
Achieving Flexibility in LDPC Code Design by
Absorbing Set Elimination

Jiajun Zhang∗, Jiadong Wang∗, Shayan Garani Srinivasa†, Lara Dolecek∗
∗Department of Electrical Engineering, University of California, Los Angeles

†Western Digital Corporation
Email: zjj1990228@ucla.edu, wjd@ee.ucla.edu, shayan.garani@wdc.com, dolecek@ee.ucla.edu

Abstract—Low-density parity-check (LDPC) codes are attrac-
tive since their performance is known to approach the Shannon
limits for suitably large block lengths. However, for moderate
block lengths, error floors still jeopardize the performance even
of well-designed LDPC codes. Previous work has shown that the
error floor of a broad class of LDPC codes is due to certain graph-
ical structures called absorbing sets. Separable, circulant-based
(SCB) codes represent a general family of high-performance,
hardware-friendly LDPC codes built out of circulants. A recently
proposed technique applies row selection and column elimination
methods to SCB codes to dramatically decrease error floors by
avoiding certain small dominant absorbing sets in a principled
way. This paper focuses on improving the greedy column elim-
ination method to achieve greater flexibility in code rate while
provably avoiding small dominant absorbing sets. Flexibility and
low implementation complexity are therefore possible without
sacrificing SCB code performance.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are well-known
for their capacity-approaching property with iterative decod-
ing [1]. However, for moderate block lengths and low frame
error rates (FERs), LDPC codes often have an error floor,
reflected in the flattening of the FER performance curves.
This error floor is attributed to the sub-optimality of message
passing decoding algorithm in Tanner graphs with cycles. For
additive noise channels and practical decoder implementations,
prior research has linked the primary reason for this sub-
optimality and the resultant error floor with certain sub-
structures of the Tanner graph called absorbing sets [2].
An absorbing set is a particular type of a near-codeword
or a trapping set guaranteed to be stable under bit-flipping
operations. Several techniques have been recently proposed
to improve the absorbing set (trapping set) spectrum. These
techniques include adding redundant rows to the parity check
matrix, elimination of small cycles, increasing the girth, and
a careful re-wiring of edges in the Tanner graph, e.g., [3], [4],
[5], [6], and [7].

Separable, circulant-based (SCB) codes constitute a general
family of high-performance, hardware-friendly LDPC codes
built out of circulants. These codes can each be constructed
by shortening the so-called mother SCB code whose parity
check matrix rows are each comprised of a concatenation of
all possible circulants.

A recently developed approach [7] offers a deterministic
procedure for row and column selection that provably elimi-

nates small dominant absorbing sets for SCB codes. A careful
re-ordering of the constituent circulants in the parity check
matrix amounts to a “re-wiring” of the edges in the Tanner
graph. This approach therefore preserves code structure, node
degree and the ease of hardware implementation while offering
provably improved performance.

In [7], the row selection is performed based on congru-
ential equations describing dominant absorbing sets, and is
further simplified by additive and multiplicative invariance of
circulant shifts. Depending on the bit node degree, a proper
row selection is in itself sufficient to eliminate dominant
absorbing sets [7], [8]. In certain cases, however, an additional
column selection must be performed to eliminate remaining
absorbing sets. The approach in [7] for the column selection
is a greedy algorithm that selects a subset of columns from
the set of all possible columns of the parity check matrix of
the mother SCB code. An excessive elimination of a large
subset of candidate columns implies an overly conservative
upper bound on the achievable code rate. Simply increasing
the inner circulant matrix dimension can increase the code
rate, but it also increases the block length, and in turn the
decoding complexity.

The contributions of this paper are as follows. We relate the
column elimination problem to a well-defined, NP-complete
problem in theoretical computer science called the hitting set
problem [9], and we develop new algorithms that improve
upon the greedy column elimination technique offered in [7].
Our approach to eliminate fewer columns while provably
avoiding small dominant absorbing sets thus offers an enlarged
design space of code parameters while preserving target per-
formance and complexity.

Since the hitting set problem is NP-complete, we conclude
that in general, there is no efficient method to find an optimal
solution to the column selection problem. For moderately
small block lengths, we present an efficient way to obtain
the optimal solution to column selection using binary linear
programming (BLP). For large block lengths we provide a
polynomial-time search algorithm whose solution sets improve
that of the greedy algorithm.

