
Information-Reduced Carrier Synchronization of BPSK and QPSK

Using Soft Decision Feedback

Marvin Simon, Esteban L. Vallés, Christopher R. Jones, Richard D. Wesel and John D. Villasenor

Abstract— This paper addresses the carrier-phase estimation
problem under low SNR conditions as are typical of turbo-
and LDPC-coded applications. In [1], [2] closed-loop carrier
synchronization schemes for error-correction coded BPSK and
QPSK modulation were proposed that were based on feeding
back hard data decisions at the input of the loop, the purpose
being to remove the modulation prior to attempting to track
the carrier phase as opposed to the more conventional decision-
feedback schemes that incorporate such feedback inside the
loop. In this paper, we consider an alternative approach wherein
the soft information from the iterative decoder of turbo or
LDPC codes is instead used as the feedback.

I. INTRODUCTION

In recent years there has been an ever-increasing interest

in highly power efficient error-correction codes such as

turbo codes and low density parity check (LDPC) codes.

These codes approach the Shannon channel capacity of the

system and operate at very low symbol signal-to-noise ratios

(SNRs) thus necessitating the need for carrier synchroniza-

tion schemes that likewise operate efficiently at these SNRs.

A significant research effort is underway in the area

of joint decoding and carrier phase estimation. As clearly

explained by Noels et al. [3] two somewhat distinct groups of

joint decoding and synchronization algorithms have evolved.

The first of these approach the problem by modifying itera-

tive detection/decoding algorithms and/or graphs to include

parameter estimation. A partial list of work on this approach

includes [4]–[9].

Of particular interest has been the work of Colavolpe et al.

[9] where phase-tracking processing nodes were introduced

in the iterative decoding graph. Dauwels et al. also inves-

tigated [7] specially adapted message-passing update rules.

Howard et al. [8] proposed a pilotless modulation technique

for turbo-coded differential 8-PSK modulation which uses

35 iterations to compensate a π/8 phase offset at Eb/No =
4.5 dB. We also note the work of Nuriyev [6] who has

adapted density evolution to evaluate the performance of

joint carrier-phase estimation in a pilot-assisted environment.
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The second group of algorithms pass messages between

an independent phase estimation block and an essentially

unmodified iterative decoder. The resulting architectures are

often said to employ turbo synchronization [3]. Algorithms

of this type can can be found in [10]–[14].

The technique in this paper falls into this second category

and has the potentially attractive feature that little modifica-

tion is required with either the iterative decoder or the carrier

recovery block (which consists primarily of a phase-locked

loop (PLL)). Specifically, the work leverages the fact that

LDPC symbol estimates can ‘wipe-off’ modulated symbols

in a decision directed carrier recovery loop to enhance the

carrier information such that a classic residual carrier PLL

is able to provide increasingly accurate phase estimates over

LDPC iterations. The method incurs a latency penalty (by

way of increased iterations) as carrier phase is acquired.

However, complexity in terms of system description and area

(in the case of a real-time implementation) remains similar

to that of state of the art residual carrier recovery techniques

currently used for BPSK and QPSK modulation in NASA’s

deep-space network.

The authors in [10] propose somewhat similar work but

have described a phase estimate based on the instantaneous

average of an entire block of received symbols. We also note

the work of Lottici et al. [12] who developed a blind recovery

technique for QAM receivers. The work in this paper is also

based on blind, or pilotless, operation and we motivate this

in part by recalling a result from Anastasopoulos [4] who

showed pilotless techniques to be more efficient at lower

SNRs where pilot insertion loss is considerable.

The rest of this paper is organized as follows. The next sec-

tion provides a detailed description of the proposed method.

In Section III, we consider BPSK modulation and derive

the tracking performance of the PLL in terms of its mean-

square phase error when operating in the linear (high loop

SNR) region as is typical. In Section IV we illustrate a

digital implementation that achieves the same performance

as the piecewise constant analog model considered in Section

III. Results for QPSK modulation are presented in Section

V. Section VI presents numerical results derived from a

simulation of the BPSK scheme with a particular LDPC

code. Finally, Section VII documents our conclusions.

