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Abstract—Multiple reads of the same Flash memory cell with
distinct word-line voltages provide enhanced precision for LDPC
decoding. In this paper, the word-line voltages are optimized
by maximizing the mutual information (MI) of the quantized
channel. The enhanced precision from a few additional reads
allows FER performance to approach that of full precision
soft information and enables an LDPC code to significantly
outperform a BCH code.

A constant-ratio constraint provides a significant simplification
in the optimization with no noticeable loss in performance.

For a well-designed LDPC code, the quantization that max-
imizes the mutual information also minimizes the frame error
rate in our simulations. However, for an example LDPC code
with a high error floor caused by small absorbing sets, the MMI
quantization does not provide the lowest frame error rate. The
best quantization in this case introduces more erasures than
would be optimal for the channel MI in order to mitigate the
absorbing sets of the poorly designed code.

The paper also identifies a trade-off in LDPC code design
when decoding is performed with multiple precision levels; the
best code at one level of precision will typically not be the best
code at a different level of precision.

Index Terms—Flash Memory, LDPC Codes, Quantization,
Mutual Information Maximization, LDPC Decoding, Soft Infor-
mation, Enhanced Precision

I. INTRODUCTION

Flash memory can store large quantities of data in a small

device that has low power consumption and no moving parts.

The original NAND Flash uses only two levels. This is called

single-level-cell (SLC) Flash because there is only one actively

written charge level. Devices currently available using four

levels are called multi-level cell (MLC) Flash. Four and eight

levels are currently in use, and the number of levels will

increase further [1][2].

Error control coding for Flash memory is becoming more

important as the storage density increases. The increasing

number of levels (and smaller distance between levels) means

that variations in cell behavior from cell to cell (and over

time due to wear-out) lower the signal-to-noise ratio of the

read channel. This makes stronger error-correction codes nec-

essary. Reductions in feature size make inter-cell interference

more likely, adding an equalization or interference suppression

component to the read channel [3]. Also, the wear-out effect

is time-varying, introducing a need for adaptive coding or

modulation to maximize the potential of the system.

This work was presented in part at Globecom 2011 in Houston, Texas in
December 2011 and at the 2012 Non-Volatile Memories Workshop at UCSD
in March of 2012. This research was supported by a gift from Inphi Corp.
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A. Related Work

Low-density parity-check (LDPC) codes are well-known

for their capacity-approaching ability for AWGN channels

[4] and are the subject of recent interest for application to

the Flash memory read channel. For example, in [5] LDPC

codes without access to enhanced precision are shown to

provide a performance improvement over BCH codes, but that

improvement becomes small at high code rates. Also in [5],

an alternative error correction scheme is introduced that takes

into account the dominant cell-level errors found in eight-level

cells. This scheme provides improvement for eight-level cells

without using enhanced precision.

Important work related to codes that consider the dominant

cell-level error is the work of Gabrys et al. on graded bit

error correcting codes [6]. In contrast to codes designed for

dominant errors, our paper focuses on the use of enhanced

precision to improve performance. While we explore the

improvement in terms of standard LDPC codes, enhanced

precision should also improve the performance of alternative

error correction schemes that focus on the dominant cell-level

errors as long as decoders that support soft information are

available.

Another approach for using LDPC codes in Flash memories

[7] is to design the codes for use with rank modulation. Rank

modulation [8], [9] stores information in the cell using the

relative value (or ordering) of cell charge levels rather than

the absolute value. LDPC codes for Flash memories with

rank modulation require the cell charge-level ordering at the

decoder.

As observed in [8], rank modulation eliminates the need

for discrete cell levels, overcomes overshoot errors when

programming cells, and mitigates the problem of asymmetric

errors. This is an exciting approach for future Flash architec-

tures. However, current Flash systems use the same word-line

voltage to read all cells on the page and thus would require a

large number of page reads to learn the charge-level ordering.

Our paper focuses on the traditional approach of coding with

fixed target charge levels and assumes that when reading each

page, the same word-line voltage is used for all cells.

We note that an alternative approach to using multiple reads

to enhance precision is to perform a single read but use

a dynamic threshold scheme as introduced recently by [10]

to adapt to time varying channel degradations such as the

mean shift that occurs due to retention loss. We note that

the use of dynamic thresholds is complementary to the use



of enhanced precision, and a combined approach could be

especially effective.

This paper uses mutual information maximization as the

objective function that drives the optimization of the word-line

voltages (thresholds) used for the multiple reads that provide

enhanced precision. Mutual information maximization is also

explored in [11] for the design of memory efficient decoding

of LDPC codes and in [12] for quantization of binary-input

discrete memoryless channels and the design of the message-

passing decoders of LDPC codes used on such channels.

