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Abstract—This paper focuses on controlling the absorbing set
spectrum for a class of regular LDPC codes known as separable,
circulant-based (SCB) codes. For a specified circulant matrix,
SCB codes all share a common mother matrix, examples of which
are array-based LDPC codes and many common quasi-cyclic
codes. SCB codes retain the standard properties of quasi-cyclic
LDPC codes such as girth, code structure, and compatibility with
efficient decoder implementations. In this paper, we define a cycle
consistency matrix (CCM) for each absorbing set of interest in
an SCB LDPC code. For an absorbing set to be present in an
SCB LDPC code, the associated CCM must not be full column-
rank. Our approach selects rows and columns from the SCB
mother matrix to systematically eliminate dominant absorbing
sets by forcing the associated CCMs to be full column-rank. We
use the CCM approach to select rows from the SCB mother
matrix to design SCB codes of column weight 5 that avoid all
low-weight absorbing sets (4, 8), (5, 9), and (6, 8). Simulation
results demonstrate that the newly designed code has a steeper
error-floor slope and provides at least one order of magnitude
of improvement in the low error rate region as compared to an
elementary array-based code.

I. INTRODUCTION

It is well known that finite-length low-density parity-check
(LDPC) codes suffer performance degradation in the high
signal-to-noise ratio (SNR)/low frame error rate (FER) region.
This degradation is commonly referred to as the error floor.
Prior work indicated that certain sub-graphs called trapping
sets [1], and, in particular, a subset of trapping sets called
absorbing sets [2] are a primary cause of the error floor.
Absorbing set is a particular type of a trapping set that is stable
under bit-flipping decoding. This paper improves performance
by controlling absorbing sets for a class of regular LDPC
codes, known as separable circulant-based (SCB) codes, that
are constructed as an arrangement of circulant matrices.

Recent papers have proposed methods to lower the error
floor by improving the absorbing set (or trapping set) spec-
trum. For example, small trapping sets can be avoided by
introducing additional check nodes [3], or by increasing the
girth [4]. The algorithm in [5] constructs quasi-cyclic codes
from Latin squares so that the Tanner graph of the code does
not contain certain trapping sets. Recent results [6], [7], [8]
have also investigated the errors floor of certain practical codes
in terms of their trapping/absorbing sets.

A recently proposed approach [9], [10] avoids certain dom-
inant absorbing sets without compromising code properties
by carefully selecting the rows/columns of the (SCB) mother
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matrix. This paper builds upon the cycle consistency matrix
(CCM) approach [11] to analyze SCB codes with column
weight 5, i.e., codes with five rows of circulant submatrices.

For an absorbing set to be present in an SCB LDPC
code, the associated CCM must not be full column-rank.
Furthermore, analysis of the variable-node graph for a variety
of absorbing sets reveals that the existence of certain absorbing
sets is a necessary condition for other (larger) absorbing sets
to exist. Using these two observations, this paper analyzes the
smallest absorbing sets in r=5 SCB codes, and systematically
avoids these absorbing sets by selecting rows from the SCB
mother matrix that force the associated CCMs to be full
column-rank. FPGA simulation results confirm that the new
codes have significantly steeper error-floor slopes .

As a representative instance of SCB codes, Tanner-
construction codes [12] with moderate rates are analyzed. It
is shown that these codes can have improved absorbing set
spectra by carefully avoiding the smallest absorbing sets with
suitable code parameter selection.

Section II describes separable circulant-based (SCB) codes
and the cycle consistency matrix (CCM). Section III applies
the CCM approach to analyze three groups of dominant
absorbing sets in an example family of SCB codes. Section III
then selects specific rows from the SCB mother matrix to
eliminate all the dominant absorbing sets by forcing the
associated CCMs to be full column-rank. Section III also
analyzes the absorbing set spectrum of Tanner-construction
codes and provides several good row-selection functions. Sec-
tion IV provides hardware simulation results demonstrating
the performance improvement obtained with the new codes.
Section V delivers the conclusions.

II. DEFINITION AND PRELIMINARIES

This section introduces separable, circulant-based (SCB)
codes and the cycle consistency matrix (CCM) associated with
absorbing sets in SCB codes.

A. Circulant-based LDPC codes

Circulant-based LDPC codes are a family of structured
regular (r, c) codes where r is the variable node degree and c
is the check node degree. They are constructed as r rows and
c columns of circulant matrices. They are especially amenable
to high-throughput hardware implementations [13].

The parity-check matrix of circulant-based LDPC codes has



the following general structure:

Hr,c
p,f =


σf(0,0) σf(0,1) σf(0,2) . . . σf(0,c−1)

σf(1,0) σf(1,1) σf(1,2) . . . σf(1,c−1)

σf(2,0) σf(2,1) σf(2,2) . . . σf(2,c−1)

...
...

... . . .
...

σf(r−1,0) σf(r−1,1) σf(r−1,2) . . . σf(r−1,c−1)

 ,

where σ is a p× p circulant matrix.
A column (row) group is a column (row) of circulant

matrices. Each variable node has a label (j, k) with j ∈
{0, ..., c − 1} being the index of the corresponding column
group and k ∈ {0, ..., p − 1} identifying the specific column
within the group. Similarly, each check node has a label (i, l)
where i ∈ {0, ..., r − 1} and l ∈ {0, ..., p− 1}.

Circulant-based LDPC codes include, for example, the con-
structions in [12], [14] and [15]. The girth can be guaranteed
to be at least 6 by placing a constraint on the values of the
submatrix exponent f(i, j) [2].

This paper focuses on separable, circulant-based (SCB)
codes defined as follows:

Definition 1 (Separable, Circulant-Based (SCB) Code):
An SCB code is a circulant-based LDPC code with a
parity-check matrix Hr,c

p,f in which f(i, j) is separable, i.e.,
f(i, j) = a(i) · b(j). �

Parity check matrices of SCB codes with the specified
circulant matrix can be viewed as originating from a common
SCB mother matrix Hp,p

p,fm
with fm(i, j) = i · j. The functions

a(i) and b(j) effectively specify which rows and columns of
the mother matrix are selected for the resultant SCB matrix.
The ranges of a(i) and b(j) are {0, . . . , p− 1}.