II. SYSTEM DESCRIPTION

The notion of iterative information-reduced carrier

synchronization for coded binary phase-shift-keyed

(BPSK) modulation was first introduced in [1]. The term

“information-reduced” alludes to the use of an estimate of
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the instantaneous data symbol (and thus of the instantaneous

phase modulation) to reduce the amount of randomness

(and thus the amount of information) in the signal being

processed in the carrier synchronizer.

Specifically, in information-reduced carrier-

synchronization (IRCS), the reduction of the amount

of information is accomplished by attempting to convert

the received modulated carrier to an unmodulated carrier

(pure tone) before applying it to a phase-tracking loop,

in the hope of improving performance. Traditional IRCS

systems for synchronization with carrier signals modulated

by BPSK include Costas loops, data-aided loops, and

demodulation/remodulation loops. The traditional systems

are designed to implement various approximations of a

closed-loop structure that effects maximum a posteriori

(MAP) estimation of phase. The degradation of tracking

performance of such a loop in the case of BPSK is

represented by a quantity called the “squaring loss”, which

is a measure of the degradation of the receiver signal-to-

noise (SNR) ratio and is associated with the mean-squared

phase error of the loop. In the case of a conventional

in-phase/quadrature (I-Q) carrier-tracking loop, the mean-

square phase error is a result of signal and noise cross

products that are generated in the effort to remove the data

modulation from the loop error signal. At low symbol SNR,

the squaring loss of an I-Q loop can be severe enough to

prevent tracking. Several publications based on this notion

have appeared in the literature that include everything from

the basic idea and accompanying analysis/performance

evaluations [1] to successful application and implementation

for specific block and convolutional codes [15], [16].

If the data sequence and its timing were completely

known, then a BPSK signal could be converted to a pure

tone simply by multiplying the BPSK signal by the data

waveform. One could then track the unmodulated carrier with

improved performance by use of a phase-locked loop, which

does not exhibit squaring loss. Short of complete knowledge

of the data waveform and in the presence of noise, the best

approximation of a pure tone could be obtained by feeding

back an estimate of the data waveform corresponding to

tentative decisions on the data symbols. Such feedback is

called “decision feedback”.

Decision feedback is used within the traditional loops, but

is not used to modify the loop structures. In the proposed

IRCS system (see Fig. 1), decision feedback is introduced at

the input terminal of the loop; simultaneously, the structure

of the loop would be modified (in the sense that its parame-

ters would be modified) on the basis of the associated change

in data-transition statistics in the input. In this scheme, the

input signal would be converted to a close approximation of

a pure tone, with a resultant improvement in carrier-tracking

performance over conventional I-Q loops.

Although initially available data-waveform estimates are

generally of low quality, they can be used to initiate the

IRCS process by reducing the number of data transitions at

the input. Once phase lock is achieved, the improved phase

estimates can be fed back to the data detector, yielding im-
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Fig. 1. Analog receiver with Information-Reduced Carrier Synchronizer
Using Soft Decision Feedback for BPSK

proved symbol estimates for feedback, and thereby achieving

even better phase tracking. This iterative process eventually

leads to virtual elimination of squaring loss, so that the

performance of the system approaches that of a phase-locked

loop operating on an unmodulated carrier signal.