One final aspect of research in Flash memory systems is

that current Flash memory systems are designed to erase an

entire block of data at once. Each block consists of numerous

pages and each page contains thousands of bits. Thus, in order

to change data on a single page, the entire block would need to

be erased. However, erasing and re-writing data onto a block in

order to change a small amount of data degrades performance

because each time electrons are written and then erased from

the floating gate, the integrity of the floating gate degrades in

a process known as “cell wear-out”.

In [13], coding is used to minimize the number block

erasures and the number of auxiliary blocks required for

moving pages of data in a Flash memory system. Efficient

wear-leveling and data movement in Flash is an important

problem, but our paper addresses the complementary problem

of improving the ability to reliably read a page by using

enhanced precision.

B. Overview and Contributions

LDPC codes have typically been decoded with soft reli-

ability information (a real or complex number representing

a received symbol value) while Flash memory systems have

typically provided only hard reliability information (a single

bit representing the output of a sense-amp comparator) to

their decoders. This paper demonstrates that a capability

for enhanced precision through multiple reads is crucial to

successfully reaping the benefits of LDPC coding in Flash

memory. The paper explores how to select the word-line

voltages used for additional reads, how many such reads are

necessary to provide most of the LDPC performance benefit,

and how varying levels of precision can impact code design.

Section II briefly introduces the NAND Flash memory

model and LDPC codes. Section III shows how to obtain word-

line voltages by maximizing the mutual information (MI) of

the equivalent read channel using a simple Gaussian model

of SLC (two-level) Flash as an example. This section also

shows that a few additional reads provide most of the benefit

of enhanced precision.

Section IV describes the LDPC codes used in the paper

in detail. This section also demonstrates a code design trade-

off: the best code in terms of both density evolution threshold

[4] and empirical performance at one precision level is not

the best according to either density evolution threshold and

empirical performance at another precision level. This is a

practically important issue because the same code may well

be decoded with varying levels of precision. Time will be spent
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Fig. 1. A NAND Flash memory cell.

on additional page reads to enhance precision only if the page

could not be decoded without them.

Section V extends the discussion to MLC (four-level) Flash.

This section uses a more realistic model of the Flash read

channel from [14] and employs the “constant-ratio” method

of [15] as a constraint to simplify the threshold optimization.

This section confirms that maximizing mutual information also

minimizes frame error rate for a well-designed LDPC code.

However, this section also provides an example of a poorly-

designed LDPC code where maximizing mutual information

does not minimize frame error rate. In this example, larger

erasure regions than would maximize the mutual information

are needed to mitigate small absorbing sets. The section

concludes by presenting simulation results for these two LDPC

codes using the channel model of [15]. Section VI delivers the

conclusions.

II. BACKGROUND

This section introduces the basics of NAND Flash memory

and LDPC codes.

A. Basics of NAND Flash Memory

This paper focuses on the NAND architecture for Flash

memory. Fig. 1 shows the configuration of a NAND Flash

memory cell. Each memory cell in the NAND architecture

features a transistor with a control gate and a floating gate.

To store information, a charge level is written to the cell

by adding a specified amount of charge to the floating gate

through Fowler-Nordheim tunneling by applying a relatively

large voltage to the control gate [16].

To read a memory cell, the charge level written to the

floating gate is detected by applying a specified word-line

voltage to the control gate and measuring the transistor drain

current. When reading a page, the same word-line voltage is

applied to all cells in the page. The drain current is compared

to a threshold by a sense amp comparator. If the drain current

is above the comparator threshold, then the word-line voltage

was sufficient to turn on the transistor, indicating that the

charge written to the floating gate was insufficient to prevent

the transistor from turning on. If the drain current is below the

threshold, the charge added to the floating gate was sufficient



to prevent the applied word-line voltage from turning on the

transistor. The sense amp comparator only provides one bit of

information about the charge level present in the floating gate.

A bit error occurring at this threshold-comparison stage is

called a raw bit error and we use the phrase channel bit error

probability to refer to the probability of a raw bit error given

a specified amount of distortion in the process of writing to

the cell, retaining the charge level over a period of time, and

reading the cell. We refer to this overall process as the read

channel.

The word-line voltage or reference voltage required to turn

on a particular transistor (called the threshold voltage) can

vary from cell to cell for a variety of reasons. For example,

the floating gate can be overcharged during the write operation,

the floating gate can lose charge due to leakage in the retention

period, or the floating gate can receive extra charge when

nearby cells are written [17]. We refer to this variation of

threshold voltage from its intended value as the read channel

noise.

The probability density function of the read channel noise

can be modeled by a Gaussian distribution. In this paper, we

initially assume an i.i.d. Gaussian threshold voltage for each

level of an SLC (i.e. two-level) Flash memory cell. This is

equivalent to binary phase-shift keying (BPSK) with AWGN

noise, except that the threshold voltage cannot be directly

observed. Rather, at most one bit of information about the

threshold voltage may be obtained by each cell read.