The SCB structure imposes four conditions [2] on the vari-
able and check nodes: (1) bit consistency (2) check consistency
(3) pattern consistency (4) cycle consistency. These conditions
are essential to the CCM approach that is introduced next.

B. Absorbing sets and the Cycle Consistency Matrix

An LDPC code with parity-check matrix H is often viewed
as a bipartite (Tanner) graph GH = (V, F,E), where the set V
represents the variable nodes, the set F represents the check
nodes, and E corresponds to the edges between variable and
check nodes.

For a variable node subset Vas ⊂ V , let Gas = (Vas, Fas, Eas)
be the bipartite graph of the edges Eas between the variable
nodes Vas and their neighboring check nodes Fas. Let o(Vas) ⊂
Fas be the neighbors of Vas with odd degree (unsatisfied check
nodes) in Gas and e(Vas) ⊂ Fas be the neighbors of Vas with
even degree in Gas (satisfied check nodes). An (a, b) absorbing
set [2] Gas = (Vas, Fas, Eas) is a Tanner graph with a variable
nodes, b odd-degree check nodes, and with each variable node
having strictly fewer odd-degree neighbors than even-degree
neighbors.

Suppose there are n variable nodes in the absorbing set.
Let j1, . . . , jn be the column-group labels of these n nodes in
the SCB mother matrix. Define um = jm − j1,m = 2, ..., n
and u = [u2, ..., un]. For each cycle in the absorbing set, by
replacing the difference of j’s with the difference of u’s , we
can rewrite the cycle consistency equation as

t∑
m=2

(im−1 − im)um = 0 mod p, (1)

where 2t is the cycle length. Note that im will be different for
different cycles reflecting the particular cycle trajectories.

Every cycle in the absorbing set satisfies an equation of the
form (1). Taken together, these equations produce a matrix
equation: Mu = 0 mod p, where Mym is the coefficient of
um in (1) for the yth cycle.

A key property of M is that Mu = 0 mod p completely
characterizes the requirement that every cycle in Gas satisfies
(1). Even so, it is not necessary for M to include a row for
every cycle in the absorbing set.

A cycle need not be included in M if it is a linear
combination of cycles already included in M. Thus the number
of rows needed in M is the number of linearly independent
cycles in Gas. Two definitions [16] from graph theory are
necessary to establish the number of linearly independent
cycles in Gas and hence how many rows are needed for M.

Definition 2 (Incidence Matrix): For a graph with n ver-
tices and q edges, the (unoriented) incidence matrix is an n×q
matrix B with Bij = 1 if vertex vi and edge xj are incident
and 0 otherwise. �

Definition 3 (Binary Cycle Space): The binary cycle space
of a graph is the null space of its incidence matrix over GF (2).
�

Any absorbing-set bipartite graph Gas can be transformed
into a graph whose only vertices are Vas and where two vertices
are connected iff there is a check node that connects them. We
call this graph the variable-node (VN) graph of the absorbing
set. The incidence matrix of the VN graph provides a char-
acterization of all the cycles in an absorbing set. The number
of linearly independent cycles in an absorbing set, which is
the dimension of its binary cycle space, is the size of the null
space of the incidence matrix Bas: Dbcs = |Eas| − rank(Bas).

Having established the number of rows in M, it can be
formally defined as the Cycle Consistency Matrix:

Definition 4 (Cycle Consistency Matrix): The cycle consis-
tency matrix M of an absorbing-set graph Gas has |Vas| − 1
columns and Dbcs rows. The rows of M correspond to
Dbcs linearly independent cycles in Gas. Each row has the
coefficients of u in (1) for each of these linearly independent
cycles. �

Note that M · u = 0 mod p completely characterizes the
requirement that every cycle in Gas satisfies (1).

The vector u cannot be an all-zero vector because an all-
zero u indicates that all variable nodes have the same column
group. This violates the Check Consistency condition, which
requires that variable nodes sharing a check node have distinct
column groups. Thus u 6= 0, and a necessary condition for the
existence of a given absorbing set is that its M does not have
full column-rank in GF (p).

If the VN graph of the absorbing set GA
as is a sub-graph

of the VN graph of another absorbing set GB
as with the same

number of variable nodes, then we say the VN graph of the
absorbing set GA

as is extensible.



Theorem 1: Given a proposed absorbing set graph Gas =
(Vas, Fas, Eas), where every variable node is involved in at least
one cycle1, specified column group labels of the variable nodes
in Vas in the SCB mother matrix, and specified row-group
labels of the check nodes in Fas in the SCB mother matrix, the
following are necessary conditions for the proposed absorbing
set to exist in each daughter SCB LDPC code (with a parity
check matrix H that includes the specified row and column
groups of that SCB mother matrix): (1) The CCM for Gas does
not have full column-rank; (2) Variable nodes in Vas satisfy the
Bit Consistency condition and can form a difference vector u
in the null space of the CCM; and (3) Each check node in
Fas satisfies the Check Consistency condition. Taken together,
these conditions are also sufficient if the VN graph of this
absorbing set is not extensible.

Proof: The proof is deferred to Appendix VI-A. �
Corollary 1: Given an (a1, b1) absorbing set graph G1

as =
(V 1

as , F
1
as, E

1
as) and an (a2, b2) absorbing set graph G2

as =
(V 2

as , F
2
as, E

2
as), if a1 ≤ a2 and the VN graph of G1

as is a sub-
graph of the VN graph of G2

as, then the existence of G1
as is a

necessary condition of the existence of G2
as.

Proof: Appendix VI-B provides the proof. �

III. ILLUSTRATIVE CASE STUDY WITH r = 5

The approach in [9] reveals that a careful selection of r
row-groups from the SCB mother matrix can eliminate certain
small absorbing sets to improve the error floor. This section
provides an example with r = 5 (five row groups) that shows
how to use the new CCM approach to efficiently improve an
SCB code by analytically avoiding low-weight absorbing sets
with careful row selections.

Our example of SCB code design involves three classes of
SCB codes: (1) Array-based codes [17]: the most elementary
SCB codes in which the first r rows of the SCB mother matrix
Hp,p

p,f , f(i, j) = i · j comprise the parity-check matrix. We
will refer to this class as the elementary array-based (EAB)
codes. (2) Selected-row (SR) SCB codes: the parity-check
matrix for these codes is Hr,p

p,f , f(i, j) = a(i) · j where a(i)
is called the row-selection function (RSF). (3) Shortened SR
(SSR) SCB codes: the parity-check matrix for these codes is
Hr,c

p,f , f(i, j) = a(i) · b(j) where b(j) is called the column-
selection function (CSF).