III. TRACKING PERFORMANCE FOR BPSK MODULATION

The sample analog receiver shown in Fig. 1 will aid us

in the derivation of the proposed carrier synchronization

method. An alternative practical implementation of this re-

ceiver is detailed in Section IV. Consider an input BPSK

modulation of the form

y1(t; θc) =
√

2Pm(t)sin (wct + θc) + n1(t) (1)

where wc and θc are the carrier frequency and phase. Carrier

power P is affected by a bandpass AWGN process n1(t) that

can be expressed as

n1(t) =
√

2 [Nc1(t)cos(wct + θc) − Ns1(t)sin(wct + θc)])
(2)

where Nc1(t), Ns1(t) have single-sided noise power spectral

density (PSD) equal to No and

m(t) =

∞
∑

k=−∞

dkp (t − kTs)

is a baseband modulation with independent, identically dis-

tributed (i.i.d.)±1 data symbols dk and unit rectangular pulse

shape p(t) of duration Ts or a root-raised cosine pulse with

zero crossings a multiples of Ts. For simplicity from this

point forward we will assume a rectangular pulse shape.

Under this assumption matched filters will be equivalent

to integrators. The next step is to delay y1(t; θc) by the

decoder delay ∆ and multiply it by a normalized (by the

signal amplitude A) 1 version of the soft decision feedback

signal corresponding to the extrinsic information derived

from decoding the LDPC code. This can be modeled as a

Gaussian signal [17], [18] , i.e.,

1The purpose of the normalization is to make the signal component of
the feedback independent of the extrinsic symbol information amplitude,
A. This in turn results in the input to the carrier tracking loop being
independent of this same amplitude thereby not affecting the choice of the
loop bandwidth. In practice, one would need to estimate A per iteration to
perform this normalization. For the purpose of our theoretical discussion
here, we shall assume that this estimation is perfect.
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y2(t) = m(t − ∆) + n2(t)/A

where n2(t) can be modeled as a piecewise constant base-

band noise process, namely,

n2(t) =

∞
∑

k=−∞

n2kp (t − kTs − ∆)

where n2k are i.i.d. zero mean Gaussian random variables

(RVs) with variance σ2. Over a single iteration (block of

input symbols), A and σ2 are assumed to be fixed. The

result of this multiplication, whose intent is to remove the

modulation, is

u(t; θc)
∆
= y1(t − ∆; θc)y2(t)

=
√

2Psin(wct + θc)

+(
√

(2P )/A)m(t − ∆)n2(t)sin(wct + θc)

+
√

2m(t − ∆)[Nc1(t)cos(wct + θc)
−Ns1(t)sin(wct + θc)]

+(
√

2/A)n2(t)[Nc1(t)cos(wct + θc)
−Ns1(t)sin(wct + θc)]

(3)

which is the sum of a pure sinusoidal tone at the carrier

frequency plus a mixture of (signal × noise) and (noise ×
noise) terms. The signal in (3) is then input to a PLL whose

voltage-controlled oscillator (VCO) output can be expressed

as

rvco(t) =
√

2cos(wct + θ̂c) (4)

then we multiply (3) and (4) together and low-pass filter (to

remove frequency components at 2wc) to obtain

z(t) =
√

Psin(φc) + (
√

P/A)m(t − ∆)n2(t)sin(φc)
+m(t − ∆) × [Nc1(t)cos(φc) − Ns1(t)sin(φc)]
+(1/A)n2(t) × [Nc1(t)cos(φc) − Ns1(t)sin(φc)]

∆
=

√
Psin(φc) + v(t, φc)

where φc = θc− θ̂c denotes the phase error in the loop. Note

that the loop tracks the phase error φc as opposed to twice

the phase 2φc error as in the more conventional Costas loop.

Next we pass z(t) through a matched filter (I&D in the

case of square pulses) to produce (in the kth interval (k +
1)Ts ≤ t ≤ (k + 2)Ts) the piecewise constant error signal 2

ek =
∫ (k+1)Ts

kTs

z(t)dt

= Ts

√
Psin(φc) + (

√
P/A)Tsdkn2ksin(φc)

+dk[Nc1kcos(φc) − Ns1ksin(φc)]
+(1/A)n2k[Nc1kcos(φc) − Ns1ksin(φc)]

= Ts

√
Psin(φc) + v(k, φc)

(5)

2Without loss in generality, we herein ignore the decoder delay ∆.

