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Abstract—This paper focuses on methods for a systematic
modification of the parity check matrix of regular LDPC codes
for improved performance in the low BER region (i.e., the error
floor). A judicious elimination of dominant absorbing sets strictly
improves the absorbing set spectrum and thereby improves the
code performance. This absorbing set elimination is accomplished
without compromising code properties and parameters such as
the girth, node degree, and the structure of the parity check
matrix. For a representative class of practical codes we substan-
tiate theoretical analysis with experimental results obtained in the
low BER region. Our results demonstrate at least an order of
magnitude improvement of the error floor relative to the original
code designs. Given that the conventional code parameters remain
intact, the new code can easily be implemented on the existing
software or hardware platforms employing high-throughput,
compact architectures. As such, the proposed approach provides
a step towards the improved code design that is compatible with
practical implementation constraints.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are defined on
sparse graphs, and are known to perform extremely well
in the moderate bit-error-rate (BER) region. In the lower
BER region, the signal-to-noise ratio (SNR) to BER curve
changes its slope resulting in a so-called error-floor. This
performance degradation is attributed to the suboptimality of
iterative decoding algorithms on graphs with cycles. Typically,
the decoder enters a non-codeword steady state from which it
cannot escape.

Several important works studied such non-codeword ob-
jects, including stopping sets [3], near-codewords [14], trap-
ping sets [19], and absorbing sets [28]. In particular, stopping
sets are well suited for the analysis on the binary erasure
channels [17]. Absorbing sets can be viewed as combinatorial
counterparts of the stopping sets for channels with additive
noise. Specifically, an absorbing set is a special type of a near-
codeword or a trapping set that is guaranteed to be stable under
a bit-flipping decoder.

Previous work [4], [20] studied structural properties of
dominant absorbing sets for a representative class of practical
regular LDPC codes. Concurrently, absorbing sets were also
experimentally verified on a hardware emulator [28], [30] to
govern the low BER region performance for several represen-
tative LDPC code families. Recent results in [1], [10], [18],

[24] provided insights into the trapping set spectrum of other
important classes of codes.

One promising direction for improving the performance and
alleviating the error floors of finite-length sparse graph codes is
to focus on practical aspects of iterative decoding algorithms.
Various implementation components of the decoding algorithm
have already been successfully analyzed and improved, in-
cluding more efficient quantization of messages [26], [30],
better message-exchange scheduling algorithms [2], [9], better
iteration averaging schemes [11], [22], and the automation of
postprocessing for escaping convergent absorbing sets [29].

The convergent non-codewords (i.e., absorbing sets) are in
fact a structural property of the parity-check matrix of the
code. This paper focuses on the systematic improvement of the
parity-check matrix rather than the decoding algorithm. The
resulting improved parity-check matrices may be seamlessly
combined with the improved decoding algorithms discussed
above.

A recent line of work [6], [8], [12] investigates techniques
to improve the absorbing set (or trapping set) spectrum by
introducing redundant or independent checks. An approach of
selecting circulant submatrices for better performance via girth
increase was proposed in [15]. In contrast, this paper focuses
on the combinatorial properties of the absorbing sets and the
provable improvement of the absorbing set spectrum via a
systematic code modification that is valid over the whole code
family. A distinguishing feature of the proposed approach is
that it preserves original code properties such as the structure,
rate, girth, and node degrees. Preservation of these properties
facilitates practical realizations of high-throughput compact
hardware architectures of LDPC codes and their decoding
algorithms.

Section II presents the relevant background. Section III
studies a representative structured code family. By analyzing
the combinatorial properties of the smallest (lowest-weight)
absorbing sets, we propose a systematic method for elimi-
nating the smallest absorbing sets, which often dominate the
error–floor performance. Elimination of the smallest absorbing
sets induces benefit across the absorbing-set spectrum since
the smallest absorbing sets are also components of many
larger-weight absorbing sets that themselves cannot be eas-
ily eliminated by improving the decoding algorithm alone.
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Fig. 1. Depiction of a (4, 8) absorbing set. Black circles are bit nodes in
the absorbing set, white squares are their satisfied checks, and black squares
are their unsatisfied checks.

