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Abstract—High-capacity NAND flash memory can achieve high
density storage by using multi-level cells (MLC) to store more
than one bit per cell. Although this larger storage capacity is
certainly beneficial, the increased density also increasesthe raw
bit error rate (BER), making powerful error correction codi ng
necessary. Traditional flash memories employ simple algebraic
codes, such as BCH codes, that can correct a fixed, specified
number of errors. This paper investigates the application of low-
density parity-check (LDPC) codes which are well known for
their ability to approach capacity in the AWGN channel. We
obtain soft information for the LDPC decoder by performing
multiple cell reads with distinct word-line voltages. The values
of the word-line voltages (also called reference voltages)are
optimized by maximizing the mutual information between the
input and output of the multiple-read channel. Our results show
that using this soft information in the LDPC decoder provides a
significant benefit and enables the LDPC code to outperform a
BCH code with comparable rate and block length over a range
of block error rates.

I. I NTRODUCTION

Flash memory can store large quantities of data in a small
device that has low power consumption and no moving parts.
The original NAND flash memories used only two levels.
This was called single-level-cell (SLC) flash because there
is only one nonzero charge level. Devices currently available
use multiple levels and are referred to as multiple-level cell
(MLC) flash. Four and eight levels are currently in use, and the
number of levels will increase further to provide more storage
capability [1][2].

Error control coding for flash memory is becoming more
important in a variety of ways as the storage density increases.
The increasing number of levels (and smaller distance between
levels) means that variations in cell behavior from cell to
cell (and over time due to wear-out) lower the signal-to-noise
ratio of the read channel making a stronger error-correction
code necessary. Reductions in feature size make inter-cell
interference more likely, adding an equalization or interference
suppression component to the read channel [3]. Also, the wear-
out effect is time varying, introducing a need for adaptive
coding to maximize the potential of the system.

Low-density parity-check (LDPC) codes are well-known for
their capacity-approaching ability in the AWGN channel [4].
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LDPC codes have typically been decoded with soft reliability
information while flash systems have typically only provided
hard reliability information to their decoders. This paper
demonstrates that at least some soft information is crucial
to successfully reaping the benefits of LDPC coding in flash
memory. We also explore how much soft information is nec-
essary to provide most of the benefits and how flash systems
could be engineered to provide the needed soft information
without an unnecessary penalty in complexity or processing
time.

This paper uses pulse-amplitude modulation (PAM) with
Gaussian noise to model Flash cell threshold voltage levels,
and investigates how to optimize the word-line voltages by
maximizing the mutual information between the input and
the output of the equivalent read channel. After choosing
the word-line voltage for each of the reads, the multiple-read
channel can be represented by a probability transition matrix
and the data can be decoded with a standard belief-propagation
algorithm.

Section II introduces the basics of the NAND flash mem-
ory model and LDPC codes. Section III studies three cases
covering SLC and MLC with different quantization choices.
Section III also shows how to obtain word-line voltages by
maximizing the mutual information of the equivalent read
channel. Section IV provides simulation results demonstrating
the benefits of using soft information with word-line voltages
selected as described in Section III, and Section V deliversthe
conclusions.

II. BACKGROUND

This section introduces the basics of NAND flash memory
and LDPC codes.

A. Basics of NAND Flash Memory

This paper focuses on the NAND architecture for flash
memory, which is the most prevalent architecture today. Each
memory cell in the NAND architecture features a transistor
with a control gate and a floating gate. To store information,a
charge level is written to the cell by adding a specified amount
of charge to the floating gate through Fowler-Nordheim tun-
neling by applying a relatively large voltage to the controlgate
[5].
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Fig. 1: A NAND flash memory cell.

Figure 1 shows the configuration of a NAND flash memory
cell. To read a memory cell, the charge level written to the
floating gate is detected by applying a specified word-line
voltage to the control gate and measuring the transistor drain
current. The drain current is compared to a threshold by
a sense amp comparator. If the drain current is above the
comparator threshold, then the word-line voltage was sufficient
to turn on the transistor, indicating that the charge written to
the floating gate was insufficient to prevent the transistor from
turning on. If the drain current is below the threshold, the
charge added to the floating gate was sufficient to prevent the
applied word-line voltage from turning on the transistor. The
sense amp comparator only provides one bit of information
about the charge level present in the floating gate. A bit error
occurring at this threshold-comparison stage is called araw
bit error.