More precise models such as the model in [17] in which

the lowest and highest threshold voltage distributions have a

higher variance and the model in [18] in which the lowest

threshold voltage (the one associated with zero charge level)

is Gaussian and the other threshold voltages have Gaussian

tails but a uniform central region are sometimes used. The

model in [14] is similar to [18], but is derived by explicitly

accounting for real dominating noise sources, such as inter-

cell interference, program injection statistics, random tele-

graph noise and retention noise. After considering the simple

Gaussian approximation for SLC, this paper considers MLC

(4-level) Flash memory cells and uses the model of [14] to

study the MMI approach and constant ratio method in a more

realistic setting to complement the analysis using a simple

i.i.d. Gaussian assumption.

B. Basics of LDPC codes

LDPC codes [19] are linear block codes defined by sparse

parity-check matrices. By optimizing the degree distribution, it

is well-known that LDPC codes can approach the capacity of

an AWGN channel [4]. Several algorithms have been proposed

to generate LDPC codes for a given degree distribution, such

as the ACE algorithm [20], and the PEG algorithm [21].

In addition to their powerful error-correction capabilities,

another appealing aspect of LDPC codes is the existence of

low-complexity iterative algorithms used for decoding. These

iterative decoding algorithms are called belief-propagation

algorithms. Belief-propagation decoders commonly use soft

reliability information about the received bits, which can

greatly improve performance. Conversely, a quantization of

the received information which is too coarse can degrade the

performance of an LDPC code.

Traditional algebraic codes, such as BCH codes, commonly

use bounded-distance decoding and can correct up to a spec-

ified, fixed number of errors. Unlike these traditional codes,

it can be difficult for LDPC codes to guarantee a specified

number of correctable errors. However the average bit-error-

rate performance can often outperform that of BCH codes in

Gaussian noise.

The remainder of this paper studies how quantization during

the read process affects the performance of LDPC decoding

for Flash memory. In the next section, we present a general

quantization approach for selecting word-line voltages for

reading the Flash memory cells and apply it to the specific

example of SLC (two-level) Flash using a simple Gaussian

channel model.

III. SOFT INFORMATION VIA MULTIPLE CELL READS

Because the sense-amp comparator provides at most one

bit of information about the threshold voltage (or equivalently

about the amount of charge present in the floating gate),

decoders for error control codes in Flash have historically used

hard decisions on each bit.

A. Obtaining Soft Information

Soft information can be obtained in two ways: either by

reading from the same sense-amp comparator multiple times

with different word-line voltages (as is already done to read

multi-level Flash cells) or by equipping a Flash cell with

multiple sense-amp comparators on the bit line, which is

essentially equivalent to replacing the sense amp comparator (a

one-bit A/D converter) with a higher-precision A/D converter.

These two approaches are not completely interchangeable.

The real goal is to detect soft information about the threshold

voltage. Each additional read of a single sense amp comparator

can provide additional useful information about the threshold

voltage if the word-line voltages are well-chosen. In contrast,

multiple comparators may not give much additional informa-

tion if the drain current vs. word-line-voltage curve (the classic

I-V transistor curve) is too nonlinear. If the drain current has

saturated too low or too high, the outputs from more sense-

amp comparators are not useful in establishing precisely how

much charge is in the floating gate. If the word-line voltage

and floating gate charge level place the transistor in the linear

gain region, then some valuable soft information is provided

by multiple sense amp comparators.

Our work focuses on the first technique described above

in which soft information is obtained from multiple reads

using the same sense-amp comparator with different word-line

voltages.

This section investigates the potential improvement of in-

creasing the resolution beyond one bit and studies how best to

obtain this increased resolution. In [15], the use of soft infor-

mation was explored and the poor performance of uniformly

spaced word-line voltages was established.
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This paper takes an information-theoretic perspective on

optimizing the word-line voltages. We study quantization

models with different numbers of reads for both SLC (two-

level) and MLC (four-level) Flash memories.

The fundamental approach of this paper is to choose the

word-line voltages for each quantization by maximizing the

MI between the input and output of each equivalent read

channel. This approach has been taken in other work (not in

the context of Flash memory) such as [11] [12]. Essentially,

this paper seeks to quantize so as to create an effective read

channel that has the maximum mutual information (MMI).

Theoretically, this choice of word-line voltages maximizes

the amount of information provided by the quantization. This

section explores the simplest possible case, SLC (two-level)

Flash using a Gaussian model.

B. Quantizing Flash to Maximize Mutual Information

This subsection describes how to select word-line voltages

to achieve MMI in the context of a simple model of the

two-level Flash cell read channel as BPSK transmission with

Gaussian noise. The standard Flash system would use a single

read. MMI word-line voltage selection is explicitly presented

using two reads and three reads and the performance benefit

is studied as a function of additional reads.