Theorem 1 shows that an absorbing set may be avoided
either by forcing the associated CCM to be full column rank or
by precluding u from being in the null space of M. Corollary 1
shows that if an absorbing set does not exist, then all absorbing
sets whose VN graphs contain the VN graph of this absorbing
set also do not exist. The CCM approach carefully selects the
RSF and CSF to systematically eliminate small absorbing sets,
in the order of the size of the VN graph of the absorbing sets.

Prior results [18] prove (4, 8) absorbing sets to be the
smallest possible for a general r=5 SCB code family and
to dominate the low BER region [13]. Hardware simulation

1 If the variable node degree is at least 2, then each variable node in a
given absorbing set must be a part of at least once cycle.
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Fig. 1: Depiction of absorbing sets.
results in [9] show that the next two dominant absorbing sets
in r=5 EAB codes or SR SCB codes are (5, 9) and (6, 8).

Careful selection of the RSF via the CCM approach suc-
cessfully avoids all (4, 8), (5, 9), and (6, 8) absorbing sets.
Sections III-A, III-B, and III-C, respectively, show that (4, 8),
(5, 9), and (6, 8) absorbing sets exist in the EAB SCB code
with r=5 but also that SR SCB codes can systematically
eliminate these configurations with a carefully selected RSF.
Section III-D provides example RSFs that eliminate small
absorbing sets with r=5. Section III-E explores the absorbing
set spectrum of the existing quasi-cyclic LDPC codes with the
Tanner construction [12].

A. (4, 8) absorbing sets

A result in [18] shows that (4, 8) absorbing set in Fig. 1a is
the smallest absorbing set in the H5,p

p,f(i,j) code family, and [9]
shows that certain RSFs eliminate the (4, 8) absorbing sets
in SR SCB codes. This section uses the CCM approach to
efficiently establish necessary and sufficient conditions for the
existence of (4, 8) absorbing sets.

Lemma 1: detM = 0 mod p is a necessary and sufficient
condition for the existence of (4, 8) absorbing sets in Fig. 1a.

Proof : Appendix VI-C provides the proof. �
Corollaries 2 and 3 restate Lemmas 1 and 2 of [9]. The

CCM approach concisely proves these corollaries in Appendix
VI-D.

Corollary 2: (4, 8) absorbing sets exist in EAB codes de-
scribed by the parity check matrix H5,p

p,i·j , and their number
scales as Θ(p3).

Corollary 3: There are no (4, 8) absorbing sets in the SR
SCB codes described by the parity check matrix H5,p

p,a(i)·j , for
prime p large enough with a proper choice of RSF.

Remark 1: The SR SCB codes avoid (4, 8) absorbing sets
by carefully choosing RSF such that detM 6= 0 mod p for p
large enough. One such RSF is [0, 1, 2, 4, 6], and the resulting
SR SCB codes avoids (4, 8) absorbing sets for prime p > 23.

B. (5, 9) absorbing sets

Assuming an RSF that avoids the (4, 8) absorbing sets, this
section proves that the (5, 9) absorbing sets are the smallest
remaining. The CCM approach shows that the (5, 9) absorbing
sets always exist in the EAB SCB codes, but are avoided for
SR SCB codes by some of the RCFs that precluded the (4, 8)
absorbing sets.



Lemma 2: Assuming (4, 8) absorbing sets do not exist,
(5, b) absorbing sets also do not exist for b < 9.

Proof: Appendix VI-E provides the proof. �
Corollary 4: Assuming (4, 8) absorbing sets do not exist,

the (5, 9) absorbing set is the smallest absorbing set.
Proof: Appendix VI-F provides the proof. �
Lemma 3: detM = 0 mod p is necessary and sufficient

for the existence of (5, 9) absorbing sets in Fig. 1b.
Proof: Appendix VI-G provides the proof. �
Appendix VI-H shows that the number of (5, 9) absorbing

sets in the EAB codes scales as Θ(p3). However, with a
proper choice of RSF, detM 6= 0 mod p for p large enough.
Therefore we can conclude with the following two corollaries.

Corollary 5: (5, 9) absorbing sets exist in EAB codes de-
scribed by the parity check matrix H5,p

p,i·j , and their number
scales as Θ(p3).

Corollary 6: There are no (5, 9) absorbing sets in the SR
SCB codes described by the parity check matrix H5,p

p,a(i)·j , for
prime p large enough with a proper choice of RSF.

Proof: For SR SCB codes, it is sufficient to select RSF
such that (7) in Appendix VI-G does not evaluate to zero.
One such example is [0, 1, 2, 4, 7], where it is sufficient for
the prime p > 89 and not be in the set {101, 103, 131, 179}.
Therefore in the SR SCB code there is no (5, 9) absorbing set
if p is sufficiently large and an appropriate RCF is chosen. �

C. (6, 8) absorbing sets

This section considers the (6, 8) absorbing sets, which are
the smallest remaining after the (4, 8) and (5, 9) absorbing
sets. We will investigate the (6, 8) absorbing sets both for
EAB codes and for SR-SCB codes that preclude the (4, 8)
and (5, 9) absorbing sets. For the six candidate configurations
of (6, 8) absorbing sets, all satisfied checks have degree 2
and all unsatisfied checks have degree 1 in the absorbing
set graph. Combinatorial and consistency arguments show
that four of these six configurations are not present for p
sufficiently large in either the EAB code or in SR-SCB
codes that preclude the (4, 8) and (5, 9) absorbing sets. The
remaining two configurations have the cardinality Θ(p3) in
the EAB code. However, both of these configurations contain
a (4, 8) absorbing set as a subset and thus cannot be present
in SR-SCB codes that preclude the (4, 8) absorbing sets.

1) (6, 8) configuration 1 - check nodes with degree>2:
Lemma 4: For H5,p

p,i·j and p sufficiently large, there are no
(6, 8) absorbing sets for which a check node connects to more
than two variable nodes in the absorbing set graph.

