. m {N1, N2, . . . , Nm} RT λ

ES, SDA 2 158 , 188 0.566 169.6
ES 3 150, 167, 194 0.58638 163.71
SDA 3 150, 167, 195 0.58635 163.72
ES 4 146, 158, 172, 198 0.59709 160.77
SDA 4 146, 158, 172, 197 0.59707 160.78
ES, SDA 5 143, 153, 163, 176, 201 0.603 159.2
ES, SDA 6 140, 149, 157, 166, 179, 204 0.608 157.9
ES, SDA 7 139, 147, 154, 161, 170, 182, 206 0.611 157.1

TABLE II: Throughput and latency for various m in VLFT.

m 2 3 5 10 15 20 ∞
λ 167.1 163.7 159 155.5 154.3 153.7 151.9
RT 0.566 0.586 0.603 0.618 0.622 0.624 0.632

For m = 2, 5, 6, and 7, the optimized blocklengths for both
approaches are the same. For m = 3 and 4 the blocklengths
differ only in the value of Nm (shown in bold) and only by one
bit. This small difference in Nm causes a negligible difference
in the maximum throughput RT and minimum latency λ= k

RT
.

Table II shows the optimum RT and λ for various m using
SDA. Since the complexity of ES is exponential in m, it is
infeasible to obtain a globally optimal solution for m > 7.
whereas SDA, with complexity O(Nmax − N0), can find a
solution within seconds even for large m.

IV. TWO-PHASE VLF

Now we consider the two-phase VLF model in which the
transmitter uses the primary communication channel to con-
firm whether the receiver has decoded to the correct codeword.
As in [5] the two-phase incremental redundancy scheme has
each communication phase followed by a confirmation phase.
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Fig. 3: Two-phase VLF block diagram

Fig. 3 shows a block diagram for the two-phase communi-
cation scheme. Starting at the left, a message block of size N1

is transmitted. If the decoder decodes correctly, the transmitter
sends a coded forward “ACK” on the same noisy channel
to confirm the successful decoding. If the receiver decodes



incorrectly, the transmitter sends a coded forward NACK. The
ACKs and NACKs are repetition codes of length A1 symbols.

Since the receiver and transmitter run the same decoder on
the same received channel symbols, if the decoder does not
converge to any codeword with N1 symbols, the transmitter
skips the unnecessary confirmation phase and immediately
transmits the second increment (I2). The transmitter termi-
nates transmission when either the receiver decodes both the
message and the following ACK correctly or when the receiver
decodes both the message the subsequent NACK incorrectly.
The latter scenario is the only case that results in an error,
and this error is undetected by the receiver. The blocklengths
of each transmission and confirmation message are selected to
guarantee a probability of undetected error of at most ε. If the
message is not decoded correctly even after m transmissions
(and the NACKs are correctly received), the receiver deletes
all received symbols and a new AC begins with the transmitter
sending the original block of N1 symbols again.

Since the transmitter sends NACK only when a wrong
codeword is decoded, it is crucial to differentiate between
erroneous decoding and failure to converge to a codeword.
Fig. 4 shows the histogram of the required cumulative number
of symbols until the receiver stops converging to an incorrect
codeword (NE). Note that Fig. 4 is conditioned on the decoder
initially decoding to a wrong codeword at N0 = 120. The
probability that the decoder decodes incorrectly at N0 is α,
and α = 0.165 for the experiment that produced the histogram
in Fig. 4 . For blocklengths larger than NE , the decoder either
decodes correctly or fails to converge to any codeword. This
is a different condition than correct decoding, the distribution
is well-modeled by an inverse Gaussian as in Fig. 1. Fig. 5
shows the histogram of RE = k

NE
, the instantaneous rate at

which the decoder stops decoding to the wrong codeword, and
the corresponding Gaussian approximation.

To optimize the blocklengths in the two-phase VLF setting,
we use the probability distributions of NS , RS , NE and RE
from Figs. 1, 2, 4, and 5. The optimization problem is to
maximize RT = E(K)

E(N) under the constraint that the probability
of error is smaller than ε. Thus

m∑
i=1

PEEi < ε , (14)

where PEEi represents the probability the receiver decodes
both the message and the NACK erroneously.

The exact expression for E(K) is

E(K) = k

(
Q

( k
Nm
−µS
σS

)
−

m∑
i=1

PEEi

)
, (15)

As in Sec. II we assume E(K) ≈ k. For E(N),

E(N) =

m∑
i=1

(Ni+Ai)
[
PSSi +PEEi

]
+Ai

[
PSEi +PESi

]
(16)

+Nm

(
1−Q

( k
Nm
−µS
σS

)
+ PSEm

)
, (17)
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Fig. 4: Empirical histogram and inverse-Gaussian fit for the
cumulative blocklength (NE) to stop decoding incorrectly.
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Fig. 5: Empirical histogram and Gaussian approximation with
µE = 0.626 and σ2

E = 0.056 of RE in VLFT setting.

where PSSi is the probability the receiver decodes both
message and ACK successfully. PSSi and PEEi are the stop-
ping conditions for an AC. The term multiplying Nm in
(17) is the probability that an AC ends without satisfying
either of these stopping conditions. PSEi is the probability
of decoding the message successfully but decoding the ACK
as a NACK. Conversely, PESi is the probability of decoding
the message erroneously but decoding the NACK successfully.
These probabilities are computed as follows:

PSSi =

[
Q

(
k
Ni
−µS
σS

)
−Q

(
k

Ni−1
−µS
σS

)][
1−Q

(√
Ai
σc

)]
(18)

PEEi =

[
α

(
1−Q

(
k
Ni
−µE
σE

))][
Q

(√
Ai
σc

)]
(19)

PSEi =

[
Q

(
k
Ni
−µS
σS

)
−Q

(
k

Ni−1
−µS

σS

)][
Q

(√
Ai
σc

)]
(20)

PES=

[
α

(
1−Q

(
k
Ni
−µE
σE

))][(
1−Q

(√
Ai
σc

))]
. (21)

In (18) the probability of decoding correctly at Ni and

not at Ni−1 is Q
(

k
Ni
−µS
σS

)
− Q

(
k

Ni−1
−µS

σS

)
and Q

(√
A1

σc

)
is the probability that the ACK is decoded as a NACK,
where σc is the standard deviation of the channel noise.

In (19), α
[
1−Q

(
k
Ni
−µE
σE

)]
is the probability of decoding

erroneously at Ni.



TABLE III: Optimized {N1, . . . , Nm} for m=5 two-phase
VLF using SDA and ES with {A1, . . . , A5} = {5, 4, 3, 3, 3}.

Alg. k {N1, N2, . . . , N5} ε

SDA 96 145, 156, 167, 180, 202 1.2E-3
SDA 96 146, 158, 171, 188, 230 9.4E-4
ES 96 146, 158, 170, 184, 211 9.9E-4

To optimize the blocklengths for two-phase VLF we used
both ES and SDA approaches from Sec. III for fixed values
of {A1, . . . , Am}. Table III shows two sets of {N1, . . . , Nm}
obtained for different N1 in SDA with ε ≈ 10−3. The
optimized {N1, . . . , Nm} with ε≤ 10−3 from ES is close to
the SDA optimized blocklengths. The optimized blocklengths
from SDA can also be used as optimization limits for ES
algorithm and significantly reduce the ES optimization space.

V. RESULTS

Table IV summarizes the blocklengths that maximize the
throughput in the two-phase VLF setting with ε=10−3, for
both NB-LDPC codes and tail-biting convolutional codes.
Blocklengths for the NB-LDPC codes are obtained from Eqns.
(15-17) and blocklengths for the convolutional codes are
based on the coordinate-descent algorithm in [7] using the
assumption of rate-compatible sphere-packing. The rate-1/3
convolutional codes (CC) have octal generator polynomials
(117, 127, 155) for the 64-state code and (2325, 2731, 3747)
for the 1024-state code. Table IV also shows the percentage
of BI-AWGN capacity obtained in the two-phase VLF setting
with m = 5 transmissions. For k = 192 and 288, the NB-
LDPC code obtains throughputs greater than 90% of BI-
AWGN capacity with a latency (λ) less than 500 bits.

Fig. 6 shows RT versus λ for NB-LDPC and convolutional
codes (CC) in VLFT and two-phase VLF settings. In VLFT
with unlimited number of transmissions (1-bit increments),
CCs with ML decoders perform very well at short latencies of
up to 200 bits. VLFT schemes have throughputs greater than
the capacity at short blocklengths because of the NTC. VLFT
with NB-LDPC codes outperforms CCs at larger latencies
because the codeword error rate of CCs increases once the
blocklength exceeds twice the traceback depth.

Fig. 6 also shows the throughput obtained in the two-phase
VLF setting for NB-LDPC codes, 64-state and 1024-state tail-
biting convolutional codes with m=5 and ε=10−3. As the
blocklength increases, as mentioned in [9], the performance
of the codes in VLF gets closer to the performance in VLFT.

VI. CONCLUSION

This paper uses the inverse-Gaussian approximation for the
blocklenth of first successful decoding to optimize the size
of each incremental transmission for non-binary (NB) LDPC
codes to maximize throughput in VLFT and two-phase VLF
settings. In the 300-500 symbol average block length regime,
this paper reports the best VLFT and VLF throughputs yet.
VLFT throughputs are higher than VLF, but VLF is more
practical because it does not require NTC. For two-phase
VLF with m=5, NB-LDPC codes with optimized blocklengths

TABLE IV: Optimized {N1, . . . , Nm} for two-phase VLF
with m=5 at SNR 2dB, and simulation results for RT and
λ. {A1, . . . , A5} = {5, 4, 3, 3, 3} for NB-LDPC. For the CCs,
Ai = 6, 8, and 9 ∀i for k = 96, 192, and 288 bits, respectively.

Code k {N1, N2, . . . , N5} λ RT %
NB-LDPC 96 146, 158, 170, 184, 211 170.4 0.563 87.7
1024-CC 96 138, 153, 166, 180, 204 168.6 0.569 88.6

NB-LDPC 192 301, 322, 344, 369, 408 330.5 0.581 90.5
1024-CC 192 287, 309, 331, 352, 384 349.4 0.549 85.4

NB-LDPC 288 459, 487, 518, 550, 597 495.7 0.581 90.5
1024-CC 288 416, 441, 463, 488, 532 599.6 0.480 74.8
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Fig. 6: RT vs. λ for NB-LDPC, 64/1024-state CCs for VLFT
with m =∞ and m = 5, and two-phase VLF with m = 5.

achieve greater than 90% of the capacity of the 2dB BI-AWGN
channel in the 300-500 symbol range of average blocklength.
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