This process is accomplished while keeping desirable code
properties intact. Section IV provides experimental results
demonstrating consistent performance improvement for several
choices of practical decoding algorithms and code instances.
Section V delivers the conclusions.

II. BACKGROUND

This section reviews absorbing sets, [4], [28] and describes
a class of high-performance LDPC codes that serves as our
illustrative case study.

Absorbing sets: Using the standard notation, let GH =
(V, F,E) be the bipartite graph (Tanner graph) describing the
parity-check matrix H , such that the set V corresponds to the
columns of H , the set F corresponds to the rows of H , and
E = {e(i, j)|H(j, i) = 1}.

For a subset D of V , let O(D) be the set of neighboring
vertices of D in F with odd degree with respect to D. For
the integer pair (a, b), an (a, b) absorbing set is a subset D of
V of size a, with O(D) of size b, and with the property that
each element of D has strictly fewer neighbors in O(D) than
in F \O(D).

Moreover, if all variable nodes in V \D have strictly fewer
neighbors in O(D) than in F \O(D), an (a, b) absorbing set is
called an (a, b) fully absorbing set. An important property of
fully absorbing sets is that they are stable under the bit-flipping
operations. A (4, 8) absorbing set is illustrated in Figure 1.
(Here, the node labels are in the context of a particular code
family, as explained next.)

Circulant-based LDPC codes: LDPC codes built from cir-
culant matrices are particularly amenable for high-throughput
applications and compact hardware design [23], [30]. These
codes can be described as follows:

Given integers r and c, a mapping rule f(i, j) : (i, j)→ N
and a p× p permutation matrix σ of the form

σ =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0

 , (1)

we form the (rp)× (cp) parity check matrix Hr,c
p,f as

Hr,c
p,f =


σf(0,0) σf(0,1) σf(0,2) . . . σf(0,c−1)

σf(1,0) σf(1,1) σf(1,2) . . . σf(1,c−1)

σf(2,0) σf(2,1) σf(2,2) . . . σf(2,c−1)

...
...

... . . .
...

σf(r−1,0) σf(r−1,1) σf(r−1,2) . . . σf(r−1,c−1)

 .

(2)
We assume that (f(i1, j1)−f(i1, j2)+f(i2, j2)−f(i2, j1)) 6=
0 mod p for 0 ≤ i1, i2 ≤ r−1, i1 6= i2 and 0 ≤ j1, j2 ≤ c−1,
j1 6= j2 so that the girth of the code is at least 6.

Examples of codes that have the above descriptions include
array-based LDPC codes [7] (with f(i, j) = i · j, and c is
set to p, the size of σ), quasi-cyclic (QC) LDPC codes [21]
(with f(i, j) = ajbi where a and b are nonzero elements of
GF (p) having multiplicative orders o(a) = c and o(b) = r),
and constructions discussed in [13].

It is convenient to label bit nodes and check nodes as
follows: label each bit node in GH with the unique label (j, k)
that describes the corresponding column of Hr,c

p,f , and label
each check node in GH with a label i if the corresponding
row of Hr,c

p,f belongs to the row group i. For the illustration
of the labeling, see Figure 1.

The following convenient properties follow from the fact
that the parity check matrix Hr,c

p,f is a two-dimensional array of
permutation matrices, and they play a key role in establishing
combinatorial properties necessarily satisfied by the absorbing
sets of interest.

Bit Consistency: For a bit node, all its incident check nodes,
labeled is1 through isγ , must have distinct labels, i.e., these
check nodes are in distinct row groups. �

Check Consistency: All bit nodes, say (j1, k1) through
(jp, kp), participating in the same check node must have
distinct j` values, i.e., they are all in distinct column groups.
�

III. CASE STUDY: ARRAY-BASED CODE

We now consider the Hr,p
p,i·j array-based LDPC codes [7] as

an instance of high-performance practical LDPC codes with
hardware-friendly structure. As a concrete example, we focus
on the bit degree r = 5 (the analysis for other choices of r
follows similarly, and is in fact somewhat simpler for r < 5).