Proof: Appendix VI-I provides the proof. �
Therefore attention is restricted to the case where all check

nodes in the absorbing set graph have degree at most 2.
In a candidate (6, 8) absorbing set, variable nodes can have

3, 4 or 5 satisfied checks. By the girth constraint, there can
be at most 2 variable nodes with 5 satisfied checks. Suppose
there are two such variable nodes. Since there are a total of 8
unsatisfied checks, the other 4 variable nodes must each have
3 satisfied and 2 unsatisfied checks. This necessarily implies
the configuration shown in Fig. 2 which we discuss next.

(j1,k1) (j2,k2)

(j3,k3)(j6,k6) (j5,k5) (j4,k4)

Fig. 2: (6, 8) configuration candidate 2.

2) (6, 8) configuration candidate 2 - Fig. 2: Since the
configuration in Fig. 2 has two overlapping (4, 8) absorbing
sets, the existence of this (6, 8) absorbing set relies on both
CCM determinants of these two (4, 8) absorbing sets that share
an edge. Therefore with a proof similar to that of Lemma 1,
we can show the following result:

Lemma 5: The necessary and sufficient condition for the
existence of (6, 8) absorbing sets in Fig. 2 is detM1 = 0
mod p and detM2 = 0 mod p, where M1 and M2 are
CCMs of the two internal (4, 8) absorbing sets.

We can also prove that there are p2(p− 1) such absorbing
sets in the EAB codes with any prime p. The proof is shown
in Appendix VI-J.

Similarly, the following corollaries are consequences of
Corollary 2 and 3.

Corollary 7: The (6, 8) absorbing sets in Fig. 2 exist in
EAB codes described by the parity check matrix H5,p

p,i·j , and
their number scales as Θ(p3).

Corollary 8: There are no (6, 8) absorbing sets in Fig. 2
in the SR SCB codes described by the parity check matrix
H5,p

p,a(i)·j , for prime p large enough with proper choice of RSF.
Suppose now that there is exactly one variable node in the

absorbing set having all five checks satisfied. The variable
nodes in the absorbing set must necessarily be arranged either
as in Fig. 5 or Fig. 6.

Similar analysis of (6, 8) configuration candidates 3 to 6 is
shown in Appendix VI-K, VI-L, VI-M and VI-N respectively.

D. Non-existence of (4, 8), (5, 9) or (6, 8) absorbing sets in
SR SCB codes with a well-chosen RSF

The following is a consequence of Lemma 1 to Lemma 10,
and Corollary 3 to Corollary 11.

Theorem 2: In the EAB SCB code the number of (4, 8),
(5, 9) and (6, 8) absorbing sets scales as Θ(p3) whereas in
an SR SCB code with a well-chosen RSF there are no (4, 8),
(5, 9) or (6, 8) absorbing sets for sufficiently large p.

Remark 2: For small p’s, (4, 8), (5, 9) and (6, 8) absorbing
sets cannot be eliminated simultaneously for the SR SCB
codes. Since there are 3 equivalence classes of SR codes [10],
we only need to consider the RSF that contains 0 and 1. Here
are a few good RSFs for p > 61 that eliminate all (4, 8),
(5, 9) and (6, 8) absorbing sets: (1) [0, 1, 2, 4, 17] for p = 67
(2) [0, 1, 2, 3, 11] for p = 73 (3) [0, 1, 2, 6, 7] for p = 79 (4)
[0, 1, 2, 3, 7] for p = 83, 97, 101, 103, 107, 109, 113, 127 (5)
[0, 1, 2, 4, 11] for p = 89 (6) [0, 1, 2, 4, 7] for p > 179.
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and SR SCB LDPC codes.

E. Absorbing set spectrum in the Tanner construction

We can easily extend our analysis to the Tanner construction
in [12], which is an example of SSR SCB codes.

Lemma 6: In the Tanner graph corresponding to quasi-
cyclic LDPC H5,p

p,f̃(i,j)
in [12], no (4, 8) or (6, 8) absorbing

set exists with parameters selected in Table I of [12].
Proof: Proof is shown in Appendix VI-O. �
Remark 3: This code has a good absorbing set spectrum

and thus will have low error floor as expected. Moreover,
the analysis can be easily extended to the quasi-cyclic codes
constructed in [14], which have the first sub-row and first sub-
column as identity matrices.

Note that the codes listed in Table I of [12] are mostly
moderate-rate codes. However, for higher rates, the Tanner
construction may introduce smaller absorbing sets [11]. These
absorbing sets can also be avoided by a carefully chosen CSF
that precludes the u from the null space of M.

IV. RESULTS

In this section we experimentally demonstrate performance
improvement with well-designed SR codes. In simulations, we
use 200 iterations and a Q4.2 fixed-point quantization with 4,
resp. 2, bits to represent integer, resp. fractional, values. We
simulate sum-product algorithm [13] on an FPGA platform.

We simulated a pair of longer block length codes contrasted
in Fig. 3. The performance improvement of the SR-SCB
code is due to the elimination of the (4, 8), (5, 9) and (6, 8)
absorbing sets with a proper choice of the RSF. (Here the
SR-SCB code’s RSF is [0, 1, 2, 4, 17].) We observe that in the
error profile as shown in Table I the (4, 8), (5, 9) and (6, 8)
absorbing sets are completely eliminated in the SR SCB code.

Row selection alone cannot avoid the next smallest ab-
sorbing sets, which are the (6, 10). Each of these (6, 10)
absorbing sets exists if and only if the corresponding subset
(6, 4) absorbing set studied in [10] exists. As shown in [10],
these (6, 4) absorbing sets cannot be eliminated only with row
selection. However, [10] also shows that these absorbing sets
can be precluded by column selection.

TABLE I: Error profiles for the EAB SCB (4489, 4158), code
(top), and the SR SCB code (bottom). n.e. is the number of
collected errors.