where

Nc1k =
∫ (k+1)Ts

kTs

Nc1(t)dt

Ns1k =
∫ (k+1)Ts

kTs

Ns1(t)dt

(6)

are zero mean Gaussian noise RVs with variance σn
2 =

NoTs/2. Clearly from the above, the slope of the S−curve,

Kg , is given by

Kg = Ts

√
P (7)

We now compute the autocorrelation function of v(k, φc)
(treated as a piecewise continuous process v(t, φc) ) from

which we shall obtain the equivalent noise PSD affecting

the loop. For operation in the neighborhood of φc = 0, it

is reasonable to consider only the autocorrelation function

of v(k, 0). Assuming n1(t) and n2(t) are independent and

the noise samples are independent from symbol interval to

symbol interval, then the autocorrelation is triangular

Rv(τ) = E {v(t, 0)v(t + τ, 0)} =

{

σ2
v

(

1 − |τ |
Ts

)

|τ | ≤ Ts

0 otherwise

with

σ2
v = E

{

v2(k, 0)
}

= E
{

N2
c1k

(

dk + n2k

A

)2
}

= σ2
n(1 + σ2/A2) = NoTs

2

(

1 + σ2/A2
)

Thus, the equivalent single-sided noise PSD, Ne, is given by

Ne = 2

∫ −∞

−∞

Rv(τ, 0)dτ = NoT
2
s (1 + σ2/A2) (8)

Finally, the mean-square phase error in the loop is given by

σ2
φc

=
NeBL

K2
g

=
NoBL

P

(

1 +
σ2

A2

)

∆
=

1

ρSL

(9)

where BL is the noise bandwidth, ρ = P/(NoBL) is the

loop SNR in a conventional PLL and

SL
∆
=

(

1 +
σ2

A2

)−1

(10)

is the degradation of the loop SNR analogous to the “squar-

ing loss” in a conventional Costas loop. The quantity A2/σ2

represents the decoder soft SNR estimate. For iterative de-

coding of LDPC and turbo codes [17], [18], the mean and

the variance are related by the symmetry condition σ2 = 2A.

Using this relation (10) becomes

SIR
L

∆
=

(

1 +
2

A

)−1

(11)

As the iteration proceeds, the estimated data SNR increases

and likewise the squaring loss decreases (i.e., SIR
L ap-

proaches unity). By comparison, for a Costas loop, the

expression for the squaring loss is given by
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Fig. 2. Digital implementation of BPSK Receiver with Information-Reduced Carrier Synchronizer Using Soft Decision Feedback

SC
L

∆
= (1 + 1/(2Rd))

−1

Rd = P.Ts/No

and thus remains fixed, independent of the iteration process,

for a given symbol SNR. To numerically evaluate the

performance in (11), one needs to quantify the functional

dependence of the decoder soft-estimate of the data SNR

and the input symbol SNR.

IV. A PRACTICAL DIGITAL IMPLEMENTATION

The circuit in Fig. 2, shows a practical implementation of

the carrier recovery loop presented in the previous section.

Once again we assume a rectangular pulse shape although

a bandwidth efficient Nyquist pulse-shape can also be used.

The first difference with the block diagram in Fig. 1 is that

demodulation (convert to baseband) of the input signal (1)

is done with the carrier phase error still present, using the I
and Q reference signals (arbitrarily assuming them to have

zero phase relative to the received signal). We thus multiply

the input by
√

2sin(wct) and
√

2cos(wct), and obtain

xHF
c (t; θc) =

√
Pm(t) (sin (2wct + θc) + sin(θc))

+
√

2n1(t)cos(wct)

=
√

Pm(t). (sin (2wct + θc) + sin(θc))
+ Nc1(t)cos(2wct + θc) + Nc1(t)cos(θc)
− Ns1(t)sin(2wct + θc) − Ns1(t)sin(θc)

xHF
s (t; θc) =

√
Pm(t) (−cos (2wct + θc) + cos(θc))

