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Abstract—Root and Varaiya proved the existence of a code
that can communicate reliably over any linear Gaussian channel
for which the channel mutual information level exceeds the
transmitted rate. This paper provides several examples of scalar
(single-input single-output) fading channels and shows that on
these channels the performance of low-density parity-check
(LDPC) codes lies in close proximity to the performance limits
identified by Root and Varaiya. Specifically, we consider periodic
fading channels and partial-band jamming (PBJ) channels. A
special case of periodic fading is the variation of signal-to-noise
ratio across orthogonal frequency division modulation sub-
channels. The robustness of LDPC codes to periodic fading
and PBJ across parameterizations of these different channels is
demonstrated through the consistency of the required mutual
information to provide a specified bit error rate. For the periodic
fading case, the Gaussian approximation to density evolution
has been adapted such that asymptotic threshold measures can
be compared to simulated code performance in various periodic
fading scenarios.

Index Terms—Low-density parity-check (LDPC) codes, orthog-
onal frequency-division modulation (OFDM), partial-band jam-
ming (PBJ), robust channel coding, universal codes.

I. INTRODUCTION

CHANNEL-coding techniques that approach capacity for a
large set of channel realizations, without specializing the

transmission to the channel, are desirable from complexity and
system-usability points of view. In the discussion that follows,
a single code that can communicate reliably near the capacity
of many different channels will be called “universal,” a term
introduced in [1], [2]. A proof of the existence of codes that
exhibit this property was provided by Root and Varaiya in [3].
Root and Varaiya’s proof considered the compound channel that
occurs when the actual channel is unknown to both transmitter
and receiver but belongs to a set of possible channels known to
both. Specifically, they proved that a single code exists that can
communicate reliably over all channels in the set of channels
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at rates arbitrarily close to the compound channel capacity
given by

(1)

where is the mutual information (MI) induced by the trans-
mitted power spectrum on the channel . For a given desired
rate , reliable transmission is theoretically possible on the set
of channels , such that the MI of every
channel in the set is above the transmitted rate. In this way,
Root and Varaiya’s theorem says that a “universal” code exists
that supports rate over every channel where at least one code
(with the specified transmit power spectrum) exists that supports
rate- . That is, if some code works at rate on a channel, then
the rate- universal code will also work on that channel.

This paper examines the degree to which low-density parity-
check (LDPC) codes designed for the additive white Gaussian
noise (AWGN) channel or designed for the AWGN channel
with 50% erasures realize the promise of universal operation
over channels with periodic fading and partial-band jamming
(PBJ). Gallager proposed LDPC codes in the early 1960s [4].
The structure of Gallager’s codes (uniform column and row
weight) led them to be called regular LDPC codes. Gallager
provided simulation results for codes with block lengths on
the order of hundreds of bits. These codes were too short for
the sphere-packing bound to approach Shannon capacity, and
the computational resources for longer codes were decades
away from being broadly accessible. While Gallager included
proofs of asymptotic capacity-approaching performance, the
infeasability of long-block-length simulations and system
design delayed their practical adoption.

A revival of interest in LDPC codes followed the ground-
breaking demonstration by Berrou et al. [5] of the capacity-ap-
proaching capability of random linear (turbo) codes. Specifi-
cally, MacKay [6] re-established interest in LDPC codes during
the mid-to-late 1990s. Luby et al. [7] formally showed that prop-
erly constructed irregular LDPC codes can approach capacity
more closely than regular ones. Richardson et al. [8] created a
systematic method called density evolution to analyze and syn-
thesize the degree distribution in asymptotically large random
bipartite graphs under a wide range of channel statistics. This
paper characterizes the performance of LDPC codes under two
distinct types of channels, periodic fading channels and PBJ
channels. Each of these two channel types displays the distinct
robustness properties of LDPC codes.

Period- fading channels have at time complex input and
output , where is AWGN with variance
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per dimension. The -element vector
consists of complex scalars, which could be the subchannel
gains of an orthogonal frequency-division modulation (OFDM)
system with subcarriers. Nearly complete characterization
of the performance of LDPC codes on channels with small

can be carried out experimentally and analytically through
exhaustive parameterization of the fading vector . Analytic
characterization is provided via the periodic channel extension
of Chung’s Gaussian approximation [9] to density evolution.
Robust operation in channels with longer periods is more diffi-
cult to completely characterize, though we do provide several
specific examples. To further demonstrate the robustness with
greater generality, we turn to the PBJ channel.

PBJ [10], [11] occurs when a fraction of transmitted code
symbols has a relatively poor signal-to-noise ratio (SNR) at the
receiver (the jammed fraction) and the remaining code symbols
experience a relatively good received SNR. It is usually the case
that the selection of received signals that incur jamming versus
those that do not is random (in adherence to the pre-determined
proportions). Simulations performed such that jamming loca-
tions are varied from one codeword to the next provide a means
for testing a large set of long-period fading channels and of mea-
suring the average fading performance of a code on this set.
Good average performance over the set of channels is a nec-
essary, but not sufficient, condition for the code to perform well
on every channel individually as the Root and Varaiya result
would predict. However, complete characterization of every PBJ
channel is beyond our computational ability.