For SLC Flash memory, each cell can store one bit of

information. Fig. 2 shows the model of the threshold voltage
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distribution as a mixture of two identically distributed Gaus-

sian random variables. When either a “0” or “1” is written

to the cell, the threshold voltage is modeled as a Gaussian

random variable with variance N0/2 and either mean −
√
Es

(for “1” ) or mean +
√
Es (for “0” ).

1) Two reads per cell: For SLC with two reads using

two different word-line voltages, which should be symmetric

(shown as q and −q in Fig. 2), the threshold voltage is

quantized according to three regions shown in Fig. 2: the

green region, the red region, and the union of the blue and

purple regions (which essentially corresponds to an erasure).

This quantization produces the effective discrete memoryless

channel (DMC) model as shown in Fig. 3(a) with input

X ∈ {0, 1} and output Y ∈ {0, e, 1}.

Assuming X is equally likely to be 0 or 1, the MI I(X;Y )
between the input X and output Y of the resulting DMC can

be calculated [22] as

I(X;Y ) = H(Y )−H(Y |X)

= H

(

p1+p3
2

, p2,
p1+p3

2

)

−H (p1, p2, p3) , (1)

where H is the entropy function [22] and the rele-

vant crossover probabilities shown in Fig. 3 (a) are

p1 = 1−Q−, p2 = Q− −Q+, and p3 = Q+ with

Q− = Q

(√
Es − q
√

N0/2

)

and Q+ = Q

(√
Es + q
√

N0/2

)

, (2)

where Q(x) = 1√
2π

∫∞
x

e−u2/2du.

For fixed signal-to-noise ratio (SNR) Es

N0/2
, the MI in (1) is a

quasi-concave function of q and can be maximized numerically

to find the parameter q that yields the MMI. Fig. 4 shows how

MI varies as a function of q for an SNR of 7 dB. Note that

when q = 0 there is no erasure region, which is equivalent to

a single read. As q increases so does the erasure region. MI

is concave in q between q = 0 and the point of inflection at

q =
√
Es = 1.



Because the MI is quasi-concave with a zero derivative

only at the maximum MI and q = ∞, the optimal q in this

case can be found by setting dI/dq = 0. Let f(x) be the

probability density function of a standard normal distribution.

The derivative of the mutual information with respect to the

threshold q is computed as

dI

dq
=

3
∑

j=1

p′j(q)(log pj(q) + 1) (3)

= f(T+
q ) log

p1 + p3
2p3

+ f(T−
q ) log

p1 + p3
2p1

(4)

= f(T+
q ) log

1 + p1/p3
2

+ f(T−
q ) log

1 + p3/p1
2

, (5)

where T+
q =

√
Es + q and T−

q =
√
Es − q.

Note that dI/dq is continuous on R
+. At q = 0 we have

p1 + p3 = 1. Applying this to (4), we have

dI

dq
= −f(

√

Es) log 4p1p3 ≥ 0 , (6)

at q = 0 by the inequality of arithmetic and geometric means.

Equality holds only when p1 = p3. It can also be shown

that dI/dq becomes negative for sufficiently large q and then

increases monotonically with limq→∞ g(q) = 0. Together

these properties (which are illustrated in the example of Fig.

4) ensure that there is a single zero derivative for finite q
corresponding to the desired maximum MI. This optimum q
can be found by an application of the bisection algorithm.

2) Three reads per cell: Now consider SLC with three

reads for each cell. The word-line voltages should again be

symmetric (shown as q, 0, and −q in Fig. 2). The threshold

voltage is quantized according to the four differently shaded

regions shown in Fig. 2. This quantization produces the DMC

model as shown in Fig. 3(b) with input X ∈ {0, 1} and output

Y ∈ {00, 01, 10, 11}.

Assuming X is equally likely to be 0 or 1, the MI between

the input and output of this DMC can be calculated as

I(X;Y ) =H(Y )−H(Y |X)

=H

(

p1 + p4
2

,
p2 + p3

2
,
p3 + p2

2
,
p4 + p1

2

)

−H(p1, p2, p3, p4), (7)

where the crossover probabilities are p1 = 1 − Q−, p2 =
Q− −Q0, p3 = Q0 −Q+, and p4 = Q+ with Q− and Q+ as

in (2) and

Q0 = Q

( √
Es

√

N0/2

)

. (8)

C. Performance vs. Number of Reads Per Cell

The MMI optimization approach generalizes to more reads

per cell. Fig. 5 shows MI plotted against channel bit error

probability for different numbers of reads per cell for the

case of SLC. MI increases with the number of reads. The

top (dashed) curve shows the MI possible with full soft

information (where the receiver would know the threshold
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voltage exactly). The bottom curve shows the MI available

with a single read. With two reads, the MI is improved enough

to close about half of the gap between the single-read MI and

the MI of full soft information. Increasing the number of reads

improves the MI, but with diminishing returns as shown in

Fig. 5.