A previous result [5] proves that (4, 8) absorbing sets are
the smallest possible for a general r = 5 code family. We
first show in Lemma 1 that (4, 8) absorbing sets indeed exist
for this r = 5 array-based code family. This theoretical
result is also consistent with previous experimental results
of a sum-product decoding algorithm built in software and
on a hardware emulator [30] for which it was shown that
decoding errors due to (4, 8) absorbing sets dominate the low



BER region. This error floor region is determined by non-
codewords (absorbing sets) whose weight is strictly smaller
than the minimum distance of the code [27]. We then propose
a method for the systematic elimination of these absorbing
sets that also reshapes the absorbing set spectrum for better
performance.

Lemma 1: (4, 8) (fully) absorbing sets exist in the Tanner
code described by the parity check matrix H5,p

p,ij , and their
number scales as Θ(p3).

Proof : The proof follows techniques developed in [4], so
we only outline the main steps.

Due to the cardinality of the absorbing set, bit nodes and
check nodes must necessarily be arranged as in Figure 1, and
we may then label the bit nodes with labels (j1, k1) through
(j4, k4), their satisfied checks with labels i1 through i6 and
their unsatisfied checks with labels i7 through i14, as in the
figure.

It then follows that under the bit consistency constraints
applied to the bit nodes in this candidate (4, 8) absorb-
ing set, there are only two possible non-isomorphic check
labelings: one using only four distinct labels (out of five
available) and one using all five distinct labels for the satisfied
checks i1 through i6. Without loss of generality, we may
assign (i1, i2, i3, i4, i5, i6) to be either (x, y, x, y, z, w) for
{x, y, z, w} ⊂ {0, 1, 2, 3, 4} (assignment 1) or (x, t, w, y, z, z)
for {x, y, z, w, t} = {0, 1, 2, 3, 4} (assignment 2).

Setting up a system of equations relating the bit node labels
and the check node labels in a candidate (4, 8) absorbing set,
after some calculations utilizing bit and check consistency con-
straints, the following necessary conditions for the existence
of a (4, 8) absorbing set result:

(z − x)(w − y) + (z − y)(w − x) ≡ 0 mod p , (3)

for assignment 1, and

(z−w)(x−t)(y−z)−(y−w)(x−z)(z−t) ≡ 0 mod p , (4)

for assignment 2.
In the former case, in fact one can show there are no

solution sets for prime p large enough (p > 17). For
the latter case there are 8 solution sets (x, y, z, w, t) ∈
{(4, 3, 2, 0, 1), (4, 1, 2, 0, 3), (3, 4, 2, 1, 0), (3, 0, 2, 1, 4),
(1, 4, 2, 3, 0), (1, 0, 2, 3, 4), (0, 3, 2, 4, 1), (0, 1, 2, 4, 3)} that
always evaluate to zero on the left-hand side of equation (4).
These numerical solutions are in fact symmetric so that once
the labels of the check nodes are selected (cf. Figure 1),
the bit node labels (pairs (j1, k1) through (j4, k4)) can be
selected in Θ(p3) ways, thereby completely characterizing
the absorbing set of interest.

Moreover, such an (4, 8) absorbing set is always a (4, 8)
fully absorbing set since otherwise there would exist a bit
node (j5, k5) outside the absorbing set incident to at least
three of the checks labeled i7 through i14. Such a configuration
would either violate the girth constraint, or it would imply the
existence of a new configuration spanning four bit nodes (these
being the node (j5, k5) and three bit nodes from the starting
(4, 8) absorbing set). These four bit nodes would necessarily

be connected such that their common constraint is given in (3),
previously shown to not hold for large enough p. �

The following lemma discusses how a different choice of
the mapping rule f(i, j) can be made such that neither of the
necessary conditions (3) and (4) for the existence of (4, 8)
absorbing sets is fulfilled.

Lemma 2: There are no (4, 8) absorbing sets in the Tanner
code described by the parity check matrix H5,p

p,f(i,j), for
prime p large enough and f(i, j) = a(i) · j for (i, a(i)) ∈
{(0, 0), (1, 1), (2, 3), (3, 8), (4, 19)}.