Work on the design and characterization of universal channel
codes has been conducted by Wesel et al. across several code
paradigms for numerous channels. For periodic fading chan-
nels, trellis codes were developed in [12], universal serially con-
catenated turbo codes were developed in [13], and universal
LDPC codes (the first appearance of the present work) were de-
veloped in [2]. Universal LDPC codes for PBJ and more gen-
erally for Gaussian [multiple-input multiple-output (MIMO)]
channels were studied in [14]. In [15] Tse discusses the theory
of universal codes for periodic channels (referred to as parallel
channels) as well as for MIMO channels. In particular, universal
codes are presented as a solution to the tradeoff between di-
versity and multiplexing. Furthermore, they note that parallel
universal codes may be transformed to MIMO universal codes
via diagonal Bell Laboratories space–time (DBLAST), as was
demonstrated by Matache in [16].

We also note the work of Ha et al. [17] who have hybridized
Gaussian-approximated density evolution to include channel
erasures. Ha determines optimal variable degree puncturing
proportions in order to achieve rate compatibility. In contrast,
the codes in this paper employ fixed rates, and our main mo-
tivation is to emphasize the robustness of these codes under
varying channel conditions. Block fading with block inter-
leaving yields periodic fading. Related work that addresses
the general problem of coded performance in block fading
channels is given in [18] and [19]. In particular the specifics of
LDPC-coded performance under block fading are discussed in
[20] and [21]. As part of the universal discussion we present
results for several instances of OFDM-like channels. Prior work
applying turbo coding to OFDM can be found in [22] and [23].

The authors of [24] considered LDPC-coded OFDM systems
with ary phase-shift keying (M-PSK) signaling.

The next section of the paper provides mutual information
(MI) definitions and a design methodology for LDPC codes in
the context of periodic scalar fading channels. Section III dis-
cusses the design and operation of LDPC codes for the period-2
channel in detail. To demonstrate that robust performance is
not limited to the period-2 channel, Section IV provides perfor-
mance results for an LDPC code on four period-256 channels. A
test of average performance on long periodic channels is made
in Section V using the PBJ channel. Finally, conclusions from
this work are drawn in Section VI.

II. PERIODIC SCALAR FADING CHANNELS

A. Mutual Information for Periodic Scalar Fading Channels

The MI of the channel , where scale factor is
known at the receiver, can be expressed as

(2)

where and are independent (scalar) random variables.
is the expectation that

defines the average MI of this channel if is varying at the
receiver. If, however, is a deterministic constant
then the MI can be computed directly

(3)

The extension of this result to periodic fading follows for a
particular instance of the -element vector

(4)

which can also be used to define the capacity of a frequency
selective fading channel in the context of OFDM modulation
where indexes the subcarriers. If both and are complex
Gaussian random variables and each has the same average
power , then, the average MI per symbol is

(5)

where is the per-dimension variance of the AWGN channel
and is a vector of complex scalars. The constant power con-
straint causes the MI in (5) to be less than the water-filling ca-
pacity that can be achieved if the transmitter knows .

Nevertheless, Shannon’s basic noisy coding theorem ensures
that for each there is a code with fixed symbol power
and rate that achieves reliable communication with arbi-
trarily close to . For example, parallel Gaussian-alphabet
codes could be designed with the th code assigned rate

. A solution that uses a separate code



124 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 1, JANUARY 2007

for each subcarrier is, of course, unattractive as it requires trans-
mitter and receiver to coordinate code selection depending on
and, of course, has tremendous complexity for large . Prac-
tically speaking, systems that do have knowledge of at the
transmitter can apply bit filling by using symbols from a single
code and varying the modulation cardinality on each subcarrier.
Asynchronous digital subscriber line (ADSL) systems employ
this technique [25].

In this paper, we turn to the broader result of Root and Varaiya
[3] who proved that a single code exists that can communicate
reliably at rates arbitrarily close to the compound channel ca-
pacity given by (1). While Shannon stated that for each channel
there exists a code that provides reliable communication for that
channel, Root and Varaiya showed that for a given set of chan-
nels (collectively this set forms the compound channel) there
is code that provides reliable communication on all channels
within this set. In the succeeding sections, simulation and den-
sity evolution results will show that a single LDPC code can
perform with less than 0.1 bits of excess MI (per real signaling
dimension) for compound channels where the cardinality of the
channel set is large. Excess MI is defined as the difference be-
tween the channel MI where the desired error probability is
achieved and the information transmission rate . We use ex-
cess MI as a performance measure throughout the remainder of
the paper. Section III includes an explanation of why we prefer
excess MI rather than excess SNR.