Fig. 6 shows how the bit error probability requirement

to achieve an MI of 0.9021 (the horizontal line in Fig. 5)

increases (relaxes) as the number of reads increases.

Fig. 7 shows how the performance of an LDPC code (Code

2 described in Section IV below) improves as more soft

information is made available to the decoder using MMI-

optimized thresholds. This simulation uses the Gaussian model

of the SLC Flash memory cell shown in Fig. 2. Fig. 7

plots FER versus channel bit error probability computed as

Q
(√

2Es

N0

)

. For reference, the FER performance of a binary

BCH code using one read per cell is also shown. Both the

LDPC code and the BCH code have rate 0.9021. The LDPC

code has a frame size of k = 8225 and the BCH code
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has a frame size of k = 8256. Also for reference, dashed

vertical lines show the Shannon limit (worst channel that could

theoretically support reliable transmission) for each level of

quantization at the target rate of 0.9021.

Consistent with the mutual information curves of Fig. 5,

this plot illustrates that each additional read improves the

FER performance of the LDPC code, but the performance

improvement is diminishing. Three reads takes the LDPC code

performance close to the limit of the performance achieved

by that code with full soft information (essentially, an infinite

number of reads). Note that the LDPC code outperforms the

BCH code even with a single read, but one or two additional

reads significantly improve performance.

IV. QUANTIZATION-BASED LDPC DESIGN TRADE-OFF

Because reading a page of bits from the sense-amp com-

parators is a time-intensive operation, it is likely that enhanced

precision will be added progressively in actual implementa-

tions, and additional reads will only take place if needed to

facilitate successful decoding. Hence, a single LDPC code will

be decoded at a variety of precision levels. This introduces a

design trade-off, which we will explore by comparing two

LDPC codes.

Overall in this paper we consider three irregular LDPC

codes, which we will refer to as Code 1, Code 2, and Code

3. The LDPC matrices1 were constructed according to their

respective degree distributions using the ACE algorithm [20],

and the stopping-set check algorithm [23]. All of the simu-

lations were performed using a sequential belief propagation

decoder. The frame size is k = 8225 for each of the three

LDPC codes.

The degree distributions of the three codes are as follows:

1The complete LDPC code parity-check matrices are available at the CSL
website http://www.ee.ucla.edu/∼csl/files/publications.html#COD.

TABLE I
DENSITY EVOLUTION THRESHOLDS FOR THE THREE LDPC CODES

STUDIED. THE AWGN DENSITY EVOLUTION THRESHOLD IS GIVEN BOTH

IN TERMS OF σ AND Eb/N0 = −10 log10(2Rσ2) WHERE R = 0.9021.
THE BSC THRESHOLD IS GIVEN IN TERMS OF THE CHANNEL BIT ERROR

PROBABILITY ǫ.

Full-precision AWGN Single-Read AWGN

Code σ SNR = 2Es/N0 ǫ SNR(ǫ)

1 0.499 6.04 dB 9.29× 10−3 7.44 dB

2 0.483 6.32 dB 1.05× 10−2 7.26 dB

3 0.492 6.16 dB 9.61× 10−3 7.39 dB
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λ1(x) =2.0054× 10−5 + 3.5776× 10−2x+ 0.39869x2

+ 8.4827× 10−3x8 + 3.7701× 10−2x9 + 0.51933x18

ρ1(x) =0.15662x54 + 0.84338x55

λ2(x) =1.7701× 10−5 + 3.1579× 10−2x+ 0.46923x3

+ 7.4877× 10−3x8 + 3.3278× 10−2x9 + 0.45841x18

ρ2(x) =1.0975× 10−3x61 + 0.73267x62 + 0.26623x63

λ3(x) =3.2172× 10−2x+ 2.681× 10−3x2

+ 0.55764x3 + 0.40751x23

ρ3(x) =0.10366x57 + 0.89634x58 ,

where λ(x) is the left (variable-node) degree distribution and

ρ(x) is the right (check-node) degree distribution. A term

of axd−1 in λ(x) indicates that a is the fraction of edges

connecting to variable nodes with degree d.

Table I shows the density evolution thresholds for these

three codes for the extremes of a full-precision SLC channel

and a single-read SLC channel assuming the Gaussian model

of Fig. 2.

Table I suggests that there is a trade-off between full preci-

sion performance and single-read performance. For example,

Code 2 has a lower (in dB) single-read threshold than Code

3, but a higher full-precision threshold than Code 3. Fig. 8

shows FER vs. SNR simulation results consistent with the

density evolution threshold results shown in Table I.

