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Abstract—Based on random codes and typical set decoding,
an alternative proof of Root and Varaiya’s compound channel
coding theorem for linear Gaussian channels is presented. The
performance limit of codes with finite blocklength under a
compound channel is studied through error bounds and sim-
ulation. Although the theorem promises uniform convergence of
the probability of error as the blocklength approaches infinity,
with short blocklengths the performance can differ considerably
for individual channels. Simulation results show that universal
performance can be a practical goal as the blocklengths become
large.

Index Terms—compound channel, random coding bound,
sphere packing bound, universal code.

I. I NTRODUCTION

Traditional code design is often targeted at a specific
channel. The performance of such channel-specific codes can
deteriorate significantly when these codes are faced with
unexpected channels. For example, an optimal additive white
Gaussian noise (AWGN) code might not perform well under
periodic erasure channels [1] or partial band jamming channels
[2]. With space-time codes, the comparison in Fig. 6 of
[3] shows that a code in [4] optimized for Rayleigh fading
performs poorly in the special case of singular channel. In the
other extreme, also in Fig. 6 of [3], an Alamouti space-time
block code performs very well on singular channels but has
poor performance on unitary channels.

One approach to solve this problem is to design individ-
ual optimal codes for each channel condition. However this
scheme requires storage for all the possible codes at the
transmitter and the receiver and the ability of both sides to
intelligently identify and adapt to the environment. An alter-
native approach is to design a universal code, one that works
reasonably well under most, if not all, possible scenarios. In
this paper, we study both the theoretic and practical aspects of
the latter approach, focusing on how blocklength affects the
behavior of universal codes.

The rest of the paper is organized as follows. Section II
reviews the compound channel coding theorem. Section III
introduces the periodic erasure channel, a simple compound
channel. Section IV discusses the figures of merit that are
useful for performance evaluation on compound channels. Sec-
tion V examines the finite-blocklength behavior of universal
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codes through error bounds and computer simulation. Section
VI concludes the paper. The appendix gives the details of a
typical-set-decoding proof of the linear Gaussian compound
channel coding theorem.

II. COMPOUND CHANNEL CODING THEOREM

A compound channel arises when users communicate under
some channel uncertainty [5], i.e. users know the channel
belongs to a family of channels but they do not know exactly
what the channel is. Throughout this paper, we will restrict
our discussion to discrete memoryless channels (DMC’s).

A set of DMC’s comprises compound channel as follows.
Definition 1: A compound channel is a family of channels
indexed byi ∈ I denoted by

{P (y|x, i), x ∈ X , y ∈ Y, i ∈ I}, (1)

whereX andY are the input and output alphabet, respectively.
I is the channel index set which can be finite, countably
infinite, or uncountably infinite.P (y|x, i) is the conditional
probability governing the channel with indexi.

We assume that the channel index remains unchanged
during the course of the transmission, or at least the time that
the channel index stays the same is longer than the codeword
blocklength. If the index varies arbitrarily from symbol to
symbol, then such a channel is referred as an arbitrarily
varying channel [5], which is not the focus of this paper.

The capacity of a compound channel is defined as

C(I) = sup
p(x)∈S

inf
i∈I

Ii(x; y), (2)

where I(x; y) is the mutual information between the input
and output random variables. The supremum in (2) is over all
possible input distributionsp(x) in the setS, which is usually
specified by the input power constraint. Define the infimum of
the individual channel capacities as

Cinf(I) = inf
i∈I

sup
p(x)∈S

Ii(x; y). (3)

Note thatC(I) ≤ Cinf(I). However it can be shown that
C(I) = 0 if and only if Cinf(I) = 0 [6]. So any set
of positive-capacity channels will have a positive compound
channel capacity.

Blackwell, Breiman and Thomasian [7] proved that the
capacity of a compound channel with a discrete alphabet can
be achieved by a single sequence of codes. A similar result also
appeared in [6]. This result was extended by Root and Varaiya
[8] to m × m (square) linear Gaussian compound channels
where the alphabet is continuous. A slight generalization of
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their theorem to themr ×mt (rectangular) MIMO channels
is stated below.