B. LDPC Code Design for Period- Fading Channels

Following the assumption in [9] that the output of an indi-
vidual variable or constraint node has a Gaussian distribution
we extend the derivation of [9] to include a known periodic
fading vector . We attempt to preserve the notation originally
proposed in [9], however, we introduce and simplify notation at
points and also begin the derivation from the constraint side of
the graph in order to arrive at a set of recursion relations that
are linear in ( is the distribution of variable (constraint)
node degrees from an edge-wise perspective). This is done to
facilitate the use of a linear program for selection of a rate-max-
imizing vector. We begin by stating that the log-likelihood
messages entering a degree- constraint node, denoted , are
related to an outgoing message, denoted , as follows:

(6)

if we assume that messages and are drawn from indepen-
dent and identically distributed (i.i.d.) Gaussian random vari-
ables and (where the
subscript is dropped from ’s because they are identically dis-
tributed) then the expectations of the left and right hand sides of
this update relation can be expressed as

(7)

This is, the expected value of log-likelihood ratio messages de-
parting degree- constraint nodes (an additional subscript is
added to to denote the degree, i.e., ). Chung introduced

the function for which
permits (7) to be described by

(8)

The introduction of parameter further
simplifies (8) to . The expected
value of any given constraint-to-variable message is obtained
by averaging over the constraint degree distribution of the code

(9)

where denotes the fraction of edges connected to degree-k
constraint nodes. Degree- variable nodes have their mean
values, , updated in correspondence to the periodic initial
means given by and the means of messages
arriving from constraint nodes

(10)

According to the Gaussian approximation, randomly selected
edges emanating from variable nodes adhere to the following
Gaussian mixture density:

(11)

Where the outer summation mixes over the periodic fading
vector and the inner summation mixes over the variable node
edge-wise degree distribution. Literal evaluation of the expec-
tation yields

(12)

Parameter is expressed in terms of the
right-hand side of (12); while (10) is substituted with an addi-
tional index to denote iteration

(13)

The above recursion is linear in , and uses

Note that if (which implies that an asymptotically
long code will converge for the given set of initial means

) iff .
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TABLE I
DEGREE DISTRIBUTIONS OPTIMIZED USING GAUSSIAN APPROXIMATION TO

DENSITY EVOLUTION ADAPTED TO PERIODIC FADING. COLUMNS LABELED

a = [1; 0] INDICATE THE DISTRIBUTION RESULTING FROM OPTIMIZATION

FOR THE PERIOD-2 CHANNEL WHERE HALF OF ALL RECEIVED SYMBOLS

ARE ERASED. COLUMNS LABELED a = [1; 1] INDICATE A PERIOD-2
CODE OPTIMIZED FOR AWGN

The parameter is initialized such that
. A linear program (LP) which seeks a rate

maximizing given a set of initial means and
a fixed right degree distribution follows:

s.t.

(14)

To obtain a code of a given rate (say 1/3) for a particular channel
(say period-2), the above LP operates as the kernel
of a doubly nested loop. The outer loop monotonically increases
channel SNR in small increments such that the inner loop is able
to find the first pair that achieves the rate constraint. For
each step of the outer loop, the inner loop sweeps a set of con-
centrated values (concentrated right degree sequences were
proven to be nearly optimal in [9]) and performs the above LP
at each step to find the rate maximizing values for each spec-
ified . The concentration starts at relatively high value (de-
gree 15 for instance) and is decremented in steps of size 0.25
until the achievable rate peaks for the given SNR constraint. Ma-
nipulations of the above procedure suggest empirically that the
problem of optimizing rate for a given channel SNR constraint
is convex in the parameterization of concentrated ’s (meaning a
unique rate-maximizing concentrated distribution exists). The
columns in Table I labeled “[1,0]” are the result of the opti-
mization procedure when it is applied to the period-2
channel. Optimization results for the channel are also
provided in the table.

Fig. 1 provides asymptotic threshold and simulation results
for the and optimized codes across

period-2 fading. As expected, the thresholds of each of
these codes is best on the channel for which it was designed and
worst on the opposite channel. A third curve (diamond) that pro-
vides thresholds for channel-specific designs on each of eleven

channels is also plotted. Note that for the
channel-specific designs do have lower thresholds than the
[1,1] and [1,0] designs, but these channel specific designs pro-
vide a relatively small improvement. Also note that the excess
MI required by the simulations is always less that 0.1 bits.

Fig. 1. MI thresholds of a = [1; 1], a = [1; 0], and a = [1; a] optimized
codes across a = [1; a] fading (solid lines). All codes are rate-1/3. Simulation
results are for BPSK at BER = 10 for length 15 000 codes realized from the
corresponding degree distributions. Note that the results are bound above 1/3 of
a bit (the origin on the vertical axis).