Section II summarizes the main mathematical objects, in-
cluding (mother) SCB codes, absorbing sets as well as previ-
ous results on smallest absorbing sets in column weight-4 SCB
codes. Section III discusses the NP-complete nature of the col-
umn selection problem, and proposes new, simple algorithms

with results provably better than the greedy approach used
in [7] for column weight-4 SCB codes. Section IV provides
simulation results that demonstrate the improvement in the
code design flexibility for comparable code performance.
Section V delivers the conclusions.

II. DEFINITION AND PRELIMINARIES

We now quickly summarize SCB codes, absorbing sets and
the relevant previous results regarding the elimination of small
absorbing sets in SCB codes.

A. SCB codes and absorbing sets

Circulant-based LDPC codes are a family of structured
regular LDPC codes with r variable nodes and c check nodes,
and are particularly amenable for high-throughput implemen-
tation [10].

The parity check matrix of a circulant-based LDPC code is:

Hr,c
p,f =

σf(0,0) σf(0,1) σf(0,2) . . . σf(0,c−1)

σf(1,0) σf(1,1) σf(1,2) . . . σf(1,c−1)

σf(2,0) σf(2,1) σf(2,2) . . . σf(2,c−1)

...
...

... . . .
...

σf(r−1,0) σf(r−1,1) σf(r−1,2) . . . σf(r−1,c−1)

 ,

(1)
where σ is a p× p circulant matrix.

A column (row) of inner circulants is called column (row)
group. Each variable node has a label (j, k) where j ∈
{0, ..., c− 1} is the index of the corresponding column group
and k ∈ {0, ..., p−1} is the actual index of the column in that
column group. Similarly, each check node has a label (i, l)
with i ∈ {0, ..., r − 1} and l ∈ {0, ..., p− 1}.

SCB codes are defined as follows.
Definition 1 (Separable, Circulant-Based (SCB) Code):

An SCB code is a circulant-based LDPC code with a
parity-check matrix Hr,c

p,f in which f(i, j) is separable, i.e.,
f(i, j) = a(i) · b(j). �

Specific parity-check matrices of different SCB codes can
be viewed as originating from the same mother SCB matrix
Hp,p

p,fm
with fm(i, j) = i · j. The functions a(i) and b(j) each

with range {0, ..., p− 1} specify which rows and columns are
selected from the SCB mother matrix. The SCB code whose
parity check matrix is the mother SCB matrix is called mother
SCB code. Many well-known quasi-cyclic LDPC codes, in-
cluding [11] [12], are special cases of the SCB codes.

In addition to providing the parity check matrix H , an
LDPC code is often described in terms of its Tanner (bipartite)
graph GH = (V, F,E) where V denotes the set of the variable
nodes, F denotes the set of the check nodes, and E is the set
of edges between variable and check nodes.

In the Tanner graph GH , an absorbing set is defined as
follows [2].

Definition 2: Consider a subset Va of V . Let Ga =
(Va, Fa, Ea) be the bipartite graph compromised of the set
Va, the neighboring check nodes described by the set Fa, and
the edge set Ea connecting Va and Fa. Let o(Va) ⊂ Fa denote
the neighbors of Va that have odd degree with respect to Ga

and let e(Va) ⊂ Fa denote the neighbors of Va that have even

degree with respect to Ga. If |o(Va)| < |e(Va)|, the subgraph
Ga = (Va, Fa, Ea) of GH is an (a, b) absorbing set.

B. (6, 4) absorbing sets of r = 4 SCB codes

A result in [2] proves that (6, 4) absorbing sets are the
smallest possible absorbing sets for SCB codes with r = 4 for
p > 19, and that these (6, 4) absorbing sets can be classified
into three non-isomorphic configurations. In [7], it was proven
that, after a careful selection of the four row groups from the
mother SCB matrix, two out of three non-isomorphic (6, 4)
structures can be provably eliminated, and it was also proven
that the remaining structure cannot be eliminated by a row
selection alone. This remaining configuration is depicted in
Figure 1. Here, black circles represent the set Va, white squares
represent the set e(Va), and black squares represent the set
o(Va). Note that the size of Va is 6 and that the size of o(Va)
is 4.

After an appropriate row selection a(i) was applied to
produce so-called selected-row (SR) SCB codes and their
matrices H4,p

p,a(i)·j , the removal of a few column groups was
then considered in order to ensure that all (6, 4) absorbing sets
are avoided in a way that does not introduce any new smaller
absorbing sets. This shortened SR SCB matrix is denoted as
H4,p

p,a(i)·b(j), where b(j) is the column selection function.