Theorem 1:A family of real Gaussian multiple-input
multiple-output (MIMO) channels is denoted as{Hi, Ki, i ∈
I}, where the index setI is an arbitrary set. The channel
input/output behavior is governed byy = Hix + zi, where
Hi is an mr × mt real matrix representing the path gains
betweenmt transmitter antennas andmr receiver antennas.
The inputx is anmt × 1 real random vector with zero mean
and covariance matrixS ∈ S, whereS is the set of positive
symmetric matrices with trace less or equal toPx. The output
y is an mr × 1 real random vector. The noisezi is a real
Gaussian random vector of dimensionmr×1 with zero mean
and covariance matrixKi. Assume there exist real numbers
α0, α1 andα2 satisfying0 < α0 and0 < α1 < α2, such that
for eachi ∈ I,

1) ‖Hi‖ ≤ α0, where‖·‖ is the spectral norm of a matrix,
i.e. the square root of the largest eigenvalue ofHᵀ

i Hi.
2) α1 ≤ vᵀKiv

‖v‖2 ≤ α2, for any non-zero realmr× 1 vector
v.

whereᵀ stands for transpose. Then any rateR < C(I) defined
in (2) is achievable. i.e. There exists a sequence of(2nR, n)
codes such that the probability of error under any channel
in the family approaches zero as the blocklength approaches
infinity.

Proof: The theorem for real square channel matrices
first appeared in [8]. The decoding techniques used in the
original proof complicate the error probability bounding. In
the appendix, we give an alternative proof based on random
codes and typical-set decoding.

Root and Varaiya’s compound channel coding theorem for
MIMO channels appeared in 1968, although it is only recently
that MIMO channels have drawn considerable attention. A
natural application of the compound channel coding theorem
is universal space-time code design as in [3], [9], [10].

The essential fact about the compound channel coding
theorem is that the probability of error goes to zero uniformly
as long as the code rate is less than the compound channel
capacity no matter what channel the sequence of codes is ac-
tually encountering. This uniform convergence does not mean
that the error probability of each channel in the compound
channel goes to zero at exactly the same speed, but the speed
is at least lower bounded. The difference is negligible at large
blocklengths, but significant for codes with relatively short
blocklengths.

III. PERIODIC ERASURECHANNELS

In order to evaluate the finite-blocklength performance of a
single code under various channels, we need a relatively simple
compound channel. In Theorem 1, the compound channels
are matrix channels. Although these matrix channels provide
plenty of flexibility, they complicate the mathematical analysis.
One simple compound channel involves erasing transmitted
symbols periodically with different patterns. Each distinct
erasure pattern generates a distinct channel.

As far as the effect of blocklength is concerned, sending
a codeword through a periodic erasure channel is equivalent

to puncturing the codewords first then sending through a
standard (unerased) channel. This equivalence provides great
convenience in computing the error bounds as explained in the
rest of the paper. As a result, We are able to gain insight into
the short-blocklength behavior.

Consider a binary symmetric channel (BSC) with input
symbolsxi ∈ {−1, 1}. The channel is expressed by

yi = f(xi, p) =

{
xi with probability 1− p

−xi with probability p
.

For a BSC with periodic erasures,yi = aif(xi, p), where
ai ∈ {0, 1} are the erasing coefficients with periodT , i.e.
ai = ai+T . Similarly an AWGN periodic erasure channel can
be formulated asyi = aixi + ni, whereni is the Gaussian
noise.

The periodic erasure channel can be regarded as a very
simple matrix channel that is a diagonal matrix containing only
ones and zeros. It is a simplified model for frequency-hopped
or OFDM systems where partial band interference arises due
to frequency dependent disturbance or jamming [2].

IV. F IGURE OFMERIT

Before we analyze the performance of an error-correcting
code under various channels, a fair and convenient figure of
merit is needed. This figure should automatically take channel
conditions into consideration and act consistently across all
channels.

Some figures of merit depend on the regime of concern. For
example, in the low-SNR regime and the wide-band regime,
Verdú proposes the normalized energy per information bit
Eb/N0 to be the figure of merit [11]. In this paper, we do not
limit analysis in the low-SNR regime, thus precluding the use
of Eb/N0. Conventionally, the code performance in an AWGN
channel is gauged by the signal-to-noise-ratio (SNR) required
to achieve a certain target bit error rate (BER) or frame error
rate (FER). SNR can be used to evaluate different codes
under the same channel condition and the same rate. However
as will be shown later, it is not suitable to evaluate codes
under multiple channel conditions or compound channels. One
possible metric is the normalized SNR proposed by Forney
[12], defined as

SNRnorm =
SNR

22R − 1
, (4)

whereR is the code rate, and10 log10(SNRnorm) is often called
the SNR gap of a code. The value of the SNR gap indicates
how far a system is operating from the Shannon limit.