III. LDPC PERFORMANCE ON PERIOD-2 FADING CHANNELS

A. Demonstration of Universal Performance

Figs. 2 and 3 present simulation results for
LDPC codes realized from degree distributions

in Table I. As described in Section II, these degree distributions
were found by constraining periodic density evolution for the

(i.e., Gaussian) and (i.e., Gaussian with
every other symbol erased) channels and using a linear program
(LP) solver to find the respective minimum threshold rate-1/3
codes with maximum left degree 15.

The codes were conditioned using the approximate cycle
EMD (ACE) technique developed in [26], where EMD stands
for extrinsic message degree. This graph construction tech-
nique is particularly attractive for use in conjunction with
density evolution as it places no constraints on the underlying
degree distribution of the code. The ACE technique sets out
to maximize the multiplicity of “extrinsic” edges connected to
short cycles in the graph (where extrinsic edges are edges that
do not participate in the cycle). Such a construction improves
the stopping set distribution in the graph by increasing the
mean stopping set size [27]. Stopping sets can be shown to be
formed by closed clusters of cycles [26] (e.g., cycles that are
completely interconnected). Ensuring that short cycles have at
least a minimum number of extrinsic connections increases the
average number of nodes required to form a stopping set. For
the codes used in this paper every cycle of length 24 or less has
four or more extrinsic connections.

Figs. 2 and 3 describe the performance of these codes in a pe-
riod-2 channel with , where and
[signaling is via binary phase-shift key (BPSK) modulation].
Fig. 2(a) clearly shows that a decrease in requires an increase
in SNR to maintain constant bit-error rate (BER). The plot of
BER versus absolute SNR, however, does not provide an ade-
quate view of the respective performance on each of the chan-
nels. Meaning, we might gather that performance on the
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Fig. 2. (a) Code performance on the a = [1; a] fading channel in terms of
SNR. (b) Code performance on the a = [1; a] fading channel in terms of SNR
in excess of channel capacity for each corresponding channel. Dashed lines in-
dicate operation of a code optimized for the a = [1; 0] channel, solid lines
indicate operation of a code optimized for the a = [1; 1] channel.

channel is about 1.2 dB away (at BER ) from bi-
nary-input (BI) AWGN (BI-AWGN) capacity ( 2.27 dB), how-
ever we can less easily determine if the code is performing as
well on say the channel. To gain a better view
from this perspective, Fig. 2(b) plots BER performance versus
excess SNR. This plot is constructed by subtracting the SNR re-
quired to achieve a MI level of 1/3 of a bit on each respective

channel from the absolute operating SNRs for each
curve in Fig. 2(a). On the plot we see that the performance of the
[1,0] optimized code is clustered in a 0.5 dB range near 1 dB of
excess SNR while that of the [1,1] optimized code varies over
roughly a 1.5 dB range. Also note that on this plot the [1,0] opti-
mized code has better excess SNR performance on the
channel than on the channel. These are points that we
will return to shortly.

Fig. 3. (a) Code performance on the a = [1; a] fading channel in terms of MI.
(b) Code performance on the a = [1; a] fading channel in terms of MI in excess
of code rate (1/3). Dashed lines indicate operation of a code optimized for the
a = [1; 0] channel, solid lines indicate operation of a code optimized for the
a = [1; 1] channel.

Fig. 3(a) plots BER versus MI using (4) in the context of
BPSK constrained signaling. This plot is created by noting that
the SNR of each plotted point in Fig. 2(a) has a corresponding
MI (under the BPSK and periodic channel constraints). MI in
excess of 1/3 of a bit (the code-rate) is given in Fig. 3(b). From
Figs. 3(a) and (b) we can see that the [1,0] code performs better
at low SNR but has a more severe error floor (i.e., flattening of
the BER curve at high SNR) than the [1,1] code. The trade-off
between low-SNR performance and error floor is well-known,
but it is not the focus of this paper. Instead, we focus on the
universal behavior displayed by both codes.

Note the tightening of the performance of both codes (the
[1,1] code at all BERs and the [1,0] code in the high BER regime
before its error floors appear) when measured in terms of ex-
cess MI in Fig. 3(b) as compared to the measurement in terms
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Fig. 4. MI and SNR in excess of that required for 0.33 bits per channel use
under BPSK modulation in a = [1; a] period-2 fading. The operating points of
two LDPC codes at BER = 10 are plotted. Curves from left to right indicate
excess MI and excess SNR for a = f1:0; 0:8; 0:6; 0:4; 0:2; 0:0g.

of excess SNR in Fig. 2(b). This tightening across channel vari-
ation can be seen as a consequence of removing the bias that is
inherent to using SNR as a comparative performance measure
across different channel realizations. We emphasize this point
in Fig. 4 which provides curves describing the excess SNR re-
quired to achieve MI in excess of 1/3 of a bit under BPSK sig-
naling for each of the considered channels (six total).