The word-line voltage required to turn on a particular
transistor (called the threshold voltage) can vary from cell to
cell for a variety of reasons. For example, the floating gate
can be overcharged during the write operation, the floating
gate can lose charge due to leakage in the retention period, or
the floating gate can receive extra charge when nearby cells
are written [6].

The probability density function of the variation of threshold
voltage from its intended value is usually modeled by a Gaus-
sian distribution. In this paper, we assume an i.i.d. Gaussian
threshold voltage for each level of an MLC flash memory
cell. Therefore anm-level flash cell is equivalent to anm-
PAM communication system with AWGN noise, except that
the threshold voltage cannot be directly observed. Rather,one
bit of information about the threshold voltage may be obtained
by each cell read.

More precise models such as the model in [6] in which
the lowest and highest threshold voltage distributions have
a higher variance and the model in [7] in which the lowest
threshold voltage (the one associated with zero charge level) is
Gaussian and the other threshold voltages have Gaussian tails
but a uniform central region are sometimes used. The model in
[8] is similar to [7], but is derived by explicitly accounting for
inter-cell interference. Despite its limitations, the simple Gaus-
sian model is sufficient to motivate the proposed investigation

of soft information. Furthermore, the techniques presented
in this paper can easily be extended to other probability
distributions.

B. Basics of LDPC codes

LDPC codes are linear block codes defined by sparse parity-
check matrices. By optimizing the degree distribution, it is
well-known that LDPC codes can approach the capacity of an
AWGN channel [4]. Several algorithms have been proposed
to generate LDPC codes for a given degree distribution, such
as the ACE algorithm [9], and the PEG algorithm [10].

Designing LDPC codes with low error-floors is crucial for
applications to flash memory since storage systems usually
require block-error-rates lower than10−15. This topic has
generated a significant amount of recent research including
[11] [12] [13] [14] [15] [16].

In addition to their powerful error-correction capabilities,
another appealing aspect of LDPC codes is the existence of
low-complexity iterative algorithms used for decoding. These
iterative decoding algorithms are called belief-propagation
algorithms. Belief-propagation decoders commonly use soft
reliability information about the received bits, which can
greatly improve performance. Conversely, a quantization of
the received information which is too coarse can degrade the
performance of an LDPC code.

Traditional algebraic codes, such as BCH codes, use
bounded distance decoding and can only correct a specified,
fixed number of errors. Unlike these traditional codes, for
LDPC codes it can be difficult to guarantee a specified
number of correctable errors. However the average bit-error-
rate performance can often outperform that of BCH codes in
Gaussian noise.

The remainder of this paper studies how quantization during
the read process affects the performance of LDPC decoding
for flash memory. In the next section, we present a general
quantization approach for selecting word line voltages for
reading the flash memory cells in both the SLC and the MLC
cases.

III. I LLUSTRATIVE CASE STUDY ONSLC AND MLC
FLASH MEMORY

Since the sense amp comparator only provides one bit of
information about the threshold voltage (or equivalently the
amount of charge present in the floating gate), decoders for
error control codes in flash have historically relied on hard
bit decisions from the sense-amp comparator. However, soft
information can be obtained either by reading from the same
sense amp comparator multiple times with different word line
voltages (as is already done to read multi-level flash cells)or
by equipping a flash cell with multiple sense amp comparators
on the bit line, which is essentially equivalent to replacing the
sense amp comparator (a one-bit A/D converter) with a higher
precision A/D converter.

These two approaches are not completely interchangeable.
The real goal is to detect soft information about the threshold



voltage. Each additional read of a single sense amp compara-
tor can provide additional useful soft information about the
threshold voltage if the word line voltages are well-chosen.
However, multiple comparators may not give much additional
information if the drain current vs. word-line-voltage curve
(the classic I-V transistor curve) is too nonlinear. If the drain
current has saturated too low or too high, the outputs from
more sense-amp comparators are not useful in establishing
precisely how much charge is in the floating gate. However,
if the word line voltage and floating gate charge level place
the transistor in the linear gain region, then some valuablesoft
information is provided by multiple sense amp comparators.
Our work focuses on soft information obtained from multiple
reads using the same sense-amp comparator with different
word line voltages.