SNR n.e. (4,8) (5,9) (6,8) (6,10) (7,9) (7,11) (8,6) (8,8) (8,10)
5.6dB 150 67 17 22 7 6 5 6 6 3
5.8dB 139 83 18 16 6 5 1 3 3 1
6.0dB 131 77 18 22 5 1 1 2 1 1
6.2dB 107 85 10 5 4 2 0 0 0 0

SNR n.e. (4,8) (5,9) (6,8) (6,10) (7,9) (7,11) (8,6) (8,8) (8,10)
5.6dB 106 0 0 0 25 15 6 15 13 6
5.8dB 140 0 0 0 35 29 14 16 6 8
6.0dB 60 0 0 0 25 7 5 9 5 3

V. CONCLUSION

This paper presents a detailed analysis of the absorbing
set spectrum of a class of LDPC codes based on circulant
matrices. Using the cycle consistency matrix description of the
dominant absorbing sets we characterized code performance
and provided tools for a systematic code design. Simulation
results in low FER region support the proposed methodology.
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VI. APPENDIX

A. Proof of Theorem 1
Each of the three conditions has already been shown to be a

necessary condition for the existence of Gas in an SCB. If all
of these three conditions are satisfied, all the cycles presented
in the CCM exist in GH and any linear combination of these
cycles exists in GH as well. The only issue is whether the ex-
isting graphical structures have additional linearly independent
cycles not required by the CCM. There are only three ways for
this to happen: (1) a variable node’s unsatisfied check node is
the same as another variable node’s unsatisfied check node, or
(2) a variable node’s unsatisfied check node is the same as one
satisfied check node in the graph, or (3) two of the satisfied
check nodes are the same. In each of these cases, additional
edges extend the VN graph. For this to be possible, the original
VN graph must be extensible as defined above. Thus if the VN
graph is not extensible, the above constructed solution fully
describes the existence of the proposed absorbing set. This
concludes that Gas is present in GH .

B. Proof of Corollary 1
Suppose the CCMs of G1

as and G2
as are M1 and M2

respectively. If the VN graph of G1
as is a sub-graph of the

VN graph of G2
as, the independent cycles of G1

as will also be
independent in G2

as and thus M1 could be a sub-matrix of M2:

M2 =

[
M1 0
A B

]
. (2)

Therefore if there exists a valid u2 such that M2u2 = 0
mod p, the first a1 elements would also be a valid u1 such
that M1u1 = 0 mod p. This concludes that the existence of
G1

as is a necessary condition of the existence of G2
as.

C. Proof of Lemma 1
Since the VN graph of the (4, 8) absorbing sets is a fully

connected graph, it is not extensible without introducing a
length-4 cycle in the corresponding bipartite graph. According
to Theorem 1, detM = 0 mod p is a necessary condition
since it implies the M is not full column-rank, and it is a
sufficient condition if bit consistency and check consistency
are both satisfied. We can verify both of these conditions by
carefully constructing a solution in the null space of M.

Since the binary cycle space for Fig. 1a has dimension 3,
we construct the following CCM by selecting the following 3
linearly independent cycles: v1 − v2 − v3, v1 − v2 − v4, v1 −
v3 − v4:

M =

 i1 − i2 i2 − i5 0
i1 − i6 0 i6 − i4

0 i5 − i3 i3 − i4

 . (3)

If detM ≡ 0 mod p, there exists a non-zero solution to
M · u ≡ 0 mod p, where u = [u2, u3, u4]T . Without
loss of generality, suppose u2 6= 0. With check consistency,
i1−i2 6= 0,i2−i5 6= 0, and i1−i2 6= i2−i5. Thus u3 6= 0 and
u2 6= u3. Similarly u4 6= 0, u2 6= u4, and u3 6= u4. Then, for a
fixed j1, we can find j2, j3, and j4 without contradiction to the
bit consistency. With any specific k1 values, we can find (4, 8)
absorbing sets in the code. Therefore detM ≡ 0 mod p is a
sufficient condition for the existence of (4, 8) absorbing sets.

D. Proof of Corollary 2 and Corollary 3

From the proof in Appendix VI-C, detM ≡ 0 mod p is a
necessary and sufficient condition for the existence of (4, 8)
absorbing sets.

Under the bit consistency and check consistency, there
are only two possible non-isomorphic check labelings
[9]: (i1, i2, i3, i4, i5, i6) to be either (x, y, x, y, z, w) for
{x, y, z, w} ⊂ {0, 1, 2, 3, 4} (assignment 1) or (x, t, w, y, z, z)
(assignment 2). Thus detM ≡ 0 mod p implies the follow-
ing necessary and sufficient conditions for the existence of a
(4, 8) absorbing set result:

(z − x)(w − y) + (z − y)(w − x) ≡ 0 mod p , (4)

for assignment 1, and

(z−w)(x−t)(y−z)−(y−w)(x−z)(z−t) ≡ 0 mod p , (5)

for assignment 2.
For EAB codes {x, y, z, w, t} = {0, 1, 2, 3, 4}, in

the former case, in fact one can show there are no
solution sets for prime p large enough (p > 17). For
the latter case there are 8 solution sets (x, y, z, w, t) ∈
{(4, 3, 2, 0, 1), (4, 1, 2, 0, 3), (3, 4, 2, 1, 0), (3, 0, 2, 1, 4),
(1, 4, 2, 3, 0), (1, 0, 2, 3, 4), (0, 3, 2, 4, 1), (0, 1, 2, 4, 3)} that
always evaluate to zero on the left-hand side of equation (5).
These numerical solutions are in fact symmetric so that once
the labels of the check nodes are selected (cf. Fig. 1a), the
variable node labels (pairs (j1, k1) through (j4, k4)) can be
selected in Θ(p3) ways, thereby completely characterizing
the absorbing set of interest.

We say that an absorbing set is fully absorbing set if, in
addition, all variable nodes outside the absorbing set have
more satisfied than unsatisfied checks.

Then the above (4, 8) absorbing set is always a (4, 8) fully
absorbing set since otherwise there would exist a variable node
(j5, k5) outside the absorbing set incident to at least three
of the checks labeled i7 through i14. Such a configuration
would either violate the girth constraint, or it would imply
the existence of a new configuration spanning four variable
nodes (these being the node (j5, k5) and three variable nodes
from the starting (4, 8) absorbing set). These four variable
nodes would necessarily be connected such that their common
constraint is given in (4), previously shown to not hold for
large enough p.

To avoid this absorbing set we need to force the determinant
of the CCM to be nonzero. It is sufficient to assign values
to a(i) such that the selected labels for the check nodes
i1 through i6 do not satisfy equations (4) and (5). One
such example is (i, a(i)) ∈ {(0, 0), (1, 1), (2, 2), (3, 4), (4, 6)}.
Therefore in the SR SCB code there is no (4, 8) absorbing set
for large enough p.