Each of the curves in Fig. 4 describes the relationship between
excessMI(on thevertical axis) andexcessSNR(on thehorizontal
axis) for a particular channel. The origin on the vertical
axis represents 1/3 of a bit of MI and the origin on the horizontal
axis represents the SNR level required to produce 1/3 bit of MI
on each of the given channels. Note that each channel requires a
different absolute SNR to achieve 1/3 bit of MI, but that on this
plot these differing SNRs are the single point of zero excess SNR.
Points on the plot away from the origin measure MIs and SNRs
in excess of 0.33 bits per symbol capacity-achieving levels.

The differing slopes for each of these channels reveals that
there is a choice to be made between excess MI and excess SNR
as a metric for comparing performance across channels. For a
fixed value of one metric, the other varies with channel selec-
tion. For example, a constant excess MI of 0.1 bits could cor-
respond to an excess SNR anywhere from 1.5 to 2.75 dB. Con-
versely, a constant excess SNR of 2 dB could correspond to an
excess MI anywhere from 0.0675 to 0.14 bits. Given this choice,
we select excess MI because it appears in the exponent of the in-
formation theoretic proofs of the channel coding theorem [28]
while excess SNR does not. We also note that excess MI may
be applied to channels where excess SNR has no meaning, such
as erasure channels and discrete alphabet channels (such as the
common binary symmetric channel).

ExcessSNRandMIoperatingpoints fromFigs.2(b)and3(b)at
BER havebeensuperimposedonFig.4.Fromthisplotwe
see that at BER the [1,0] code performs a little better than
the [1,1] code. However, that performance difference is not the
focus of this paper. In fact, both codes are good universal codes.

In terms of excess MI, each code performs best on the channel
for which it was designed but requires only about 0.02 bits more
MI to maintain a BER on the opposite channel.

In terms of excess SNR, the [1,0] code performs best on the
[1,1] channel and worst on the [1,0] channel. This illustrates the
problems inherent with using excess SNR to compare perfor-
mance across different channels. Also in terms of excess SNR,
the [1,1] code performs best on the channel, where it
requires about 1.1 dB of excess SNR to achieve BER ,
and worst on the channel, where it requires about
2.7 dB of excess SNR to achieve BER .

This difference of more than 1.5 dB in required excess SNR
would not indicate an especially robust code if one considered
excess SNR rather than excess MI as the measure of interest.
Again note that the total MI variation from worst to best channel
is approximately 0.02 bits for both codes. The large excess SNR
difference can be explained by observing that the slope of excess
MI versus excess SNR is smaller for the channel than
for the channel. This is because the mutual informa-
tion of the channel is entering saturation. Specifically,
the MI of a BPSK, channel saturates at 0.5 bits of MI
(or 0.33 bits of excess MI).

Fig. 1 uses dashed curves to show the simulated performance
of the [1,1] and [1,0] optimized codes at BER from
data plotted in Fig. 3(b), across the channel parameterization. At
this BER the [1,0] optimized code slightly outperforms the [1,1]
optimized code on the channel. However, the [1,0]
optimized code has already entered a flooring region on this
channel and if the measurement was taken at BER [see
Fig. 3(b)] then the [1,1] code would exhibit better performance
than the [1,0] code for some channels. Error flooring of the [1,1]
code on the channel is also observed. In general, we
state that both the [1,0] and [1,1] codes exhibit flooring on their
respective opposing channels.

The MI gap between threshold and simulation in Fig. 1 remains
nearly constant for each of the two codes as the channel is varied
the from (Gaussian) to (Gaussian with
every other symbol erased). In the case of the [1,1] optimized
code this gap is approximately 0.06 bits and in the case
of the [1,0] code the gap is 0.02 bits. We believe that the
outperformance in terms of absolute gap to threshold of the [1,0]
versus the [1,1] optimized code is related to the particular code
that was generated for each of these cases and also the difference
in the achievable matrix conditioning (the approximate cycle
conditioning technique of [26] was used to construction the final
paritymatrix foreach code) given the separate input degreedistri-
butions. The absolute gap, however, is less consequential than
the observation that a given code realization tracks threshold
prediction with a fixed offset across channel realizations.

In summary, this section has empirically described the robust-
ness of the designed codes to period-2 fading. When each of
the six channels provides MI of at least 0.43 bits (i.e., approxi-
mately 0.1 bits above the transmitted rate of 1/3) the codes com-
municate at or below BER . Furthermore, the perfor-
mance variation of each code, on all channels, is approximately
0.02 bits of MI. We say that these two codes are universal for
period-2 fading since their MI requirement is essentially con-
stant (within 6% variation from best to worst case excess MI)
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Fig. 5. MI and SNR in excess of that required for 1.0 bit per channel use on
8-PSK in a = [1; a] period-2 fading. The operating points of two LDPC codes
and a serial turbo code are plotted. Each code modulates 10 000 8-PSK symbols
per block at BER = 10 . Curves from left to right indicate excess MI and
excess SNR for a = f1:0; 0:8; 0:6; 0:4; 0:2; 0:0g.

against channel variation. In the next section we compare the
performance of the designed LDPC codes to that of a serially
concatenated convolutional code.

