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Abstract—High-capacity NAND flash memory can achieve high LDPC codes have typically been decoded with soft religbilit
density storage by using multi-level cells (MLC) to store mee  jnformation while flash systems have typically only provdde
than one bit per cell. Although this larger storage capacityis parq reliability information to their decoders. This paper

certainly beneficial, the increased density also increasdhe raw d trates that at least ft inf i . ial
bit error rate (BER), making powerful error correction codi ng emonstrates that at least some soit information IS crucia

necessary. Traditional flash memories employ simple algeaic 0 successfully reaping the benefits of LDPC coding in flash
codes, such as BCH codes, that can correct a fixed, specifiednemory. We also explore how much soft information is nec-
number of errors. This paper investigates the application 6low-  essary to provide most of the benefits and how flash systems
density parity-check (LDPC) codes which are well known for 414 e engineered to provide the needed soft information

their ability to approach capacity in the AWGN channel. We . . . .
obtain soft information for the LDPC decoder by performing without an unnecessary penalty in complexity or processing

multiple cell reads with distinct word-line voltages. The \alues time.
of the word-line voltages (also called reference voltagesire This paper uses pulse-amplitude modulation (PAM) with

optimized by maximizing the mutual information between the Gaussian noise to model Flash cell threshold voltage lgvels
input and output of the multiple-read channel. Our results show and investigates how to optimize the word-line voltages by

that using this soft information in the LDPC decoder provides a S th tual inf Hi bet the i t and
significant benefit and enables the LDPC code to outperform a Maximizing the mutual information between the nput an

BCH code with comparable rate and block length over a range the output of the equivalent read channel. After choosing
of block error rates. the word-line voltage for each of the reads, the multipkedre

channel can be represented by a probability transitionimatr
|. INTRODUCTION and the data can be decoded with a standard belief-propagati

Flash memory can store large quantities of data in a smalgorithm.
device that has low power consumption and no moving parts.Section Il introduces the basics of the NAND flash mem-
The original NAND flash memories used only two levels9ry model and LDPC codes. Section III studies three cases
This was called single-level-cell (SLC) flash because theggvering SLC and MLC with different quantization choices.
is only one nonzero charge level. Devices currently avhilabSection Ill also shows how to obtain word-line voltages by
use multiple levels and are referred to as multiple-levéll cénaximizing the mutual information of the equivalent read
(MLC) flash. Four and eight levels are currently in use, ard ti¢hannel. Section IV provides simulation results demotisga
number of levels will increase further to provide more sgera the benefits of using soft information with word-line volesg
capability [1][2]. selected as described in Section Ill, and Section V delitrers
Error control coding for flash memory is becoming mor&onclusions.
important in a variety of ways as the storage density ina@gas
The increasing number of levels (and smaller distance keiwe
levels) means that variations in cell behavior from cell to This section introduces the basics of NAND flash memory
cell (and over time due to wear-out) lower the signal-toseoi @hd LDPC codes.
ratio of the read channe! makmg a strong_er error-co_rrecu%\_ Basics of NAND Flash Memory
code necessary. Reductions in feature size make inter-cell
interference more likely, adding an equalization or irgeshce ~ This paper focuses on the NAND architecture for flash
suppression component to the read channel [3]. Also, the-we&@emory, which is the most prevalent architecture todayhEac
out effect is time varying, introducing a need for adaptiveemory cell in the NAND architecture features a transistor
coding to maximize the potential of the system. with a control gate and a floating gate. To store informatéon,
Low-density parity-check (LDPC) codes are well-known fofharge level is written to the cell by adding a specified arhoun

their capacity-approaching ability in the AWGN channel. [4]0f gharge to th_e floating.gate through Fowler-Nordheim tun-
neling by applying a relatively large voltage to the contrate

This research was supported by a gift from Inphi Corp. [5]
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of soft information. Furthermore, the techniques presgnte
in this paper can easily be extended to other probability
distributions.

B. Basics of LDPC codes

Bitine st LDPC codes are linear block codes defined by sparse parity-
check matrices. By optimizing the degree distribution,sit i
I well-known that LDPC codes can approach the capacity of an

AWGN channel [4]. Several algorithms have been proposed
to generate LDPC codes for a given degree distribution, such
?rase Voltage as the ACE algorithm [9], and the PEG algorithm [10].
Designing LDPC codes with low error-floors is crucial for
applications to flash memory since storage systems usually
require block-error-rates lower thatD—'5. This topic has

, i , generated a significant amount of recent research including
Figure 1 shows the configuration of a NAND flash memoerl [12] [13] [14] [15] [16].

cell. To read a memory cell, the charge level written to the
floating gate is detected by applying a specified word-li