This section investigates the potential improvement of in-
creasing the resolution beyond one bit and studies how best to
obtain this increased resolution. In [8], the use of soft infor-
mation was explored and the poor performance of uniformly
spaced word-line voltages was clearly established. This paper
takes an information-theoretic perspective on optimizingthe
word-line voltages. We study quantization models with differ-
ent numbers of reads for both SLC and MLC flash memory. In
the course of our analysis, we choose the word-line voltages
for each quantization by maximizing the mutual information
between the input and output of each equivalent read channel.
Theoretically, this choice of word-line voltages maximizes
the amount of information provided by the quantization. The
next subsection provides an example of SLC with just one
additional read to provide extra soft information. After that,
the section looks at the benefit of additional reads for SLC
and MLC. Numerical results are given in Section IV.

A. SLC Flash Memory with 2 reads

For SLC flash memory, each cell can store 1 bit of infor-
mation. Figure 2 shows a simplistic model of the threshold
voltage distribution as a mixture of two Gaussian random
variables. In particular, if a “0” is written to the cell, the
threshold voltage is modeled as a Gaussian random variable
with mean−

√
Es and variance

√

N0/2. Similarly, if a “1”
is written to the cell, we model the threshold voltage as a
Gaussian random variable with mean+

√
Es and variance

√

N0/2. Using this model, the read channel is equivalent to
a 2-PAM signal with AWGN noise, where the noise power is
N0/2 and the symbol energy isEs.

If we read twice with two different word line voltages
(equivalent toq and −q in Figure 2), the threshold voltage
can be quantized to one of three regions. This quantization
model is shown in Figure 2 and an equivalent channel model
is given in Figure 3.

Suppose the input and output of the equivalent channel are
X ∈ {0, 1} and Y ∈ {0, e, 1} respectively, and the various
crossover probabilities are as shown in Figure 3. AssumingX
is equally likely to be 0 or 1, the mutual information between
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Fig. 2: Quantization model for SLC with 2 reads.
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the input and output can be calculated as

I(X ;Y ) = H(Y )−H(Y |X)

= H

(

p1+p3
2

, p2,
p1+p3

2

)

−H (p1, p2, p3) , (1)

where the crossover probabilities are computed as

p1 = 1−Q

(√
Es − q
√

N0/2

)

,

p2 = Q

(√
Es − q
√

N0/2

)

−Q

(√
Es + q
√

N0/2

)

, and

p3 = Q

(√
Es + q
√

N0/2

)

.

For a fixed Es/N0, the mutual information in equation
(1) can be maximized numerically to find the parameterq
that yields the largest mutual informationI(X ;Y ). Note that
choosingq to maximize the mutual information should provide
approximately optimal LDPC decoding performance for a
given level of quantization, and that the optimumq∗ is a
function ofEs/N0. For example, ifEs/N0 = 3.241 dB, q∗ =
0.2188

√
Es, and if Es/N0 = 6.789 dB, q∗ = 0.1253

√
Es.

Figure 4 shows that the mutual information with 2 reads
is larger than the mutual information with just 1 read, and
recovers most of the gap to the capacity with full soft
information.

Note that even if the probability density function of the
threshold voltage is different from our assumption, the analysis
can be easily extended to find the word-line voltages that
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Fig. 5: Quantization model for SLC with 3 reads.

maximize the mutual information between the input and output
of the corresponding equivalent channel.

A similar analysis can be applied if there are 3 reads per
cell, which we describe next.

B. SLC Flash Memory with 3 reads

Suppose we can have 3 reads for each cell, and each read
corresponds to checking a comparator at a given word-line
voltage. By symmetry, the word-line voltages should be chosen
symmetrically as shown in Figure 5. An equivalent channel
model with labeled crossover probabilities is given in Figure 6.

Similar to the analysis of Section III-A, the mutual infor-
mation between the input and output can be calculated as

I(X ;Y ) =H(Y )−H(Y |X)

=H

(

p1 + p4
2

,
p2 + p3

2
,
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2
,
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where the crossover probabilities are computed as
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Note that the optimumq∗ is again a function ofEs/N0.
Figure 4 shows that the mutual information with 3 reads has
a even larger than the mutual information with 2 reads, and is
a little closer to the capacity with full soft information.