+
√

2n1(t)sin(wct)

=
√

Pm(t). (−cos (2wct + θc) + cos(θc))
− Nc1(t)sin(2wct + θc) + Nc1(t)sin(θc)
+ Ns1(t)cos(2wct + θc) − Ns1(t)cos(θc)

Applying a low-pass filter to remove frequencies at 2wc

yields:

xc(t; θc) =
√

Pm(t)sin(θc) + Nc1(t)cos(θc)
−Ns1(t)sin(θc)

xs(t; θc) =
√

Pm(t)cos(θc) − Nc1(t)sin(θc)
−Ns1(t)cos(θc)

The demodulated signals are then passed through (I&Ds)

(or matched root raised cosine filters) to give

zck =
√

PTsdksin(θc) + Nc1kcos(θc) − Ns1ksin(θc)

zsk =
√

PTsdkcos(θc) − Nc1ksin(θc) − Ns1kcos(θc)

in the interval (k + 1)Ts ≤ t ≤ (k + 2)Ts. Next multiply

zck and zsk by the normalized soft decision feedback sample

(decoder extrinsic information)

y2k = dk + n2k/A (12)

where as before over a given iteration {n2k} are modeled as

i.i.d. zero mean Gaussian RVs with variance σ2. The result

of this multiplication removes the modulation and produces

uck = zcky2k =
√

PTssin(θc)+
[(dk + n2k/A)(Nc1kcos(θc) − Ns1ksin(θc))+

n2k/A
√

PTsdk.sin(θc)]

=
√

PTssin(θc) + vck,

usk =
√

PTs.cos(θc)+
[(dk + n2k/A)(−Nc1ksin(θc) − Ns1kcos(θc))+

n2k/A
√

PTsdkcos(θc)]

=
√

PTscos(θc) + vsk,

which is then input to a digital PLL whose number-controlled

oscillator (NCO) produces an estimate of the carrier phase

denoted by θ̂c. Multiplying uck and usk by wck = cos(θ̂c)
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Fig. 3. QPSK receiver with Information-Reduced Carrier Phase Synchro-
nizer Using Soft Decision Feedback

and wsk = sin(θ̂c), respectively, and then differencing the

results of these products provides the error signal

ek = uckwck − uskwsk

= 1
2

√
PTs

(

sin(φc) + sin(θc + θ̂c)
)

− 1
2

√
PTs

(

−sin(φc) + sin(θc + θ̂c)
)

vckcos(θ̂c) − vsksin(θ̂c)

=
√

PTs.sin(φc) + vckcos(θ̂c) − vsksin(θ̂c)
(13)

where as before φc = θc − θ̂c denotes the phase error in the

loop. Comparing (13) with (5) we see that they are identical

and thus the performance of the digital PLL would also be

described by (9) together with (10).

V. TRACKING PERFORMANCE FOR QPSK MODULATION

As we did in Section III, we now present a sample receiver

for QPSK signals shown in Fig. 3. Consider an input QPSK

modulation of the form

y1 (t; θc) =
√

PmI (t) sin (ωct + θc)

+
√

PmQ (t) cos (ωct + θc) + n1 (t)

where, analogous to (2), the noise is modeled by

n1 (t) =
√

2 [Nc1 (t) cos (ωct + θc) − Ns1 (t) sin (ωct + θc)]

and the I and Q modulations are given by

mI (t) =
∞
∑

k=−∞

dIkp (t − kTs)

mQ (t) =
∞
∑

k=−∞

dQkp (t − kTs)

As before, multiply y1 (t; θc) (again ignoring the decoder

delay) by a normalized version of the soft decision feedback

signal corresponding to the extrinsic information for the I
data stream, namely,

y2I (t) = mI (t) + n2I (t) /A

where n2(T ) is again modeled as a piecewise constant

baseband noise process, namely,

n2I (t) =

∞
∑

k=−∞

n2Ikp (t − kTs) (14)

with {n2Ik} being i.i.d. zero mean Gaussian RVs with

variance σ2. Now also phase shift the received signal by

π/2 rad. to form the quadrature input

y1 (t; θc − π/2) = −
√

PmI (t) cos (ωct + θc)