III. IMPROVED COLUMN SELECTION ALGORITHM FOR
FLEXIBLE CODE DESIGN

In this section we describe new (approximate) branch-and-
bound (BNB) algorithms that efficiently identify the column
selection function b(j), applied to a mother SCB matrix
Hp,p

p,fm
, a matrix that has p column groups. We show that the

column selection problem is NP-complete. We summarize the
greedy column elimination algorithm proposed in [7], and use
it as an upper bound for the proposed search algorithm.

It is convenient to map each of the (6, 4) absorbing sets
(shown in Figure 1) into a 6-element set, denoted by Si =
{j1, j2..., j6}, where jl is the column group index of the l-th
variable node, denoted as vl in Figure 1, in the corresponding
i-th absorbing set. Note that the total number of these sets is
Θ(p3), see [2] for the exact cardinality discussion.

Suppose V is the set of all column group indices of the
eliminated variable nodes, where V ⊂ T = {0, 1, ..., p − 1}.
A careful selection of eliminated columns provably avoids all
(6, 4) absorbing sets of this configuration by ensuring that
V ∩Si 6= ∅ for every i. The final parity check matrix then has
columns from T \ V (which effectively specifies the mapping
b(j) for j denoting the column index.) The greedy algorithm
[7] updates the set V on a per-element basis to ensure non-
zero intersections so that at any given time the largest number
of absorbing sets are eliminated.

First, we note that finding the smallest number of columns
to cut in order to avoid all small dominant absorbing sets
can be viewed as a particular case of a famous NP-complete
problem, known as the hitting set problem [9]. The hitting
set problem is concerned with finding a minimal set that
has a non-zero intersection with a collection of sets. Since

i1

i2

i4

i3i5

i7

i8

i6

i9 i10i11

i12

i13

v1

i14

v2

v3 v4 v5

v6

Fig. 1: Depiction of a (6, 4) absorbing set configuration.

the column selection problem falls in the NP-complete space,
there is no efficient, polynomial-time, algorithms to solve it.
We now propose branch-and-bound (BNB) algorithms. When
the dimension p of the inner circulants is small the proposed
algorithm finds the optimal solution, otherwise an approximate
BNB approach is used.

For moderately small block lengths, the column selection
problem is translated into a binary linear programming (BLP)
problem. Define an indicator binary matrix M|S|×p where, for
a given Tanner graph GH , S is the collection of all distinct
absorbing sets Si of type shown in Figure 1 (for 1 ≤ i ≤
|S|), and p is the dimension of the inner circulants, as well
as being the total number of column groups in a mother SCB
matrix. The entry Mi,j is equal to 1 if the j-th column group
belongs to the absorbing set Si. Consider a binary column
vector X = (x1, x2, ..., xp)T , where xj = 1 if the jth column
group needs to be eliminated from the SR SCB matrix to avoid
small dominant absorbing sets.

In order to produce the set of eliminated columns with the
smallest size, we need to minimize the number of ones in
X , i.e., ||X||1. With the constraint that the minimum entry of
MX is bigger than 1, in each absorbing set Si there exists at
least one variable node whose column group belongs to the
cut column group list. This constraint limits X to be a valid
column selection that eliminates all small dominant absorbing
sets. This BLP problem is summarized as follows:

min ||X||1
s.t. MX ≥ B

xi = 0 or 1 for i ∈ {1, 2, ..., p}
(2)

where BT = (1, ..., 1) is a vector of length |S| with all
elements equal to one.

For very large block lengths, due to the NP-complete nature
of this problem, it is impossible to find an optimal solution in
polynomial time. A previous result in [13] shows an efficient
branch-and-bound (BNB) algorithm for the BLP problem.
Combining this BNB approach with the concept of a generic
approximate algorithm [9], we develop an approximate BNB
algorithm to the column selection problem.

We now identify a lower and an upper bound to a solu-
tion offered by the approximate BNB algorithm to the BLP

problem above. Since B is a vector of length |S| with all
ones, we can simply write ||B||1 = |S|. With all entries in
MX and B being positive, taking 1-norm of both sides in the
expression (2) preserves the inequality. Thus the solution to
the BLP problem described by equation (2) has a lower bound
|S|/ ||M ||1. The upper bound of the column selection problem
is calculated by the greedy algorithm previously proposed
in [7], denoted as function UpperBound() in Algorithm 1. Note
that this greedy algorithm has linear time complexity.