. L other appealing aspect of LDPC codes is the existence of
voltage to the control gate and measuring the transistan dr?ow—complexity iterative algorithms used for decoding €8
current. The drain current is compared to a threshold lﬂ

¥rative decoding algorithms are called belief-propagat
a sense amp comparator. If the drain current is above g ayg PropEga

. ) orithms. Belief-propagation decoders commonly usé sof
comparator threshold, then the word-line voltage was sefftc bropag y

ot the t istor. indicating that the ch e reliability information about the received bits, which can
0 turn on the fransistor, indicating that the charge wm greatly improve performance. Conversely, a quantizatibn o
the floating gate was insufficient to prevent the transigtomf

. . X the received information which is too coarse can degrade the
turning on. If the drain current is below the threshold, th ¢

X - erformance of an LDPC code.
charge added _to the floating gate was sufficient to prevent Srraditional algebraic codes, such as BCH codes, use
applied word-line voltage from turning on the transistoneT bounded distance decoding and can only correct a specified,

sense amp comparator only provides one bit of mformath&ed number of errors. Unlike these traditional codes, for

about f[he charge level present in th_e floating gate. A bitrerrI(_)DPC codes it can be difficult to guarantee a specified
EEC;rrr(;?g at this threshold-comparison stage is calladva number of correctable errors. However the average bit-erro
' . . . rate performance can often outperform that of BCH codes in
The word-line voltage required to turn on a part'CUIaéaussian noise
::r;Tsflosrto; E/(;arlileetd Tfer;rgse(?:gldlz\é(r)lf)?:% clae : xwaeryflfcggynm'a The remainder of this paper studies how quantization during
y : P'e, 99 ¥ﬁe read process affects the performance of LDPC decoding

can be overcharged during the write operation, the floatil%lgr flash memory. In the next section, we present a general

gate can lose charge due to leakage in the retention peniod, 0 .~ . ; .
. : antization approach for selecting word line voltages for
the floating gate can receive extra charge when nearby cg S

. reading the flash memory cells in both the SLC and the MLC

are written [6]. cases

The probability density function of the variation of threih '
voltage from its intended value is usually modeled by a Gaus-
sian distribution. In this paper, we assume an i.i.d. Gamssi
threshold voltage for each level of an MLC flash memory
cell. Therefore ann-level flash cell is equivalent to am- Since the sense amp comparator only provides one bit of
PAM communication system with AWGN noise, except thanformation about the threshold voltage (or equivalentg t
the threshold voltage cannot be directly observed. Ratimer, amount of charge present in the floating gate), decoders for
bit of information about the threshold voltage may be olstdin error control codes in flash have historically relied on hard
by each cell read. bit decisions from the sense-amp comparator. However, soft

More precise models such as the model in [6] in whicinformation can be obtained either by reading from the same
the lowest and highest threshold voltage distributionsehagense amp comparator multiple times with different wore lin
a higher variance and the model in [7] in which the lowestoltages (as is already done to read multi-level flash celis)
threshold voltage (the one associated with zero chargé isve by equipping a flash cell with multiple sense amp comparators
Gaussian and the other threshold voltages have Gausdisin i the bit line, which is essentially equivalent to replacihe
but a uniform central region are sometimes used. The models@nse amp comparator (a one-bit A/D converter) with a higher
[8] is similar to [7], but is derived by explicitly accountirfor  precision A/D converter.
inter-cell interference. Despite its limitations, the pimGaus-  These two approaches are not completely interchangeable.
sian model is sufficient to motivate the proposed investigat The real goal is to detect soft information about the thr&sho

Fig. 1: A NAND flash memory cell.

In addition to their powerful error-correction capabdi

Ill. 1 LLUSTRATIVE CASE STUDY ONSLCAND MLC
FLASH MEMORY



voltage. Each additional read of a single sense amp compara- 07

tor can provide additional useful soft information abou¢ th 06¢
threshold voltage if the word line voltages are well-chosen Z 05t
However, multiple comparators may not give much additional 0 04}
information if the drain current vs. word-line-voltage ear
(the classic I-V transistor curve) is too nonlinear. If thaid 2
current has saturated too low or too high, the outputs from
more sense-amp comparators are not useful in establishing
precisely how much charge is in the floating gate. However,
if the word line voltage and floating gate charge level place
the transistor in the linear gain region, then some valuabie Fig. 2: Quantization model for SLC with 2 reads.
information is provided by multiple sense amp comparators.
Our work focuses on soft information obtained from multiple 0 P1 0
reads using the same sense-amp comparator with different
word line voltages. p