The above analysis can be easily extended to MLC flash
memory. This is described in the next section for the case of
4-level MLC flash.

C. 4-level MLC Flash Memory with 6 reads

For 4-level MLC flash memory, each cell can store 2 bits of
information. Extending the previously introduced SLC model
in the natural way, we model the MLC read channel as a
4-PAM signal with AWGN noise. To minimize the raw bit
error rate, we also use the Gray labeling(00, 01, 11, 10) for
these four levels. Typically in 4-level MLC flash, each cell
is compared to 3 word-line voltages and thus the output of
the comparator has 4 values (i.e., four distinct quantization
regions). If we consider three additional word-line voltages
(for a total of six), the threshold voltage can be quantized
to seven distinct values as shown in Figure 7. An equivalent
channel model is given in Figure 8. (Although not shown,
the crossover probabilities for the channel model are defined
symmetrically in the lower half of the figure.)

Similar to the analysis of Section III-A, the mutual infor-
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mation between the input and output can be calculated as

I(X ;Y )

=H(Y )−H(Y |X)

=H

(

p11 + p21 + p24 + p14
4

,
p11 + p22 + p23 + p13

4
,
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4
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4
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4
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4
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2
H(p11, p12, p13, p14, e1a, e1b, e1c)

− 1

2
H(p21, p22, p23, p24, e2a, e2b, e2c), (3)

where all of the crossover probabilities can be calculated in
the same manner as those in Sections III-A and III-B. Thus,
in order to choose the optimal quantization levelsq1, q2, and
q3 for a fixedEs/N0, we maximize the mutual information
given in equation (3).

Figure 9 shows that the mutual information with 6 reads is
much closer to the capacity with full soft information, than
the mutual information with 3 reads.
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IV. SIMULATION RESULTS

In this section we demonstrate the benefits of LDPC decod-
ing using soft information provided through multiple reads.
A rate-0.9021 BCH code with block lengthn = 9152 and
dimensionk = 8256 provides a baseline for comparison. For
our simulations, we use a rate-0.9021 irregular LDPC code
with block lengthn = 9118 and dimensionk = 8225. This
LDPC code is designed with an optimal degree distribution
for the additive white Gaussian noise channel [4]. Moreover,
the code was designed using the ACE algorithm [9], and
the stopping-set check algorithm [17] to optimize the LDPC
matrix while maintaining the prescribed degree distribution.
All of the simulations were performed using a sequential belief
propagation decoder.

Frame error rate (FER) is plotted vs. channel bit error
probability (raw bit error probability). The frame sizes are the
block lengths,k = 8256 for BCH andk = 8225 for LDPC.

Since the BCH decoder is limited to using hard decisions
from the comparator, we first simulate the LDPC decoder
using only hard decisions in order to make a fair baseline
comparison. The BCH and LDPC 1-bit curves in Figures 10
and 11 show that the LDPC code outperforms the BCH code
in this range of page error rates, but not significantly so. The
red dashed vertical line gives the Shannon limit for operating
at rate 0.9021 on this channel with a single bit of reliability
information.

Providing an additional bit of reliability information to
the LDPC decoder through increased quantization resolution
improves performance significantly, recovering almost allof
the performance available with full soft information. Thiscan
be observed by comparing the Shannon limits corresponding
to varying levels of soft information with their respective
simulations in Figures 10 and 11.

We also plot the frame error rate versus the traditional
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signal-to-noise ratioEs/N0 in Figure 12 for SLC, where
eachEs/N0 corresponds to an equivalent raw bit error rate
in Figure 10.

Of course the BCH code will also benefit from the use
of soft information. However, we were unable to perform
simulations of a BCH decoder utilizing soft information (such
as erasures) for inclusion in this paper.
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V. CONCLUSION

This paper explores the benefit of using soft information in
an LDPC decoder for flash memory. Using a small amount
of soft information improves the performance of LDPC codes
significantly and demonstrates a clear performance advantage
over conventional BCH codes. In order to maximize the
performance benefit of the soft information, we develop a
word-line-voltages-selection method that maximizes the mu-
tual information between the input and output of the equivalent
read channel. Possible directions for future research include
extending these results to more precise channel models, the
design of better high-rate LDPC codes for flash memory, and
the analysis of the corresponding error-floor properties.
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