B. Comparison With Serially Concatenated
Convolutional Codes

LDPC codes represent one of several well known realizations
of random linear codes with manageable decoding complexity.
Parallel and serially concatenated convolutional (turbo) codes
also exhibit capacity approaching performance under AWGN
channel conditions. The original work to describe the perfor-
mance of serial turbo codes in AWGN was performed in [29].
Work that considers serial turbo codes as universal codes has
been conducted in [13]. The authors in [13] present an 8-PSK
serially concatenated turbo code (SCTC) for period-2 periodic
fading. We compare this to and LDPC
codes combined with 8-PSK modulation.

Fig. 5 simultaneously plots excess MI and excess SNR for
six different channel parameterizations under an 8-PSK mod-
ulation constraint. Each of the six curves (one for each of the
six channels) represents the relationship between excess MI (on
the vertical axis) and excess SNR (on the horizontal axis), as
in Fig. 4. In this plot, however, the origin on the vertical axis
represents 1.0 bit of MI and the origin on the horizontal axis
represents the SNR level required to produce 1.0 bit of MI on
each of the given channels.

Also plotted in Fig. 5 are the BEr operating points of
and optimized (from Table I) length 30 000,

rate-1/3, LDPC codes on these six channels using Gray-labeled
8-PSK modulation (10 000 total channel symbols). Note that no
interleaving is used between the code and the 8-PSK mapper,
instead the columns of the parity matrix that describes the code
are uniformly permuted. The BER operating points of a
rate-1/3 length-10 000 serial turbo code optimized for period-2
fading [13] are also provided. This code was constructed from

Fig. 6. Four period-256 fading channels.

a 4-state rate-1/2 outer code and a 4-state rate-2/3 linear recur-
sive systematic inner code ([13] provides a description of code
generator polynomials).

It is important not to neglect scale in these plots. For instance
the difference in the MI performance of the optimized
LDPC code across the channels is less than 0.025 bits. The serial
turbo code exhibits a consistent excess SNR requirement that is
striking, but has a variation in excess MI of 0.1 bits. The wider
variation in excess MI of the serial turbo code comes from its
exceptionally good performance on channels with low values.
Although the worst case performance is quite similar, the serial
turbo code is strictly better than the optimized LDPC
code and exhibits performance that is comparable to that of the

optimized LDPC code.

IV. LDPC PEFORMANCE ON PERIOD- CHANNELS

So far we have designed LDPC codes for the two extremes
of period-2 fading channels and found that each code did well
across the entire spectrum of period-2 fading channels. For the
rest of the paper we will see how LDPC codes designed for pe-
riod-2 fading work on channels with fading period much larger
than 2. The only justification for such an unmotivated applica-
tion is that the codes turn out to do surprisingly well. The point
of this exercise is to illustrate that even without careful design
for universality, LDPC codes often turn out to approximate uni-
versal behavior.

Consider the four period-256 channels in Fig. 6. These fading
profiles are generated by realizing channels with 4, 8, and 16
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Fig. 7. Code performance on four period-256 fading channels in terms of MI.
The SCTC code converges on channel d only for the case 2 � 128 block inter-
leaving.

multi-path components in the time domain. The time channels
are randomly generated with each tap magnitude drawn from
a Rayleigh distribution and each tap phase is drawn uniformly.
Exponential interarrival times between taps are assumed and an
exponentially decaying envelope is imposed on the randomly re-
alized taps. The 256-point fast Fourier transform (FFT) of each
of these channels is taken and the magnitude of the resulting
FFT coefficients (OFDM subcarrier gains) are shown for each
channel in the plot. Channel (d) is identical to channel (c) with
the exception of the erasure of an arbitrarily selected block of
125 consecutive subcarriers.

The MI performance of the rate-1/3, blocklength-15 000
optimized LDPC code on these channels using

QPSK modulation, where even(odd) code bits are mapped to
I(Q) components, is given in Fig. 7. Half of the subcarriers in
channel (d) provide no MI. Thus, for the same total MI, the
non-erased subcarriers of channel (d) must provide twice as
much MI, on the average, as the subcarriers of channels (a),
(b), and (c). As a result, channel (d) requires a significantly
higher SNR for a given level of performance than channels (a),
(b), and (c). However, Fig. 7 shows that from the MI point of
view the LDPC code works virtually as well on channel (d) as
on channels (a,b,c).