The approximate BNB algorithm sequentially simplifies the
column elimination problem such that at each state of the
problem, the label (A, Tin, Tout) indicates a sub-problem of
the original BLP problem. Here A is the sub-matrix of the
matrix M in equation (2), while Tin and Tout are the sets
of columns selected to be cut and not to be cut, respectively.
Note that Tin and Tout are disjoint subsets of the column set
T = {0, 1, ..., p − 1}. The initial state is (M, ∅, ∅). A state
is a final state if the associated matrix A has exactly one
column (row) with non-zero entries. The function that tests
whether the current state is a final state is called FinalState()
in Algorithm 1.

For each state (A, Tin, Tout), we update our solution if the
upper bound of the state solution, calculated by UpperBound(),
is a better solution. If the state is not a final state, we find
a column c in A with the maximum 1-norm. We then split
(A, Tin, Tout) into (A1, Tin ∩ {c}, Tout) and (A1, Tin, Tout ∩
{c}) where A1 is the sub-matrix of A obtained by cutting the
splitting column c from A. This splitting method is denoted
as function Split() in Algorithm 1. The splitting process is
terminated if either all states have been traversed or the lower
bound |S|/ ||M ||1 is reached. The above process produces a
binary tree with each node of the tree representing a state of
the BNB algorithm.

The number of layers in the tree is up to p, corresponding
to a time complexity of Θ(2p) in the BNB algorithm. In
order to make this a polynomial-time algorithm, we utilize
the generic concept introduced in [9]. For each column of
A in the original BLP problem, we keep a reputation value,
initialized as all 0’s. If cutting that column in a given state
results in a better solution in a descendant state, we increase
the column’s reputation by one. This reputation updating
mechanism is called UpdateReputationList() in Algorithm 1.
We then introduce an approximating parameter f . For a binary
tree with up to p layers, we use the regular BNB algorithm to
build up our reputation list in the first f layers. Starting from
the (f + 1)st layer, if the reputation of a splitting column
c is strictly positive, we reduce the state (A, Tin, Tout) into
(A1, Tin ∩ {cj}, Tout), else into (A1, Tin, Tout ∩ {cj}). This
updated version of the function Split() is called ReputationRe-
duction() in Algorithm 1. Since the reputation updates are
completed in at most p layers, the approximate BNB algorithm
runs in polynomial time. Note that for moderate p (e.g., p ≤ 37
in our simulations), we can set f = p to run the exact
BNB algorithm without any approximation to get the optimal
solution.

The detailed algorithm is shown in Algorithm 1.

Algorithm 1 Approximating branch-and-bound algorithm for
the column selection problem
Poriginal ← (M∅, ∅)
Tree← {Poriginal}
Gsol ← UpperBound(Poriginal)
Ftree ← {(Poriginal, Gsol)}
while Tree 6= ∅ do

choose γ = (A, Tin, Tout) ∈ Tree;
Tree← Tree/{γ};
if |UpperBound(γ)| < |Gsol| then
Gsol ← UpperBound(γ);

end if
UpdateReputationList(γ, Ftree);
if FinalState(γ) = FALSE then

if |Tin ∩ Tout| < f then
(γ1, γ2) = Split(γ);
Tree← Tree ∩ {γ1, γ2};

else
γ1 = ReputationReduction(γ);
Tree← Tree ∩ {γ1};

end if
end if

end while

IV. RESULTS

In this section we experimentally demonstrate an improve-
ment in the code rate flexibility obtained with the proposed
search algorithms. In the simulations, we use 200 iterations
and Q4.2 fixed-point quantization with 4 bits for integer part
and 2 bits for fractional values. The implemented decoding
algorithms is SOFT-XOR [14].

Achievable design choices obtained from the exact BNB
algorithm and the approximate BNB algorithm are collected in
Figure 2 along with choices generated by the greedy algorithm
in [7]. Note that the greedy algorithm offers the optimal
solutions for small p’s, such as p = 17. As the parameter p
increases, the solution set generated by the greedy algorithm
is no longer optimal. For a fixed block length, and as shown
by the vertical line in Figure 2, the new algorithms offer
shortened SR SCB codes with higher code rates. At the same
time, for a target code rate, and as shown by the horizontal
line in Figure 2, the new algorithms offer shortened SR SCB
codes with smaller block lengths. For example, for the block
length of around 1700 bits, the original greedy algorithm can
only produce an shortened SR SCB code with the code rate
0.8261, while the new BNB algorithm offers codes with code
rate choices ranging from 0.8261 to 0.8462. For a targeted
code rate 0.8950, the new achievable code designs have block
lengths ranging from 3783 bits to 4953 bits, while the greedy
method requires the block length (of at least) 4953 bits.