+
√

PmQ (t) sin (ωct + θc) + n1Q (t)

where

n1Q (t) =
√

2Nc1 (t) sin (ωct + θc)

+
√

2Ns1 (t) cos (ωct + θc)

and multiply this by a normalized version of the extrinsic

information for the Q data stream, namely,

y2Q (t) = mQ (t) + n2Q (t) /A

where, analogous to (14),

n2Q (t) =

∞
∑

k=−∞

n2Qkp (t − kTs)

and the sequence {n2Qk} is assumed to have the same prop-

erties as the sequence {n2Ik}. Furthermore, it is reasonable

to assume the two sequences independent of each other. The

results of the above-mentioned multiplications are given by

uI (t; θc) =
√

P sin (ωct + θc)

+
√

PmI (t)mQ (t) cos (ωct + θc)

+
(√

P/A
)

mI (t)n2I (t) sin (ωct + θc)

+
(√

P/A
)

mQ (t)n2I (t) cos (ωct + θc)

+
√

2mI (t) [Nc1 (t) cos (ωct + θc)
−Ns1 (t) sin (ωct + θc)]

+
(√

2/A
)

n2I (t) [Nc1 (t) cos (ωct + θc)
−Ns1 (t) sin (ωct + θc)]

uQ (t; θc) =
√

P sin (ωct + θc)

−
√

PmI (t)mQ (t) cos (ωct + θc)

−
(√

P/A
)

mI (t) n2Q (t) cos (ωct + θc)

+
(√

P/A
)

mQ (t) n2Q (t) sin (ωct + θc)

+
√

2mQ (t) [Nc1 (t) sin (ωct + θc)
+Ns1 (t) cos (ωct + θc)]

+
(√

2/A
)

n2Q (t) [Nc1 (t) sin (ωct + θc)
+Ns1 (t) cos (ωct + θc)]

Adding uI(t; θc) and uQ(t; θc) eliminates the cross-

modulation signal term and produces a signal that is again

the sum of a pure sinusoidal tone at the carrier frequency

plus a mixture of (signal×noise) and (noise×noise) terms.

The signal u(t; θc) is input to a PLL which after demodula-
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tion by the reference signal in (4) gives

z (t) =
√

2P sin (φc)

+
(

√

P/2/A
)

[mI (t) n2I (t) + mQ (t)n2Q (t)] sin (φc)

+
(

√

P/2/A
)

[mQ (t)n2I (t) − mI (t)n2Q (t)] cos (φc)

+ [mI (t)Nc1 (t) + mQ (t) Ns1 (t)] cos (φc)

+ [mQ (t)Nc1 (t) −mI (t)Ns1 (t)] sin (φc)

+ (1/A) [n2I (t) Nc1 (t) + n2Q (t) Ns1 (t)] cos (φc)

+ (1/A) [n2Q (t) Nc1 (t) − n2I (t) Ns1 (t)] sin (φc)

As in the BPSK case, next we pass z(t) through a matched

filter to produce (in the kth interval ) (k + 1) Ts ≤ t ≤
(k + 2)Ts the piecewise constant error signal

ek =

∫ (k+1)Ts

kTs

z (t) dt = Ts

√
2P sin (φc)

+
(

√

P/2/A
)

Ts [dIkn2Ik +dQkn2Qk] sin (φc)

+
(

√

P/2/A
)

Ts [dQkn2Ik − dIkn2Qk] cos (φc)

+ [dIkNc1k + dQkNs1k] cos (φc)

+ [dQkNc1k − dIkNs1k] sin (φc)

+ (1/A) [n2IkNc1k + n2QkNs1k] cos (φc)

+ (1/A) [n2QkNc1k −n2IkNs1k] sin (φc)

= Ts

√
2P sin (φc) + v (k, φc)

(15)

where Nc1k,Ns1k are defined in (6).