Fig. 9 compares the FER vs. channel BER performance

curves for Codes 2 and 3 showing that for 2 reads the codes

have essentially the same performance, but for three reads

Code 3 has better performance.

An interesting area of future research is the development of

codes that are “universal” across precision variations. It would

be useful to design a code that can perform well over a large

range of precisions or to show that such universal performance

is not possible.

V. QUANTIZATION FOR MLC (4-LEVELS)

In this section, we extend the quantization approach to

handle more than two levels, introduce a more realistic channel

model, and present a method to reduce optimization complex-

ity when there are more than two levels.

A. MMI Quantization for MLC

For MLC (4-level) Flash memory, each cell can store 2

bits of information. Figure 10 extends the previously intro-

duced SLC Gaussian model in the natural way. Gray labeling

(00, 01, 11, 10) minimizes the raw bit error rate for these four

levels. Typically in 4-level MLC Flash, each cell is compared

to 3 word-line voltages and thus the output of the comparator

has 4 possible values (i.e., four distinct quantization regions).
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Fig. 10. Channel model for four-level MLC with threshold voltages modeled
as Gaussians all sharing the same variance. Quantization is shown for six
reads.
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Fig. 11. Quantization model for 4-MLC with 6 reads.

If we consider three additional word-line voltages (for a

total of six), the threshold voltage can be quantized to seven

distinct regions as shown in Figure 10. The resulting DMC

with four inputs and seven outputs is given in Figure 11. Since

the channel is symmetric, the crossover probabilities for the

channel model are symmetric in the upper and lower half of

the figure, i.e., p11 = p44, e1a = e4c, p12 = p43, etc.

Similar to the SLC analysis, the MI between the input and

output can be calculated as

I(X;Y ) =H(Y )−H(Y |X)

=H

(

p11 + p21 + p24 + p14
4

,
p12 + p22 + p23 + p13

4
,

p13 + p23 + p22 + p12
4

,
p14 + p24 + p21 + p11

4
,

e1a + e2a + e2c + e1c
4

,
e1b + e2b + e2b + e1b

4
,

e1c + e2c + e2a + e1a
4

)

− 1

2
H(p11, p12, p13, p14, e1a, e1b, e1c)

− 1

2
H(p21, p22, p23, p24, e2a, e2b, e2c), (9)
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where all of the crossover probabilities can be calculated in

the same manner as with SLC. Thus, in order to choose the

optimal quantization levels q1, q2, and q3 for a fixed SNR, we

maximize the MI given in equation (9).

This optimization becomes more cumbersome as the num-

ber of thresholds increases. The optimization problem is no

longer quasi-concave unless carefully constrained. However,

we were able to complete the optimization with three thresh-

olds. We note that if the problem is constrained to a single

parameter by selecting thresholds µi ± q for the four equally

spaced means µ1 < µ2 < µ3 < µ4, the problem becomes

quasi-concave (or even concave) over the interesting region of

0 ≤ q ≤ µi − µi−1 as shown in Fig. 12.

The qualitative behavior of MMI and required BER as the

number of reads is increased in the MLC case is essentially

the same as was shown in Figs. 5 and 6 for the SLC case.

Fig. 13 shows performance of unconstrained MMI quantiza-

tion on the Gaussian channel model of Fig. 10 for 3 reads and

for six reads for Codes 1 and 2. With four levels, three reads

are required for hard decoding. For MLC (four-level) Flash,

using six reads recovers more than half of the gap between

hard decoding (three reads) and full soft-precision decoding.

This is similar to the performance improvement seen for SLC

(two-level) Flash when increasing from one read to two reads.

The two bits corresponding to a single MLC cell are

actually associated with two distinct pages in many Flash

implementations. However, with Gray labeling as in Fig. 10,

the most significant bit can be ascertained with a single read

(or the two central reads for enhanced precision as shown in

Fig. 10) without performing the other reads. Similarly, the least

significant bit using the labeling of Fig. 10 can be ascertained

from the two outer edge reads (or four outer edge reads for

enhanced precision as shown in Fig. 10) without performing

the central read(s).
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Fig. 14. A (4,2) absorbing set. Variable nodes are shown as black circles.
Satisfied check nodes are shown as white squares. Unsatisfied check nodes
are shown as black squares. Note that each of the four variable nodes has
degree three. This absorbing set is avoided by precluding degree-3 nodes.

Because the read(s) associated with one of the two distinct

bits turn out to be independent of the value of the other bit,

the quantization optimization is not affected by whether the

bits are stored in separate pages or not. However, it should be

noted that with Gray labeling as in Fig. 10 the most significant

bit enjoys a lower BER than the least significant bit for a given

SNR. In our LDPC simulations, a single LDPC code included

both the most significant bit and the least significant bit.