It may seem surprising that the code can communicate with
125 of the 256 subcarriers completely erased. However, the
supremum of erasure rates for this code on the binary-erasure
channel (BEC) is

which has (equivalent to 157 of 256 subcarriers
being erased). Note that is an asymptotic measure that can
only be achieved in the limit of infinite block length. For the
length 15 000 code used in this simulation (the op-
timized code), (151 of 256 subcarriers) was found
via simulation. Thus, the minimum capacity of the quadrature
phase-shift key (QPSK) BEC channel on which this code can be

expected to communicate reliably is given by
. The high SNR (erasure) capacity of channel (d) is

equal to 1.02 bits. Therefore, it is reason-
able to expect that the code can operate on this channel when
SNR is large. However, we emphasize the more remarkable re-
sult that the difference in MI required for the code to operate
on each of these four very different period-256 channels is less
than 0.025 bits.

As described in [30], an SCTC can perform well on chan-
nels (a),(b), and (c) through the use of a random channel inter-
leaver. Fig. 7 shows this performance and the performance on
these three channels without channel interleaving for an SCTC
with equivalent rate and block length as the presented LDPC
code. The SCTC without random channel interleaving performs
better on channels with more rapid fading characteristics as the
dwell time within a given fade is comparatively shorter on these
channels.

Note that the SCTC fails to provide reliable communication
at any SNR on channel (d) (the 50% erasure channel) unless
the interleaver is “matched” to the channel. The best SCTC per-
formance on channel (d) is given by a 2-by-128 block inter-
leaver resulting in a channel with every other symbol erased
which then becomes similar to a period-2 channel. This partic-
ular SCTC is designed to have optimal performance under the
period-2 channel. Therefore, it is not surprising that
the SCTC slightly outperforms the ( optimized) LDPC
code by 0.04 bits of excess MI. However, such channel and in-
terleaver matching schemes do not follow the theme of univer-
sality in a Root and Varaiya sense and LDPC codes seem to be
a more reasonable choice than SCTC to achieve universality.
In fact, to date we know of no coding methodology, other than
LDPC, that can communicate so close to the theorectical limits
without the augmentation of a matched channel interleaver on
channels such as (d).

V. LDPC PERFORMANCE ON THE PBJ CHANNEL

Now, we consider the PBJ channel. The PBJ model used in
this paper is the same as the one previously described in [10] and
[11]. We limit our discussion to the case of coherently detected
BPSK modulation under a frequency-hopped scenario in which
a fraction of the available channels are jammed. All of the
channels experience additive thermal noise due to the receiver
front end. The SNR of this noise is fixed to dB to
be consistent with the results in [10]. Channels that are jammed
also incur the addition of band-limited white Gaussian noise
with power spectral density over a fraction of the band.
The total jamming noise power is equal
to , and is independent of . Bit-energy-to-interference ratio,

, is the most common measure of performance on this
channel. Perfect channel state information has been assumed
for the LDPC results that will be presented. This implies that
very low values of tend to make jammed channels look
like erasures as the log-likelihood ratios computed from channel
observations are inversely scaled by the noise variance in a given
subchannel. On the other hand, as is increased to unity (where
all subchannels are jammed), the channel begins to appear much
like a standard AWGN channel.
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Fig. 8. Performance of rate-1/3 LDPC codes with blocklength 4096 and 15 000
on the PBJ channel compared to a blocklength 4096 turbo product code.E =N
versus � curves that maintain a constant Gaussian signaling capacity (Gauss MI)
and BPSK constrained capacity (BPSK MI) of 1/3 of a bit are also displayed.
FER = 10 for the three simulated curves.

Fig. 8 provides simulation results for two rate-1/3 LDPC
codes. Both are realized from the degree sequence of the

optimized code described in Table I. The first code
has length 4096 ( , , rate ) and the
second length 15 000. The performance of a length 4096 turbo
product code with comparable rate [10] is also provided. An
important parameter for code performance on the PBJ channel
is the so-called dwell interval. This quantity describes the
number of successive code symbols that will be transmitted
on a given sub-channel before the modulation is hopped to
another sub-channel. For sake of comparison with results in
[10] we have fixed the dwell interval to 32 for the length 4096
code and to 30 for the length 15 000 code. We have also made
the assumption that channels are “framed” around single code
words. This implies that for the length 4096 code there are
128 subchannels and of these will be jammed. There
are 500 subchannels per frame for the length 15 000 code. The
distribution of jammed subchannels is realized uniformly and
independently from one codeword transmission to the next.
This technique is meant to yield an average jamming result for
a given code across a parameterization of and .

Constant MI curves for the PBJ channel are also included in
Fig. 8. To compute these curves consider the MI level in PBJ

SNR SNR (15)

where SNR defines the symbol SNR in the jammed subchan-
nels and SNR defines the symbol SNRs in the non-jammed
subchannels. In the case of complex Gaussian signaling,

, and for the BPSK constrained case is eval-
uated via numerical integration. In the PBJ simulations per-
formed for this paper, SNR is held fixed at a level which cor-
responds to 20 dB. In the unconstrained case the term

SNR is therefore a constant which can be de-
termined via solution to the equation ,

Fig. 9. SNR versus � operating points for FER = 10 of rate-1/3 length
4096 and 15 000 LDPC codes and a rate-1/3 length 4096 TPC code compared
to BPSK-constrained constant-MI curves of 0.33, 0.40, 0.42, 0.5, and 0.64 bits.

which is 9.96 bits (for 20 dB). In the BPSK con-
strained case MI SNR saturates to 1 bit at this
high SNR.