Once again we must compute the slope of the S-curve and

the equivalent noise PSD. From (15), the slope of the S-curve

is immediately given by

Kg = Ts

√
2P . (16)

The variance of the additive noise v(k, 0) is readily deter-

mined to be 3

σ2
v = N0Ts

[

1 + (1 + Rd)σ2/A2
]

(17)

and thus from (8), the equivalent noise PSD is

Ne = 2Tsσ
2
v = 2N0T

2
s

[

1 + (1 + Rd)σ2/A2
]

(18)

Finally, applying (16) and (17) to (9), the mean-square phase

error in the loop becomes

σ2
φc

=
NeBL

K2
g

=
NoBL

P

[

1 + (1 + Rd)
σ2

A2

]

∆
=

1

ρSIR
L

or equivalently, the “squaring loss” is given by

SIR
L =

[

1 + (1 + Rd) σ2/A2
]−1

which applying A/σ2 = 1/2 simplifies to

SIR
L = [1 + (1 + Rd) (2/A)]

−1
(19)

3The additional noise variance factor (1+Rd) comes from the presence
of a quadrature signal×noise term that is absent in the BPSK case.

Comparing (19) with (11) we immediately observe the

additional penalty (dependent now on symbol SNR: Rd)

in carrier tracking performance using a PLL for QPSK

relative to BPSK. For small symbol SNRs, this penalty

becomes insignificant. Furthermore, note that because of

the creation of a pure tone by the soft decision feedback,

thus allowing the use of a PLL, there are no fourth order

(signal×noise) or (noise×noise) products in the loop as in

the conventional QPSK Costas loop or information-reduced

carrier synchronization loop with hard decision feedback.

Thus, the “squaring loss” penalty is inherently smaller than

the “quadrupling loss” penalty associated with the above-

mentioned loops.

As was the case for BPSK, it is also possible to construct

an alternative digital implementation that once again would

yield the same performance as its piecewise continuous

analog counterpart discussed above.

VI. ITERATIVE PROCESSING AND NUMERICAL RESULTS

We have evaluated the performance of the all-digital BPSK

baseband approach described in Section IV via joint decod-

ing with an rate-1/2 (1944, 972) irregular low-density parity-

check (LDPC) code developed in [19]. After a complex

rotation to resolve phase ambiguity (discussed below), the

signals zck and zsk are multiplied by the decoder output

y2k to form uck and usk. As described in previous sections

and shown in [1], if the PLL input has a small fraction of

total modulated symbols in a block successfully removed

then it can begin to produce a reasonable phase estimate,

even at relatively low SNRs. We have found that the es-

timation/decoding process can be successfully started by

assigning y2k = zsk (Subsequent iterations derive y2k from

the decoder as described by (12)). After this assignment,

the PLL operates once across all symbols in a codeword.

LDPC decoder log-likelihood ratio inputs are then produced

by combining the updated PLL phase estimates with zck and

zsk

Qk = 2
σ2

llr

(zskwck + zckwsk)

= 2
σ2

llr

(√
PTsdkcos(φc) − Nc1ksin(φc) − Ns1kcos(φc)

)

where σ2
llr = PT 2

s /(2Es/No).
An “extrinsic” LLR feedback mechanism was employed

in which prior LDPC inputs are subtracted from current

outputs before new inputs (from the most recent PLL up-

date) are added. Also, state information in the decoder (in

particular the most recent extrinsic information arriving from

check-nodes) is preserved between LDPC-to-PLL-to-LDPC

iterates. The accumulator in Fig. 2 implements the first order

transfer function

H(z) =
Kp + Kiz

−1

1 − z−1

where Kp = 10−6 and Ki = 10−8 were selected.