In [1] excess mutual information (EMI) was proposed as
the figure of merit for the purpose of universal code design.
It is defined as:

EMI(SNR, R) = I(SNR)−R, (5)

whereR is the rate of the code and SNR is the signal-to-noise-
ratio at which the code achieves a certain target probability of
error,I(SNR) is the mutual information of the channel at that
SNR given the input distribution. For the AWGN channel with
Gaussian input,I(SNR) coincides with the capacity of the
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channel. EMI indicates the penalty in terms of untransmitted
information that is paid due to the imperfectness of the code.

For an AWGN channel, EMI and SNR gap can be approxi-
mately related by a constant factor in the high-SNR and high-
rate regime. Assuming a real AWGN channel with Gaussian
input, SNR gap can be written as

SNR gap= 10 log10(SNR)− 10 log10(2
2R − 1)

≈ 10 log10(SNR)− 20R log10(2).
(6)

EMI can be written as

EMI =
1
2

log2(1 + SNR)−R

≈ 1
2

log2(SNR)−R.
(7)

Thus SNR gap≈ 20 log10(2) EMI. The approximations in (6)
and (7) are valid whenR and SNR are both large. However, if
we perform the same analysis for a channel where every other
symbol is erased, we see that SNR gap≈ 40 log10(2) EMI.
Thus SNR gap and EMI are fundamentally different figures
of merit, and one must choose between them.

We prefer EMI to SNR gap because EMI indicates how the
error probability changes as blocklength increases. For typical-
set decoding in a Gaussian channel, the error probability of
a Gaussian code book of blocklengthn is upper bounded by
[13, p. 245]

P (n)
e ≤ 2ε + 23nε2−n(I(X;Y )−R)

= 2ε + 23nε2−nEMI .
(8)

Although EMI is not the true error exponent for typical set
decoding due to the fact that theε in (8) hides too much
information, the appearance of EMI in the exponent in (8)
manifests its importance in determining the error probability.

V. PERFORMANCEEVALUATION

A finite blocklength code is often compared to the Shannon
capacity to measure its imperfectness. However this com-
parison is not completely fair; in most cases, the Shannon
capacity can only be achieved as the blocklength goes to
infinity. Among available finite-blocklength analysis tools are
the sphere-packing bound (SPB) [14] and the random-coding
bound (RCB) [15]. The probability of error for codes with
finite blocklength is lower bounded by the SPB.

The RCB, characterizing the average performance of ran-
domly selected codes, serves as an upper bound on the
probability of error for an optimal code. However in reality
it might be the case that even the RCB cannot be achieved
by a carefully designed code due to the increasing decoding
complexity. A fair assessment of a finite-blocklength code can
be made by measuring its EMI against the EMI of the SPB
or the RCB.

In what follows, we will state the SPB and the RCB for the
BSC and the AWGN channel, then use examples to illustrate
the finite-blocklength behavior of universal codes.

A. Binary Symmetric Channels

1) Sphere-Packing Bound:The derivation of the SPB for
the probability of codeword errorPw(n, k, p) on the BSC is
combinatorial. For an (n, k) binary code, the bound can be
written as [15], [16]

Pw(n, k, p) ≥pr+1(1− p)n−r−1

(
r+1∑

i=0

(
n

i

)
− 2n−k

)

+
n∑

i=r+2

(
n

i

)
pi(1− p)n−i

=
n∑

i=r+1

(
n

i

)
pi(1− p)n−i

− pr+1(1− p)n−r−1

(
2n−k −

r∑

i=0

(
n

i

))
,

(9)

wherep is the crossover probability of the BSC andr is the
maximum integer such that

∑r
i=0

(
n
i

) ≤ 2n−k.
2) Random Coding Bound and Error Exponent:The RCB

for the BSC is computed as [15, p. 146]

Pn
w ≤ e−nEr(R), (10)

whereEr(R) is the random coding exponent. However, even
for such a simple channel,Er(R) does not have a simple
explicit form. We need first to compute an intermediate
parameterδ whose relation with the code rateR (in nats)
is given as:

R = ln 2−H(δ), (11)

where H(δ) is the binary entropy function (in nats). The
possible range ofδ is p ≤ δ ≤ 1/2.