E. Proof of Lemma 2

Since the total edge number is odd and the number of
edges that go to satisfied check nodes is even, b can only
be odd. Thus if b < 9, b can only choose values from



{1, 3, 5, 7}. For these b values, the corresponding VN graph
will always contain the VN graph of (4, 8) absorbing sets
without introducing a length-4 cycle in the bipartite graph.
By Corollary 1, the (5, b) absorbing sets with b < 9 do not
exist if (4, 8) absorbing sets are absent.

F. Proof of Corollary 4

Since the number of edges that go to unsatisfied check nodes
is at most 10 and b is odd, the only possible (5, b) absorbing
set is (5, 9) absorbing set in the absence of (4, 8) absorbing
sets. Since the only possible configuration of a (5, 9) absorbing
set is one variable node that has 4 satisfied check nodes and
four variable nodes that have 3 satisfied check nodes. Fig. 1b
depicts this configuration, which has a VN graph that does
not contain the VN graph of (4, 8) as a sub-graph. Therefore
we can use Lemma 3 to build the necessary and sufficient
condition of this absorbing set.

G. Proof of Lemma 3
The binary cycle space for Fig. 1b has dimension 4. We

construct the following CCM by selecting the following lin-
early independent cycles: v1− v2− v3, v1− v2− v5, v1− v3−
v4, v1 − v4 − v5:

M =

 i1 − i5 i5 − i2 0 0
i1 − i8 0 0 i8 − i4

0 i2 − i6 i6 − i3
0 0 i3 − i7 i7 − i4

 . (6)

Similarly to the proof of Lemma 1, we can show that
detM = 0 mod p implies the following necessary and
sufficient conditions for the existence of a (5, 9) absorbing
set, where

detM =(i1 − i5)(i8 − i4)(i2 − i6)(i3 − i7)

− (i1 − i8)(i5 − i2)(i6 − i3)(i7 − i4) mod p
(7)

H. Number of (5, 9) absorbing sets in EAB codes

Under the bit consistency and check consistency,
there are 5 possible non-isomorphic check labelings:
(i1, i2, i3, i4, i5, i6, i7, i8) to be (x, y, z, w, z, w, x, y),
(x, y, z, w, t, w, x, y), (x, y, z, w, t, w, x, z),
(x, y, z, w, t, x, t, y), or (x, y, z, w, t, w, t, y). For the
EAB for {x, y, z, w, t} ⊂ {0, 1, 2, 3, 4}. For the
4th case, there are 8 solution sets (x, y, z, w, t) ∈
{(4, 0, 1, 3, 2), (4, 0, 3, 1, 2), (3, 1, 4, 0, 2), (3, 1, 0, 4, 2),
(1, 3, 4, 0, 2), (1, 3, 0, 4, 2), (0, 4, 1, 3, 2), (0, 4, 3, 1, 2)} that
always evaluate to zero on the left-hand side of equation (7).
Once the labels of the check nodes are selected (cf. Fig. 1b),
the variable node labels (pairs (j1, k1) through (j5, k5)) can
be selected in Θ(p3) ways, thereby completely characterizing
the absorbing set of interest.

I. Proof of Lemma 4

For those (6, 8) absorbing sets with the property that a check
node connects to more than 2 variable nodes in the absorbing
set., the corresponding VN graph will always contain the VN
graph of (4, 8) absorbing sets without introducing a length-4
cycle in the bipartite graph. One such example is shown in
Fig. 4. Since this structure contains several (4, 8) absorbing

(j1,k1) (j2,k2) (j3,k3)

(j6,k6) (j5,k5) (j4,k4)

Fig. 4: (6, 8) configuration candidate 1.

sets, we establish a CCM for each (4, 8) absorbing set. If
the configuration in Fig. 4 were to exist, the CCMs of all
(4, 8) absorbing sets within this configuration would have zero
determinant, resulting in a set of conditions which cannot be
satisfied simultaneously for p large enough.

J. Proof of Lemma 5

We may start with the substructure spanning 4 variable
nodes (j1, k1), (j2, k2), (j5, k5) and (j6, k6). Recall that out
of six check nodes shared by these variable nodes, exactly
two have the same label (it being label “2”), and that there
is p2(p − 1) ways of assigning values of the variable nodes
and the check nodes in this substructure. By symmetry of
the configuration it suffices to consider the case when this
repeated label is the one corresponding to i5 and i10 and when
this repeated label corresponds to some other pair of parallel
edges. The latter case is not possible since the variable nodes
(j1, k1), (j2, k2), (j3, k3) and (j4, k4) themselves constitute
a (4, 8) absorbing set and there the propagation of the check
labels through the proposed configuration necessarily violates
the check label constraints. In the former case, by the bit
consistency constraints, the labeling of the checks incident
to (j3, k3) and (j4, k4) is unique for each of the nodes
(without assuming these two nodes themselves share an edge).
Moreover, for the independently selected values of (j3, k3)
and (j4, k4), we show by the pattern consistency constraint
that they indeed have a common check i10, itself labeled “2”.
As a result, once the values (j1, k1), (j2, k2), (j5, k5) and
(j6, k6) and their shared checks are pinned down – which can
be done in p2(p − 1) ways – the rest of the proposed (6, 8)
configuration follows uniquely. As a result, the cardinality of
(6, 8) absorbing sets of the type in Fig. 2 is p2(p− 1).

K. (6, 8) configuration candidate 3 - Fig. 5

Lemma 7: In the Tanner graph corresponding to H5,p
p,f(i,j)

for the EAB SCB and for the SR SCB code there are no (6, 8)
absorbing sets for p large enough of the type shown in Fig. 5.

Proof: Without loss of generality we may assign check node
labels for the checks emanating from the variable node (j3, k3)
as follows: i1 = x,i2 = y, i3 = z, i4 = w, and i5 = t, where
x, y, z, w, t are the five distinct check labels.



(j2,k2) (j3,k3)

(j1,k1)

(j6,k6) (j5,k5) (j4,k4)

Fig. 5: (6, 8) configuration candidate 3.