Note that in Fig. 13, the trade-off between performance

with soft decoding and performance with hard decoding is

even more pronounced. Code 1 is clearly superior with soft

decoding but demonstrates a noticeable error floor when

decoded with three or six reads.

LDPC error floors due to absorbing sets can be sensitive

to the quantization precision, occurring at low precision but

not high precision [24], [25]. Code 1 has small absorbing sets

including the (4, 2), (5, 1), and (5, 2) absorbing sets. As shown

in Fig. 14 for the (4,2) absorbing set, these absorbing sets

can all be avoided by precluding degree-three variable nodes.

Code 2 avoids these absorbing sets because it has no degree-3

variable node. As shown in Fig. 13 , Code 2 avoids the error

floor problems of Code 1.



0 1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025

0.03
Mutual−information optimized quantization

Threshold voltage

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y
 f

u
n
c
ti
o
n

 

 

Read channel
noise distribution

Mutual−information
optimized quantization

00

ea eb ec

01 11 10

Fig. 15. Mutual-information optimized quantization for the 6-month data.

B. A More Realistic Model

We can extend the MMI analysis of Section III-B to any

model for the Flash memory read channel. As an example,

consider again the 4-level 6-read MLC as a 4-input 7-output

discrete channel as shown in Fig. 11. However, instead of

assuming Gaussian noise distributions as in Fig. 11, this

subsection numerically computes the probability transition

matrix using the retention noise model of [14] for a six-month

retention period. Fig. 15 shows the four conditional threshold-

voltage probability density functions generated according to

[14] and the resulting six MMI word-line voltages that max-

imize MMI for this noise model. While the conditional noise

for each transmitted (or written) threshold voltage is similar to

that of a Gaussian, the variance of the conditional distributions

varies greatly across the four possible threshold voltages. Note

that the lowest threshold voltage has by far the largest variance.

Since the retention noise model is not symmetric, we need

to numerically compute all the probabilities in Fig. 11 and

calculate the MI between the input and output as shown in

(10). The MI in (10) is in general not a quasi-concave function

in terms of the word-line voltages q1, q2, ..., q6, although it

is quasi-concave for the simple model of two symmetric

Gaussians with symmetric word-line voltages studied in [26].

Since (10) is a continuous and smooth function and locally

quasi-concave in the range of our interest, we can numerically

compute the MMI quantization levels with a careful use of

bisection search.

C. The Constant-Ratio Method

In [15], a helpful heuristic constrains the additional word-

line voltages to the left and right of each hard-decision word-

line voltage so that the largest and second-largest conditional

noise pdfs have a specified constant ratio R. This is a natural

extension to general non-symmetric channels such as the one

I(X;Y ) =H(Y )−H(Y |X)

=H

(

p11 + p21 + p31 + p41
4

,
p12 + p22 + p32 + p42

4
,

p13 + p23 + p33 + p43
4

,
p14 + p24 + p34 + p44

4
,

e1a + e2a + e3a + e4a
4

,
e1b + e2b + e3b + e4b

4
,

e1c + e2c + e3c + e4c
4

)

− 1

4
H(p11, p12, p13, p14, e1a, e1b, e1c)

− 1

4
H(p21, p22, p23, p24, e2a, e2b, e2c)

− 1

4
H(p31, p32, p33, p34, e3a, e3b, e3c)

− 1

4
H(p41, p42, p43, p44, e4a, e4b, e4c). (10)

shown in Fig. 15 of the constraint to a single parameter by

selecting thresholds µi ± q for the four equally spaced means

µ1 < µ2 < µ3 < µ4 in the simple symmetric Gaussian model.

Note that the value of R at the natural hard-decision

threshold is one because the two densities are equal. Higher

values of R move these secondary thresholds further away

from the hard decoding threshold. In Fig. 10 a higher value

of R would correspond to larger “erasure” regions (shown in

white). Although this heuristic is not named in [15], we will

refer it as the “constant-ratio” (CR) method.

In [15], the specification of R is left to empirical simulation.

The CR method can be viewed as a constraint that can be

applied to MMI optimization in order to reduce the search

space.

The CR method can also simplify optimization because

as with the symmetric constraint of Fig. 12 the MI is a

quasi-concave function of R in the region of interest for the

MLC (4-level) symmetric Gaussian channel. Fig. 16 shows

MI as a function of R for MLC (four-level) Flash with six

quantization thresholds (seven quantization levels) for both

the simple symmetric Gaussian model and the more realistic

retention model of [14]. The Gaussian and retention channels

were selected so that they have an identical MMI for six-read

(seven-level) unconstrained MMI optimization.