Proof : It is sufficient to assign values to a(i) such that
the selected labels for the check nodes i1 through i6 do not
satisfy equations (3) and (4). Let b(i) be the set of all pairwise
differences of the elements of a(i). First, by construction they
are all distinct. Second, all of the products taken mod p of
two elements of b(i) are distinct as are all of the products
taken mod p of three elements of b(i). These conditions
are sufficient to ensure that the congruential constraints (3)
and (4) do not hold for prime p large enough 1. �

Remark 1: In fact, there are other choices for a(i) that
guarantee that no (4, 8) absorbing sets exist in the Tanner
code described by the parity check matrix H5,p

p,f(i,j) with
f(i, j) = a(i) · j by ensuring that the equations (3) and (4)
do not hold. Another such example for f(i, j) = a(i) · j is
for (i, a(i)) ∈ {(0, 0), (1, 1), (2, 2), (3, 4), (4, 6)}, where it is
sufficient for the prime p to be greater than 23. While not
all pairwise differences and their products of the elements of
a(i) are distinct as in the previous case, one can verify that
the necessary subset of such combinations is, thereby ensuring
the non-existence of (4, 8) absorbing sets. �

We will return to the topic of choices for a(i) in Section IV
where we compare the performance of the original and the
modified codes.

The following result shows how the elimination of the
smallest term in the absorbing set spectrum also helps reduce
the cardinality of other contributing terms in the absorbing set
spectrum.

Lemma 3: The transformation of f(i, j) =
i · j into f(i, j) = a(i) · j for (i, a(i)) ∈
{(0, 0), (1, 1), (2, 3), (3, 8), (4, 19)} strictly reduces the
number of (6, 8) absorbing sets for p large enough.
Proof outline: We provide an outline of the proof. More details
can be found in [25]. We first consider the case where there
exists a satisfied check (unsatisfied check) incident to bit nodes
in the absorbing set of degree at least 4 (at least 3). By the
girth constraint the only possibility is if 3 out of 6 bit nodes
share an unsatisfied check (itself of degree 3) and the other 3
out of 6 bit nodes also share an unsatisfied check (also itself of
degree 3). Each bit node has an additional unsatisfied check.
Using combinatorial arguments and the bit consistency and
check consistency conditions (cf. Section II) it follows that
this configuration is in fact not possible for either f(i, j) for
p large enough.

1In fact, p can be any prime larger than 23 except for the set
{37, 41, 59, 61, 67, 73, 89, 101, 163, 223, 263, 271, 277, 317, 337, 1361},
itself easily identified by numerical substitutions for labels in (3) and (4).



There are five non-isomorphic candidate (6, 8) absorbing
sets, in which all satisfied checks (unsatisfied checks) incident
to bit nodes in the absorbing set have degree 2 (degree 1).
Out of these five configurations, with some analytical work,
three can be eliminated for p large enough using combinatorial
arguments and the bit consistency and check consistency
conditions applied to either choice of f(i, j). The remaining
two configurations have the cardinality Θ(p3) in the original
code, and interestingly, both contain a (4, 8) absorbing set as
a subset. These are therefore completely eliminated by the
transformation on f(i, j).

Since no new (6, 8) absorbing sets are introduced, and since
the number of existing (6, 8) absorbing sets is reduced (and in
fact entirely eliminated for p large enough), the transformation
strictly improves this component in the abs. set spectrum. �

Remark 2: The same conclusion as in Lemma 3 holds for the
performance improvement under the mapping f(i, j) = a(i)·j
where (i, a(i)) ∈ {(0, 0), (1, 1), (2, 2), (3, 4), (4, 6)}, given in
Remark 1. The details are also in [25]. �
Observe that the proposed modification preserves the girth
of the code. That is, there exists a length-6 cycle passing
through checks in the first three row groups in both the original
and the modified code, and no length-4 cycles are introduced
during the transformation. Therefore, short cycles that are the
underlying building blocks of the (dominant) absorbing sets
are still present. What we have in fact achieved is breaking
apart the troublesome superpositions of such short cycles
rather than breaking apart all of the short cycles themselves.
This enables us to maintain desirable structural symmetry of
the party check matrix.

IV. EXPERIMENTAL RESULTS

In this section we experimentally demonstrate performance
improvement with the proposed modifications that is consis-
tently valid across various choices of decoding algorithms and
implementations.

In simulations, we use 200 iterations and a Q4.2 fixed-
point quantization, 4 bits to the left of the radix point to
represent integer values and 2 bits to the right of the radix
point to represent fractional values. We simulate sum-product
algorithm [30] and soft-xor algorithm [16] for different codes.