The binary cycle space for Fig. 5 has dimension 6. We con-
struct the following CCM by selecting the following linearly
independent cycles: v1−v2−v3, v1−v3−v6, v1−v2−v5, v1−
v3 − v4, v1 − v3 − v5, v1 − v2 − v4:

M =


x− i6 0 0 0 i6 − t

0 y − i9 0 0 i9 − t
x− i7 0 0 i7 − w 0

0 y − i11 i11 − z 0 0
0 y − i10 0 i10 − w 0

x− i8 0 i8 − z 0 0

 .
(8)

The rank of the matrix is at most 5 so if fact we may consider
the top-left 5 by 5 submatrix (call it B). If the matrix B is full
rank, the only solution is j1 = j2 = j3 = j4 = j5 = j6. Hence
det(B) = 0 is necessary for the existence of the absorbing sets
of this type. Such condition can be expressed as

− (i11 − z)[−(x− i6)(i9 − t)(i7 − w)(y − i10)

+ (x− i7)(i6 − t)(y − i9)(i10 − w)] ≡ 0 mod p.
(9)

Also consider the bottom-right 4 by 4 submatrix (call it A).
If the matrix A is full rank, the whole matrix will be rank 5,
which only have one solution as j1 = j2 = j3 = j4 = j5 =
j6. Hence det(A) = 0 is necessary for the existence of the
absorbing sets of this type. Such condition can be expressed
as

−(x− i7)(i10 − w)(y − i11)(i8 − z)
+(x− i8)(i7 − w)(i11 − z)(y − i10) ≡ 0 mod p.

(10)

For the values of i6, i7, i9, i10 and i11 in the set described
by f(i, j) for both the EAB SCB and for the SR SCB codes,
and such that the labels meeting at the same vertex are distinct
(see Fig. 5), the equation (9) and (9) evaluate to zero for only
finite number of values of the parameter p. For a(i) = i (EAB
SCB code) det(B) 6= 0 for p > 23. For the carefully designed
SR SCB code, the equation (9) and (9) also evaluate to zero
for only finite number of values of the parameter p. Thus for
the EAB SCB code and for the SR SCB code there are no
(6, 8) absorbing sets for p large enough of the type shown in
Fig. 5. �

(j2,k2) (j5,k5)(j6,k6)

(j3,k3) (j4,k4)

(j1,k1)

Fig. 6: (6, 8) configuration candidate 4.

Corollary 9: In the Tanner graph corresponding to
H5,p

p,f(i,j), (6, 8) absorbing sets of the type shown in Fig. 5
exist if and only if det(A) = 0 and det(B) = 0.

Proof: Since the rank of a matrix is lower-bounded by the
rank of its submatrix, and M has a submatrix

0 0 0 i9 − t
x− i7 0 i7 − w 0

0 i11 − z 0 0
0 0 i10 − w 0

 , (11)

which is a full-rank 4 by 4 matrix, the rank of M is no less
than 4.

If absorbing sets of the type in Fig. 5 exist, M is not full
column-rank, otherwise the equation only has one solution as
j1 = j2 = j3 = j4 = j5 = j6. With the fact that rank(M) ≥
4 and rank(M) < 5, we can have rank(M) = 4, which
implies det(A) = 0. (Otherwise M will have rank 5 with the
additional column.) Without loss of generality, we can consider
the bottom row of A is dependent of the other 3 rows, and
thus this row is redundant. Then rank(B) = rank(M) = 4,
which implies det(B) = 0.

If det(A) = 0 and det(B) = 0, without loss of generality,
we consider the bottom row of A is dependent of the other
3 rows and thus rank(B) = rank(M). Due to det(B) = 0,
M is not full rank and rank(M) < 5. With the fact that
rank(M) ≥ 4, we have rank(M) = 4 and there exist a non-
zero u such that equation (13) is satisfied. Each element of u
is non-zero, otherwise the u will be a zero vector.

This completes the proof of the corollary. �

L. (6, 8) configuration candidate 4 - Fig. 6

Lemma 8: In the EAB codes corresponding to H5,p
p,i·j , there

are no (6, 8) absorbing sets with the topology shown in Fig. 6
for p large enough.

Proof: The binary cycle space for Fig. 6 has dimension 6.
We construct the following CCM by selecting the following
linearly independent cycles: v1 − v2 − v3, v1 − v2 − v4, v1 −



(j1,k1)

(j5,k5)

(j6,k6)

(j2,k2)

(j3,k3)(j4,k4)

Fig. 7: (6, 8) configuration candidate 5.

v3 − v4, v1 − v3 − v6, v1 − v4 − v5, v1 − v5 − v6:

M =


i5 − i1 i1 − i3 0 0 0
i5 − i6 0 i6 − i4 0 0

0 i3 − i2 i2 − i4 0 0
0 i11 − i3 0 0 i7 − i11
0 0 i10 − i4 i8 − i10 0
0 0 0 i9 − i8 i7 − i9

 .
(12)

It suffices to consider the case when the labels
i1, i2, i3, i4, i5, i6 adopt the following assignment
(i1, i2, i3, i4, i5, i6) = (t, w, z, y, x, z) or when they are
(i1, i2, i3, i4, i5, i6) = (t, z, x, y, z, w)

Analogously to proof of Lemma 7), the M is not full
column-rank if detA 6= 0 mod p and detB 6= 0 mod p,
where A is the left-top 3 by 3 submatrix of M and B is the
right-bottom 4 by 4 submatrix of M. This constraint cannot
be satisfied for p > 41 for i1 to i11 taking values in the set
{0, 1, 2, 3, 4} and such that the bit consistency constraints are
satisfied for both labellings. �

Note that the variable-node of the configuration shown in
Fig. 6 is a subgraph of the VN graph of (4, 8) absorbing sets.
The following again is an easy consequence of Corollary 3.

Corollary 10: If (4, 8) absorbing sets are absent, the con-
figuration shown in Fig. 6 is not possible in the SR SCB code.

M. (6, 8) configuration candidate 5 - Fig. 7

In the remainder we consider the case when no variable
nodes in the absorbing set has all five satisfied checks. This
constraint implies configurations shown in Fig. 7 and Fig. 8.

Lemma 9: In the EAB codes corresponding to H5,p
p,i·j there

are Θ(p3) (6, 8) absorbing sets of the type shown in Fig. 7
for p large enough.