The bit and frame error rate performance of the system

are shown in Fig. 4 for different update schedules between
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Fig. 4. IRCS BER/FER performance with a maximum of (a) 20 and (b) 50 LDPC iterations.

the decoder and the PLL circuit and for two cases of phase

error φc. Simulations with φc = 0 and φc = π/4 represent

cases of minimum and maximum initial phase error. Cases

with φc = 0 are not shown in the figure since they always

achieve the same performance as the stand-alone code. All

other initial phase offsets have error rate performance that

lies between these two cases. The total number of LDPC

iterations was set to either 20 or 50. The set of curves labeled

(20-20) and (50-50) shows the error rate performance when a

decoder iteration is followed by a PLL update. An alternative

schedule (20-10) and (50-25) where a PLL update is done

after two decoder iterations is also shown.

A plot of loop SNR, 1/σ2
φc

(the inverse of the measured

average squared estimation error), as a function of the

number of iterations where φc = 0 and φc = π/4 is

shown in Fig. 5 in conjunction with (50-25) scheduling (up

to 50 LDPC iterations, with PLL updates on every other

iteration). Fig. 5(b) explicitly shows the difference in loop

SNR between the two cases in Fig. 5(a). Note that steady

state operation is reached after 40 iterations when φc = 0 and

SNR varies between 1 and 2 dB. Up to 10 more iterations

are required when the initial error is φc = π/4. Note that

even with these additional iterations, the loop SNR does not

quite reach the levels observed in the in φc = 0 case. This

marginal degradation in loop-SNR explains the small (< 0.1
dB) performance loss in BER/FER performance in Fig. 4(b).

Fig. 5 also shows that in the case of only 20 iterations (for

either initial phase offset) the PLL has not reached steady

state. The associated loss BER/FER in performance is shown

in Fig. 4(a) where at a frame error rate of 10−3 the (20-10)

schedule loses 0.15 dB and the (20-20) schedule loses 0.07

dB.

Note the curious performance in Fig. 5(a) of the zero-

phase offset case during the first 10 LDPC iterations. In this

region the PLL’s phase estimate (which is initially correct) is

highly noised by poor initial LDPC soft-symbol estimates.

Both LDPC soft-symbol estimates and loop-SNR begin to

improve dramatically after the 10th iteration.

We conclude this section by noting that phase ambiguity

(for offsets greater than ±π/2 can be resolved by first

measuring the average power across a single codeblock of

the signals zc and zs. If the sine component (zc) has average

power greater than the cosine component (zs), then these

two components are swapped. This procedure may leave

(or induce) a remaining error of π radians. To resolve this

ambiguity we run a single PLL pass followed by several

(up to 4) LDPC iterations. The orientation that produces the

maximum number of satisfied odd-degree check equations is

selected and the decoding procedure is reinitialized 4. Similar

techniques are proposed in [10], [11].

VII. CONCLUSIONS

We have demonstrated a means for improving the carrier

synchronization function for iterative decoded BPSK using

information derived from the decoder extrinsics to remove

the modulation (information-reduction) prior to the carrier

tracking operation. The motivation for doing this is to

overcome the penalty in noisy reference loss attributed to

the large squaring loss at low SNRs that is characteristic

of the traditional BPSK carrier sync loops such as the

Costas-type loop. In comparison to the information-reduced

carrier synchronization loop with hard decision feedback as

proposed in [1] and [2], the scheme described in this work

makes use of soft decision extrinsic information and does not

require estimating the decoder error probability. This occurs

as a consequence of the assumption here of a fixed carrier

synchronization structure, i.e., a PLL, whose design does not

4Even degree checks remain satisfied under a rotation of all inputs by π.
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Fig. 5. IRCS Loop SNR Performance.

change with knowledge obtained from the decoder. While

in the soft decision feedback case considered here such a

structure would only be asymptotically optimum (in the MAP

motivation sense) at high SNR, it nevertheless provides a

simple yet performance efficient carrier synchronization loop

in SNR regions of interest for coded applications.
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