This section investigates the potential improvement of in-
creasing the resolution beyond one bit and studies how best t e
obtain this increased resolution. In [8], the use of sofbinf
mation was explored and the poor performance of uniformly

ensi
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spaced word-line voltages was clearly established. Thiepa B

takes an information-theoretic perspective on optimizing 1 1

word-line voltages. We study quantization models withetif Pi

ent numbers of reads for both SLC and MLC flash memory. In Fig. 3: Channel model for SLC with 2 reads.

the course of our analysis, we choose the word-line voltages
for each quantization by maximizing the mutual information
between the input and output of each equivalent read chanigl input and output can be calculated as
Theoretically, this choice of word-line voltages maxinsze

the amount of information provided by the quantization. The I(X;Y) = H(Y) — H(Y|X)
next subsection provides an example of SLC with just one P13 P1+p3
additional read to provide extra soft information. Aftelath =H ( 5 P2

the section looks at the benefit of additional reads for SLC o
and MLC. Numerical results are given in Section IV. where the crossover probabilities are computed as

10 (@)
VNo/2 )’

For SLC flash memory, each cell can store 1 bit of infor- po=Q vEs—q) Q VEs +q . and
mation. Figure 2 shows a simplistic model of the threshold V/No/2 No/2
voltage distribution as a mixture of two Gaussian random <\/F+q>

p=Q|—F—=|.

) — H (p1,p2,p3), (1)

A. 9.C Flash Memory with 2 reads

variables. In particular, if a “0” is written to the cell, the ~ 75
threshold voltage is modeled as a Gaussian random variable vV No/

with mean—/F; and variance,/N,/2. Similarly, if a “1” For a fixed E,/Ny, the mutual information in equation
is written to the cell, we model the threshold voltage as @) can be maximized numerically to find the parameter
Gaussian random variable with meany/E, and variance that yields the largest mutual informatidiiX’; v). Note that
v/No/2. Using this model, the read channel is equivalent thoosing; to maximize the mutual information should provide
a 2-PAM signal with AWGN noise, where the noise power igpproximately optimal LDPC decoding performance for a
No/2 and the symbol energy i&. given level of quantization, and that the optimurh is a
If we read twice with two different word line voltagesfunction of E,/N,. For example, if£, /Ny = 3.241 dB, ¢* =
(equivalent tog and —q in Figure 2), the threshold voltage(.2188,/F;, and if E, /N, = 6.789 dB, ¢* = 0.1253/F,.
can be quantized to one of three regions. This quantizationFigure 4 shows that the mutual information with 2 reads
model is shown in Figure 2 and an equivalent channel modellarger than the mutual information with just 1 read, and
is given in Figure 3. recovers most of the gap to the capacity with full soft
Suppose the input and output of the equivalent channel améormation.
X € {0,1} andY € {0,¢,1} respectively, and the various Note that even if the probability density function of the
crossover probabilities are as shown in Figure 3. Assumiing threshold voltage is different from our assumption, theysia
is equally likely to be 0 or 1, the mutual information betweenan be easily extended to find the word-line voltages that
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Fig. 6: Channel model for SLC with 3 reads.
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] ] ] ] ] . where the crossover probabilities are computed as
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for SLC. The dashed horizontal line indicates the operating
rate of our simulations. When a mutual information curve is 1_0 VE; —q

i i izati p1=1- | >
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Note that the optimumy* is again a function ofE,/Ny.
Figure 4 shows that the mutual information with 3 reads has
a even larger than the mutual information with 2 reads, and is
a little closer to the capacity with full soft information.

The above analysis can be easily extended to MLC flash

o ) ) ] memory. This is described in the next section for the case of
maximize the mutual information between the input and outpy_jevel MLC flash.

of the corresponding equivalent channel.

A similar analysis can be applied if there are 3 reads per
cell, which we describe next.

-VE, -q 0 q VE,
(shifted) SLC threshold voltage

Fig. 5: Quantization model for SLC with 3 reads.

C. 4-level MLC Flash Memory with 6 reads

B. SLC Flash Memory with 3 reads For 4-level MLC flash memory, each cell can store 2 bits of
information. Extending the previously introduced SLC miode
Suppose we can have 3 reads for each cell, and each rigathe natural way, we model the MLC read channel as a
corresponds to checking a comparator at a given word-ligePAM signal with AWGN noise. To minimize the raw bit
voltage. By symmetry, the word-line voltages should be ehoserror rate, we also use the Gray labelift, 01, 11, 10) for
symmetrically as shown in Figure 5. An equivalent channgliese four levels. Typically in 4-level MLC flash, each cell
model with labeled crossover probabilities is given in F&@6. is compared to 3 word-line voltages and thus the output of
Similar to the analysis of Section llI-A, the mutual inforthe comparator has 4 values (i.e., four distinct quantimati
mation between the input and output can be calculated as regions). If we consider three additional word-line votag
(for a total of six), the threshold voltage can be quantized

to seven distinct values as shown in Figure 7. An equivalent
I(X;Y)=H(Y)-HY|X N . .
(X;Y) (¥) (Y1X) channel model is given in Figure 8. (Although not shown,
—H <p1 T P4 7 P2 +p3 7 b3 +p2 ’ Pa +p1> the crossover probabilities for the channel model are défine
2 2 2 2 symmetrically in the lower half of the figure.)