In Table I, we compare the performance of SR SCB codes
with greedily eliminated columns with that of SR SCB codes
with optimally eliminated columns for check node degree
p = 23 and bit node degree r = 4. We can observe that the

1500 bits

0.11

0.02

0 1000 2000 3000 4000 5000 6000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Block Length

C
od

e
R

at
e

Design Space

Greedy choices
Optimal choices
Achievable choices

Fig. 2: Design space for shortened SR SCB codes with r = 4.
SNR FER (Greedy) FER (Optimal)
4.0 5.383× 10−4 4.993× 10−4

4.4 8.699× 10−5 9.771× 10−5

4.8 1.824× 10−5 2.056× 10−5

5.2 4.965× 10−6 4.373× 10−6

5.6 1.163× 10−6 1.265× 10−6

TABLE I: Performance comparison of proposed shortened SR
SCB codes, r = 4 and p = 23 with AWGN fixed point decoder
under optimal elimination, N = 299, rate=0.6667, and greedy
elimination, N = 209, rate=0.5556.

performances are approximately the same. Yet, the new design
offers a range of possible code lengths up to 50% higher, and
up to 20% higher rate than the single-point solution offered
by the greedy approach. Note that if one wishes to design a
code with code length of around 300 bits and the rate of around
0.67, the greedy approach would require an increase in the size
p of the constituent circulants, thus effectively increasing the
implementation complexity relative to the proposed method.

In Figure 3, we compare the performance of a shortened
SR SCB code with greedily eliminated columns with that
of a shortened SR code with columns eliminated using the
approximate BNB algorithm, for bit node degree r = 4 and
block length of around 2300 bits. These two codes have the
same performances even though the code generated by the
approximate BNB algorithm has higher code rate. The decoder
complexities of the two codes are comparable since the check
node degrees are similar.

We also compare the performance of a shortened SCB code
generated by the approximate BNB algorithm with randomly-
constructed circulant-based LDPC codes with same code rate
and block length. These random codes are constructed such
that their girths are guaranteed to be larger than 4 and such
that their parity check matrices are two-dimensional arrays of
constituent circulants (so that the implementation complexity
would be comparable). The performance of the new code
is at least an order of magnitude better than the randomly
constructed circulant-based codes with girth larger than 4.

Table II shows the error profiles of these three types of codes
at two representative SNR points. Note that (4, 4) absorbing
sets are dominant absorbing sets in the error floor of random

3 3.5 4 4.5 5 5.5 6 6.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
(dB)

F
E

R
LDPC(r=4) AWGN fixed point Q4.2

N=2212,rate=0.8571,SSR(Greedy)
N=2370,rate=0.8679,SSR(BNB)
N=1830,rate=0.8683,Tanner
N=2370,rate=0.8679,Random1
N=2370,rate=0.8679,Random2
N=2370,rate=0.8679,Random3

Fig. 3: Performance comparison of shortened SR LDPC codes
generated by the greedy algorithm and the new branch-and-
bound approximating algorithm, and three random circulant-
based LPDC codes with girth larger than 4, and an LDPC code
from [15].

Code SNR n.e (4, 4) (5, 4) (6, 2) (6, 4) (8, 2)
Tanner 4.8dB 300 247 1 3 43 1
RC1 4.8dB 300 190 7 38 25 1
RC2 4.8dB 170 100 9 0 20 1
RC3 4.8dB 120 68 13 0 6 1
SSR 4.8dB 130 0 0 0 0 67
SSR(BNB) 4.8dB 143 0 0 0 0 73

Code SNR n.e (4, 4) (5, 4) (6, 2) (6, 4) (8, 2)
Tanner 5.2dB 40 20 0 10 1 0
RC1 5.2dB 35 26 1 1 3 0
RC2 5.2dB 35 24 3 1 4 1
RC3 5.2dB 35 23 1 1 5 0
SSR 5.2dB 30 0 0 0 0 27
SSR(BNB) 5.2dB 35 0 0 0 0 33

TABLE II: error profiles for an shortened SR (SSR) SCB code
generated by approximate BNB algorithm, 3 random circulant
codes with girth larger than 4, and a code from [15]. The
number of errors collected is n.e.

circulant codes and a code from [15].
The performance improvement is thus achieved by a struc-

tural elimination of all dominant absorbing sets smaller than
or equal to (6, 4) absorbing sets.