For both models the CR method with the MI-maximizing

R provides essentially the same MI as obtained by the

unconstrained MMI optimization. Furthermore, it is striking

how similar the MMI vs. R behavior is for the two different

channel models. For the Gaussian model, MI is a concave

function of R. The curve of MI vs. R for the retention model

closely follows the Gaussian model curve, but is not a strictly

concave function because of variations in the numerical model.

The MMI approach is a way to select quantization levels in

the hope of optimizing frame-error-rate (FER) performance.

Fig. 16 shows the FER performance as a function of R for

both the Gaussian model and the retention model for LDPC

Code 2 described in Section IV below. The value of R that
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Fig. 16. Mutual information and frame error rate for Code 2 separately plotted
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provides the maximum MI also delivers the lowest FER as a

function of R. This lends support to the approach of selecting

quantization thresholds to maximize MMI.

Also, the constraint to a constant-ratio does not appear to

adversely affect FER since the lowest FER as a function

or R is essentially the same as (and in the Gaussian case

even slightly better than) the FER achieved by unconstrained

MMI quantization. The range of MI in Fig. 16 is small

(approximately 0.01 bits), but this variation in MI corresponds

to more than an order of magnitude of difference in FER

performance.

D. MMI Optimization Thwarted by Small Absorbing Sets

While the previous example showed that optimizing MMI

can also minimize FER for a well designed code, it is

important to note that poorly designed codes can perform best

with a quantization that does not maximize the channel mutual

information.

To illustrate this, we previously introduced Code 1, which

has a high error floor under hard decoding due to the presence

of numerous small absorbing sets. As shown in Fig. 17,

for Code 1, the lowest FER occurs with R = 15 which

provides less mutual information than R = 7. This behavior

may appear to be counter-intuitive. However, the numerous

small absorbing sets serve as traps that can turn a few hard-

decoded errors into uncorrectable problems. The presence of

these absorbing sets forces the code to prefer a wider erasure

region (thereby minimizing hard-decoded errors that trigger

the absorbing sets) than would be optimal in terms of capacity.
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E. Simulation Results for Retention Model

Now we examine code performance using the retention

model of [14]. Fig. 18 shows frame error rate (FER) plotted

versus retention time for Codes 1 and 2 with three reads and

with six reads.

The three-read quantization whose performance is shown in

Fig. 18 is standard hard decoding for four-level MLC. We note

that in principle, since the retention model is not symmetric,

some gain can be achieved by allowing asymmetric thresholds

and optimizing these thresholds using MMI even in the three-



read case. However, we found those gains to be insignificant

in our simulations.

As in Fig. 13, Code 2 outperforms Code 1 under hard

decoding in Fig. 18. For six reads, Code 2 still outperforms

Code 1.

In Fig. 18, the Code-2 FER curves for unconstrained-MMI

quantization and for R = 7 and indistinguishable. Note that

R = 7 is both the MMI value of R and the value of R that

empirically minimizes FER for Code 2. This was the hoped-

for result of MMI optimization, that it would also optimize

the true objective of minimizing FER. However, as we saw

in Section V-D, if an LDPC code has a high error floor,

optimizing the MMI does not necessarily minimize the FER.

Thus, a code with relatively poor performance can perform

slightly better with a quantization that does not maximize the

mutual information. Indeed, the best FER performance for

Code 1 in Fig. 16 for six reads with constant ratio quantization

is with R = 15. Note from Fig. 16 that R = 15 provides a

smaller mutual information than R = 7, but R = 15 provided

the lowest FER. Notice in Fig. 18 that for Code 1 with six

reads, the MMI quantization performs slightly worse than the

R = 15 quantization. Thus we can see that for a weaker

code, the MMI approach may not provide the best possible

quantization in terms of FER. However, this situation may well

be interpreted as an indicator that it may be worth exploring

further code design to improve the code.

VI. CONCLUSION

This paper explores the benefit of using soft information

in an LDPC decoder for NAND Flash memory. Using a

small amount of soft information improves the performance

of LDPC codes significantly and demonstrates a clear perfor-

mance advantage over conventional BCH codes.

In order to maximize the performance benefit of the soft

information, we present an approach for optimizing word-

line-voltage selection so that the resulting quantization max-

imizes the mutual information between the input and output

of the equivalent read channel. This method can be applied

to any channel model. Constraining the quantization using

the constant-ratio method provides a significant simplification

with no noticeable loss in performance. Furthermore, only

a few additional reads can harvest most of the performance

improvement available through enhanced precision.

Our simulation results suggest that if the LDPC code is

well designed, the quantization that maximizes the mutual

information will also minimize the frame error rate. However,

we also saw that care must be taken to design the code

to perform well in the quantized channel. An LDPC code

designed for a full-precision Gaussian channel may perform

poorly in the quantized setting, and the MMI approach does

not lead to the lowest FER for a code with a high error floor.
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