— H(p1,p2,p3,pa), ) Similar to the analysis of Section llI-A, the mutual infor-
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Fig. 7: Channel model for 4-MLC with 6 reads.
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for MLC. The dashed horizontal line indicates the operating
rate of our simulations. When a mutual information curve is
below the dashed line, the read channel with that quantizati
cannot possibly support the attempted rate.

IV. SIMULATION RESULTS

In this section we demonstrate the benefits of LDPC decod-
ing using soft information provided through multiple reads
A rate-0.9021 BCH code with block length = 9152 and
dimensionk = 8256 provides a baseline for comparison. For
our simulations, we use a rate-0.9021 irregular LDPC code
with block lengthn = 9118 and dimensiork = 8225. This
LDPC code is designed with an optimal degree distribution
for the additive white Gaussian noise channel [4]. Morepver
the code was designed using the ACE algorithm [9], and
the stopping-set check algorithm [17] to optimize the LDPC

I(X;Y) matrix while maintaining the prescribed degree distriti
—H(Y) - H(Y|X) All of the simulations were performed using a sequentiakihel

propagation decoder.

Fig. 8: Quantization model for 4-MLC with 6 reads.

mation between the input and output can be calculated as

-0 (p“ tPo1t Pt P1a Pu1t a2 H Pas ¥ P13 Frame error rate (FER) is plotted vs. channel bit error
4 4 probability (raw bit error probability). The frame sizeedhe

P13 + P23+ P22 + P12 P14+ P24+ P+ Pu block lengths: = 8256 for BCH andk = 8225 for LDPC.
4 ’ 4 ’ Since the BCH decoder is limited to using hard decisions
Cloteateate crotemtenten from the comparator, we first simulate the LDPC decoder
4 4 using only hard decisions in order to make a fair baseline
Clc T €2¢ F €20 F 61“) comparison. The BCH and LDPC 1-bit curves in Figures 10
4 and 11 show that the LDPC code outperforms the BCH code

_ lH(p11,p12,p13,p14, €1as €1p, €1¢) in this range of page error rates, but not significantly see Th
2 red dashed vertical line gives the Shannon limit for opetati
_ EH(p%p%p%p%62a762b7620)’ (3) atrate 0.9021 on this channel with a single bit of reliapilit
2 information.
where all of the crossover probabilities can be calculated i Providing an additional bit of reliability information to
the same manner as those in Sections IlI-A and IlI-B. Thuthe LDPC decoder through increased quantization resalutio
in order to choose the optimal quantization levglsq,, and improves performance significantly, recovering almostdll
g3 for a fixed E5 /Ny, we maximize the mutual informationthe performance available with full soft information. Tleian
given in equation (3). be observed by comparing the Shannon limits corresponding
Figure 9 shows that the mutual information with 6 reads t® varying levels of soft information with their respective
much closer to the capacity with full soft information, tharsimulations in Figures 10 and 11.
the mutual information with 3 reads. We also plot the frame error rate versus the traditional
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V. CONCLUSION

This paper explores the benefit of using soft information in
an LDPC decoder for flash memory. Using a small amount
of soft information improves the performance of LDPC codes
significantly and demonstrates a clear performance adganta
over conventional BCH codes. In order to maximize the
performance benefit of the soft information, we develop a
word-line-voltages-selection method that maximizes the m
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Fig. 10: Simulation results for SLC.
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Fig. 11: Simulation results for 4-level MLC.

[71
signal-to-noise ratioE; /Ny in Figure 12 for SLC, where
each E; /N, corresponds to an equivalent raw bit error ratgg)
in Figure 10.

Of course the BCH code will also benefit from the use
of soft information. However, we were unable to perform[
simulations of a BCH decoder utilizing soft information ¢su

as erasures) for inclusion in this paper. [10]
X Frame Error Rate vs. SNR (BPSK) [11]
10 -— : y . :
BCH th
i LDPC soft [12]
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Fig. 12: Simulation results for SLC.

tual information between the input and output of the eqeintl
read channel. Possible directions for future researctudecl
‘ ; L extending these results to more precise channel models, the
design of better high-rate LDPC codes for flash memory, and

the analysis of the corresponding error-floor properties.
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