In summary, note that if the absorbing sets are provably
eliminated from the Tanner code of the graph, they are also
eliminated from all Tanner graphs corresponding to the punc-
tured transformation of the code. The results above therefore
show the the improvement in the solution to the column
selection problem will lead to a greater flexibility in the code
design and target code rate without sacrificing performance
and decoding complexity. The approximate BNB algorithm
also delivers codes with performances of at least 1 magnitude
better than random circulant codes with girth larger than 4.
Based on experiments in [8], the result can be easily extended

to other check node degrees.

V. CONCLUSION AND FUTURE WORK

This paper introduces a novel approach to calculate the
minimum set of columns needed to be cut to eliminate all small
dominant absorbing sets in SCB codes. The proposed BNB
algorithm solves the column selection problem exactly for
moderate block lengths. For large block lengths, a polynomial-
time BNB algorithm delivers suboptimal solutions better than
the previously proposed greedy algorithm [8]. The new al-
gorithms can be easily implemented for larger block lengths
and higher check node degrees. The new algorithms provide
a way of achieving flexibility in code rate and block length
for shortened SR SCB codes without compromising code
performance and decoder architecture complexity. Future work
includes parallelizing the BNB algorithm over a polynomial
number of processors for added improvements.

ACKNOWLEDGEMENT

This work was supported in part by a research grant from
UC Discovery and Western Digital.

REFERENCES

[1] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Trans. on
Info. Theory, 47(2):616-637, Feb. 2001.

[2] L. Dolecek, Z. Zhang, M. J. Wainwright, V. Anantharam, and B. Nikolic,
“Analysis of absorbing sets and fully absorbing sets of array-based LDPC
codes,” IEEE Trans. on Info. Theory, 56(1):181-201, Jan. 2010.

[3] S. Laendner, T. Hehn, O. Milenkovic, and J. Huber, “When does one
redundant parity-check equation matter?” In Proc. IEEE GLOBECOM,
San Francisco, CA, Nov. 2006.

[4] O. Milenkovic, N. Kashyap, and D. Leyba, “Shortened array codes of
large girth,” IEEE Trans. on Info. Theory, 5(8):3707-3722, Aug. 2006.

[5] R. Asvadi, A. H. Banihashemi, and M. Ahmadian-Attari, “Lowering the
error floor of LDPC codes using cyclic liftings,” IEEE Trans. on Info.
Theory, 57(4):2213-2224, Apr. 2011.

[6] D. V. Nguyen, B. Vasic, and M. Marcellin, “Structured LDPC codes from
permutation matrices free of small trapping sets,” In Proc. of IEEE Info.
Theory Workshop (ITW), Dublin, Ireland, Sep. 2010.

[7] J. Wang, L. Dolecek, R. Wesel, “Controlling LDPC absorbing sets via
the null space of the cycle consistency matrix,” In Proc. IEEE Int. Conf.
on Comm. (ICC), Kyoto, Japan, June 2011.

[8] J. Wang, L. Dolecek, Z. Zhang, and R. Wesel, “Absorbing Set Spectrum
Approach for Practical Code Design,” In Proc. Int. Symp. on Info. Theory
(ISIT), Saint-Petersburg, Russia, August 2011.

[9] H. Brönnimann and M. T. Goodrich, “Almost optimal set covers in finite
VC-dimension,” Discrete and Comput. Geometry, 14(4):463-479, 1995.

[10] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. J. Wain-
wright, “Design of LDPC decoders for improved low error rate per-
formance: quantization and algorithm choices,” IEEE Trans. on Comm.,
57(11):3258-3268, Nov. 2009.

[11] J. L. Fan, “Array-codes as low-density parity-check codes,” In Proc. of
Second Int. Symp. on Turbo Codes and Iter. Info. Proc. (ISTC), Brest,
France, Sep. 2000.

[12] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello,
“LDPC block and convolutional codes based on circulant matrices,” IEEE
Trans. on Info. Theory, 50(15):2966-2984, Dec. 2004.

[13] A. Fijany and F. Vatan, “New high-performance algorithmic solution for
diagnosis problem,” In IEEE Aerospace Conf. (IEEAC), 3863-3873, Mar.
2005.

[14] M.M. Mansour and N.R. Shanbhag, “High-throughput LDPC decoders,”
IEEE Trans. on VLSI Systems, 1(6):976-996, Dec. 2003.

[15] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello,
“LDPC block and convolutional codes based on circulant matrices,” IEEE
Trans. on Info. Theory, 50(15):2966-2984, Dec. 2004.