Proof: The binary cycle space for Fig. 6 has dimension 6.
We construct the following CCM by selecting the following
linearly independent cycles: v1 − v2 − v3, v1 − v2 − v4, v1 −

(j4,k4)

(j5,k5)

(j6,k6)

(j3,k3)

(j2,k2)
(j1,k1)

Fig. 8: (6, 8) configuration candidate 6.

v3 − v4, v1 − v3 − v6, v1 − v4 − v5, v1 − v5 − v6:

M =


i5 − i1 i1 − i3 0 0 0
i5 − i6 0 i6 − i4 0 0

0 i3 − i2 i2 − i4 0 0
0 i11 − i3 0 0 i7 − i11
0 0 i10 − i4 i8 − i10 0
0 0 0 i9 − i8 i7 − i9

 .
(13)

It suffices to consider the case when the labels
i1, i2, i3, i4, i5, i6 adopt the following assignment
(i1, i2, i3, i4, i5, i6) = (t, w, z, y, x, z) or when they are
(i1, i2, i3, i4, i5, i6) = (t, z, x, y, z, w)

Analogously to proof of Lemma 7), the M is not full
column-rank if detA 6= 0 mod p and detB 6= 0 mod p,
where A is the left-top 3 by 3 submatrix of M and B is the
right-bottom 4 by 4 submatrix of M. This constraint cannot
be satisfied for p > 41 for i1 to i11 taking values in the set
{0, 1, 2, 3, 4} and such that the bit consistency constraints are
satisfied for both labellings. �

As in the previous case, the variable-node of the configura-
tion shown in Fig. 7 is a subgraph of the VN graph of (4, 8)
absorbing sets. The following again is an easy consequence of
Corollary 3.

Corollary 11: If (4, 8) absorbing sets are absent, the con-
figuration shown in Fig. 7 is not possible in the SR SCB code.

N. (6, 8) configuration candidate 6 - Fig. 8

The last configuration we consider is the one in Fig. 8.
Lemma 10: In the Tanner graph corresponding to H5,p

p,f(i,j)

there are no (6, 8) absorbing sets for p large enough of the
type shown in Fig. 8 in neither the EAB SCB nor in the SR
SCB code.

Proof: The binary cycle space for Fig. 8 has dimension
6. We construct the CCM by selecting the following linearly
independent cycles: v1−v2−v3, v1−v2−v4, v1−v2−v5, v1−
v3 − v6 − v4, v1 − v5 − v6 − v4

M =


i8 − i2 0 i2 − i1 0 0

0 0 i1 − i4 i4 − i10 0
i6 − i2 i3 − i6 i2 − i3 0 0

0 i5 − i3 i3 − i4 i4 − i5 0
i9 − i6 i6 − i7 0 0 i7 − i9
i8 − i9 0 0 0 i9 − i11

 . (14)



The inspection of M reveals that rank(M) = 4 if and only
if det(A) = 0 and det(B) = 0, where

A =


i8 − i2 0 i2 − i1 0

0 0 i1 − i4 i4 − i10
i6 − i2 i3 − i6 i2 − i3 0

0 i5 − i3 i3 − i4 i4 − i5

 , (15)

B =


i8 − i2 0 i2 − i1 0 0

0 0 i1 − i4 i4 − i10 0
i6 − i2 i3 − i6 i2 − i3 0 0
i9 − i6 i6 − i7 0 0 i7 − i9
i8 − i9 0 0 0 i9 − i11

 .
(16)

Their determinants are
det(A) = (i8 − i2)[−(i1 − i4)(i3 − i6)(i4 − i5)

+(i4 − i10)((i3 − i6)(i3 − i4)− (i2 − i3)(i5 − i3))]
(17)

det(B) = (i4 − i10)[−(i8 − i2)(i9 − i11)(i2 − i3)(i6 − i7)
+(i2 − i1)((i6 − i2)(i6 − i7)(i9 − i11)

−(i3 − i6)((i9 − i6)(i9 − i11)− (i7 − i9)(i8 − i9)))]
(18)

Then in the similar manner of the proof of lemma 7, we
can show that the determinant of the corresponding matrix
evaluates to zero only in finitely many choices for p for either
selection of a(i). In particular for a(i) = i it suffices for p to
be > 29 and p 6= 41 for the configuration not to exist. �

O. Proof of Lemma 6
For the codes with girth greater than 6, both (4, 8) and (6, 8)

absorbing sets do not exist since these two sets contain cycle-
6. For the codes with girth = 6, we take p = 31, c = 5, r = 6

as an example, with b = 2, a = 6. Thus the H5,p
p,f(i,j) is a

sub-matrix of array code H̃5,p
p,f(i,j) with f(i, j) = m(i) · j

for (i,m(i)) ∈ {(0, 1), (1, 2), (2, 4), (3, 8), (4, 16)}. We
set up the system of equations as before. For (4, 8)
absorbing sets, the only possible labelling for p = 31 is
(i1, i2, i3, i4, i5, i6) = (x, t, w, y, z, z) and there are five
non-isomorphic solutions to the equation (z − w)(x− t)(y −
z) − (y − w)(x − z)(z − t) ≡ 0 mod p: (x, y, z, w, t) =
(2, 4, 1, 16, 8), (1, 8, 2, 4, 16), (1, 2, 4, 16, 8), (1, 4, 8, 2, 16),
(1, 2, 16, 8, 4). Each of the solutions corresponds to the matrix

R =

[
z − x x− t t− z 0
y − x x− z 0 z − y

]
(19)

such that R(j1, j2, j3, j4)T ≡ 0 mod p. Suppose the null
space of each matrix is Ni, 1 ≤ i ≤ 5. For any (4, 8)
absorbing set, (j1, j2, j3, j4) should be in ∪

1≤i≤5
Ni. Denote

Y = {1, 6, 5, 30, 25, 26}, which is the index of the sub-
columns in the quasi-cyclic code. (j1, j2, j3, j4) should also
be in ∪

i,j,k,l
(Y (i), Y (j), Y (k), Y (l)). However, in this case,

{ ∪
i,j,k,l

(Y (i), Y (j), Y (k), Y (l))} ∩ { ∪
1≤i≤5

Ni} = ∅. Thus

(4, 8) absorbing sets do not exist, and consequently (6, 8)
absorbing sets in Figs. 2, 6 and 7 also do not exist.

Similarly, the null space of equation (13) and (14)
in lemma 10 and 7 does not have intersection with
∪

i,j,k,l
(Y (i), Y (j), Y (k), Y (l)), which eliminates the possibil-

ity of existence of (6, 8) absorbing sets in Fig.5 and 8.