We are interested in values of SNR that yield constant
levels of MI. We therefore fix the MI to some constant level, say
1/3 of a bit. If we also fix , it is possible to uniquely determine
SNR (analytically for unconstrained and via table lookup for
the BPSK constrained case). The resulting SNR can then be
converted to via the following relations:

SNR

SNR

SNR
(16)

A large discrepancy can be observed between the BPSK-con-
strained and Gaussian-signaling MI curves in Fig. 8. This is due
primarily to the fact that the non-jammed subchannels provide
far more MI (9.96 bits) than the 1 bit maximum provided by
BPSK modulation, which in turn implies that with Gaussian
signaling, just a small fraction of the subchannels need to be
non-jammed for the expected MI in the channel to reach 1/3 of a
bit. We note that a capacity-approaching system that achieves an
average spectral efficiency of 1/3 of a bit can be achieved by si-
multaneously increasing modulation cardinality and decreasing
code rate. For instance a rate-1/6 code driving QPSK can be ex-
pected to perform better in an absolute sense than the
rate-1/3 BPSK system.

The curves in Fig. 8 represent the frame-error rate (FER)
operating points of rate-1/3 systems or the contours

of constant MI of 1/3 of a bit. Fig. 9 plots different constant
MI curves in terms of an absolute SNR ordinate. This avoids
rate-dependent compression of the ordinate (since
SNR ) and allows for distinguishable contours
of constant MI. In the plot, each constant contour is labeled with
its represented level of MI.
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Fig. 10. Operating points for FER = 10 of a rate-1/2 LDPC code with
blocklength 4096 on the PBJ channel. E =N versus � curves that maintain
a constant Gaussian signaling capacity (Gauss MI) of 0.5 bits and BPSK con-
strained capacities (BPSK MI) of 0.5 and 0.64 bits are also displayed.

When the PBJ channel provides 0.4 bits of MI, the length
15 000 LDPC code (the optimized code) operates
with an FER at all values of . The same can be stated
for the length 4096 code when the channel supports 0.42 bits
of MI. Restating this result, the length 15 000 code provides
reliable communication when the excess MI in the channel is

, or roughly 0.067 bits and similarly the
length 4096 code requires 0.087 bits of excess MI. The close-
ness with which the simulated performance tracks constant con-
tours of MI in the figure provides clear empirical evidence of
code robustness across an extremely broad range of channels.

To demonstrate that not all codes exhibit this property, we
have also plotted the performance of the turbo product code in
Fig. 9. When this code requires 0.5 bits of MI to achieve
FER . At lower values, however, the code requires up to
0.64 bits of MI to maintain constant FER. We note that the MI
level (e.g., 0.4 bits) required for the LDPC codes to achieve reli-
able communication in this channel is comparable to the levels
required by the period-2 and period-256 fading channels. Fi-
nally, since the majority of channels in this paper have operating
modes that provide less than 0.5 bits of MI (the [1,0] channel and
OFDM channel d), we have been restricted (in the context of
robust coding) to the use of codes with rate less than 1/2. Since
the PBJ channel provides no such obstacle, Fig. 10 plots the
performance of a rate-1/2 code. The degree distribution for the
selected code was designed using Gaussian approximation for
the channel with maximum left and right degrees less
than 16 and was built with an information length . The
plot shows that when the PBJ channel provides roughly 0.64 bits
of MI that the code operates reliably at FER .

VI. CONCLUSION

In this paper, we have taken an MI, rather than an SNR, ap-
proach to measuring code performance over periodic Gaussian
and PBJ channels. Root and Varaiya showed that a single code
exists that can communicate reliably on all of the channels

in a given set provided that the rate of the code is less than
the smallest MI of all channels in the set. It has been shown
for a quantized spread of all period-2 channels, under BPSK
and 8-PSK modulation, and for several arbitrarily selected pe-
riod-256 channels, under QPSK modulation, that LDPC codes
provide a practical example of Root and Varaiya’s promise of
“universal” codes. We have described and used periodic density
evolution to design codes matched to channels and to determine
the thresholds of existing codes across parameterizations of
the channel. Root and Varaiya’s theorem applies
to any particular instance of the PBJ channel. However, we
have averaged the performance of a given code across many
thousands of instances of the PBJ channel in order to test the
universality of the codes across a large sampling of channels.
While it is true that the performance of the codes on some
particular PBJ channel may have been poor (and such an event
would go undetected due to the averaging process), we have
nevertheless shown that the average excess MI requirements of
the codes on this channel are very similar to those of the codes
on the periodic fading channels.
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