In Figure 2(a) we compare the performance of the
(2209, 1978) original code and the modified code. Both codes
fit the description of the parity check matrix as in (2) with the
following parameters: check node degree = 47, bit node degree
= 5, and f(i, j) = a(i) · j. The original code uses a(i) = i
and the modified code uses a(i) proposed in Lemma 2.

For all choices of simulated decoding algorithms, the fol-
lowing is observed: a significant fraction of decoding errors
under the original code is due to the (4, 8) absorbing sets,
whereas under the modified codes there are no such errors.
Moreover, the total number of errors decreases as the overall
number of higher-order error terms in the absorbing set
spectrum decreases.

For illustration purposes, another pair of codes are con-
trasted in Figure 2(b), and with the modified mapping from
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Fig. 2. Performance comparison of the original and modified LDPC codes.

Remark 2. Again, the performance improvement (albeit less
than in the previous example as the considered code is shorter)
is achieved by the systematic elimination of the (4, 8) absorb-
ing sets that in turn also reduces other contributing elements
in the absorbing set spectrum.

For a more convincing experimental proof, we programmed
a sum-product decoder on an FPGA platform to decode the
original (2209, 1978) array-based LDPC code as well as its
two optimized versions, discussed in Lemma 1 and Remark 1,
respectively. Since the structure of the array code is preserved
in the modified versions, the decoder is reused with no added
complexity. A substantial simulation speedup via the FPGA
platform allows us to extend the BER curve down to 10−11,
as shown in Figure 2(a).

The error profiles are shown in Tables I, II, and III for
comparison. Consistent with the software-based simulation
and the theoretical analysis, (4, 8) absorbing sets dominate the
error floor of the original array code. In both modified array
codes, having virtually same performance (see Fig. 2), the



SNR no.runs a.s (4,8) (5,9) (6,8) (6,10) (7,9) (8,6) (8,8) (8,10)
5.6dB 4.2E9 272 97 27 64 10 16 17 11 5
5.8dB 8.5E9 211 121 20 34 9 3 3 4 3

TABLE I

SNR no.runs a.s (4,8) (5,9) (6,8) (6,10) (7,9) (8,6) (8,8) (8,10)
5.6dB 8.5E9 197 0 30 36 27 25 3 17 13
5.8dB 1.7E10 90 0 25 16 22 16 3 10 1

TABLE II

SNR no.runs a.s. (4,8) (5,9) (6,8) (6,10) (7,9) (8,6) (8,8) (8,10)
5.6dB 8.5E9 179 0 30 28 29 22 5 9 10
5.8dB 1.7E10 116 0 25 16 22 16 3 10 1

TABLE III
HARDWARE ERROR PROFILES FOR THE ORIGINAL (2209, 1978) CODE

(TABLE I), AND THE TWO MODIFIED CODES (TABLE II AND III). MORE
INPUT FRAMES WERE EMULATED FOR HIGHER SNR LEVELS. THE

NUMBER OF ERRORS COLLECTED IS DIVIDED BY THE TOTAL NUMBER OF
FRAMES (NO. RUNS) TO PRODUCE FIGURE 2 DATA. TOTAL NUMBER OF

COLLECTED ABSORBING SET ERRORS IS DENOTED A.S.

(4, 8) absorbing sets are completely eliminated and the BER
curve is lowered by one order of magnitude Another noticeable
effect is the reduction of the number of (6, 8) absorbing set
errors after the code modification, which is attributed to the
elimination of the (4, 8) substructures.

V. CONCLUSION

In this paper we studied methods to improve regular LDPC
code designs under iterative decoding. By taking into account
the combinatorial characterization of absorbing sets, as domi-
nant fixed points of practical iterative decoding algorithms, we
provided methods to improve the absorbing set spectrum of
the code while keeping other desirable code properties (such
as the node degrees and the parity check matrix structure)
intact. Theoretical findings were substantiated by experimental
results showing good improvement in the low BER region for
a class of structured LDPC codes. A useful feature of the
proposed approach from the implementation standpoint is that
it can be easily combined with better decoding algorithms for
the maximum improvement of the overall performance. Future
work involves extending the analysis to irregular codes.
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