For δ in the range

p ≤ δ ≤
√

p√
p +

√
1− p

, (12)

wherep ≤ 1/2 is the crossover probability, the random coding
exponent of the BSC is

Er(R) = −δ ln p− (1− δ) ln(1− p)−H(δ). (13)

For √
p√

p +
√

1− p
< δ ≤ 1/2, (14)

the exponent becomes

Er(R) = H(δ)− 2 ln(
√

p +
√

1− p). (15)

3) Extension to Periodic Erasure Channels:As mentioned
earlier, erasures by the channel are equivalent to punctures
by the transmitter as long as the receiver has full knowledge
which symbols are erased or punctured. We also assume
the erasure period is much shorter than the blocklength so
that the effect of the last (possibly fractional) period can be
negligible. The previously-listed bounds and error exponents
can be extended to erasure channels by this equivalence. For
example, the RCB of a rate-1/4 length-N code with erasure
pattern “10” is the same as that of a rate-1/2 length-N/2 code
without erasures. The same is true for the SPB.
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4) Numerical Analysis:The random-coding error exponent
indicates the rate at which the error probability of the ensemble
codes approaches zero as blocklength grows. We consider a
BSC compound channel with erasure patterns “11111” and
“00111”. For a fair comparison, the BSC’s have a crossover
probability0.11 for the first erasure pattern and0.0246 for the
second pattern such that both channels have capacity0.5 bit.
The random-coding error exponents are plotted in Fig. 1 for
various code rates. It is clear that the erased channel is more
favorable than the unerased channel from the perspective of
error exponent vs. transmitted rate on a channel with a fixed
capacity.
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Fig. 1. Random-coding error exponents for a BSC with capacity 0.5 bit.
11111–unerased channel, 00111–erasure channel.

We now show the error bounds vs. EMI. Suppose CH1 is
the standard BSC with crossover probabilityp and CH2 is a
BSC with the same crossover probabilityp but with periodic
erasure pattern “00111”. The capacities of two channels are:

C1(p) = 1−H(p), C2(p) =
3
5
(1−H(p)), (16)

whereH(p) = −(1− p) log2(1− p)− p log2(p) is the binary
entropy function in bits. In both cases, the code rate is1/4.
According to (5), the EMI for CH1 is calculated by EMI1 =
C1(p)− 0.25 and the EMI for CH2 is EMI2 = C2(p)− 0.25.
Bounds on the frame error rate for blocklength 100 are plotted
against EMI in Fig. 2. Again the erasure channel is a more
EMI-efficient channel according to the SPB and the RCB. So
one would expect a short-blocklength universal code to have
better performance in an erasure channel than in a standard
channel in terms of EMI.

B. AWGN Channels

1) Sphere-Packing Bound:The derivation of Shannon’s
SPB for the AWGN channel is essentially geometric. The
codewords of blocklengthn are regarded as points on the
surface of ann-dimensional sphere with radius

√
nEs. The

error probability is lower bounded by the probability that an
n-dimensional Gaussian random variable falls outside a cone
whose cap area corresponds to that of the Vonoroi region of
the transmitted codeword. The error probability is given as
[14], [17]:

Pw ≥ Qn(θs, A), (17)
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Fig. 2. Sphere-packing bound (SPB) and random-coding bound (RCB) for
BSC with blocklength 100. 11111–unerased channel, 00111–erasure channel.

where A =
√

Es/No, θs is the half-cone angle of a cone
whose normalized solid angle is1/2k. i.e. Its solid angel is
1/2k of the total solid angle of then-dimensional sphere,
where k is the information bit length. The half-cone angle
θs satisfies

Ωn(θs) =
∫ θs

0

(n− 1)Γ(n
2 + 1)(sin φ)(n−2)

nΓ(n+1
2 )

√
π

dφ =
1
2k

. (18)

Qn(θs, A) is given as

Qn(θs, A) =
∫ π

θs

(n− 1)(sin φ)(n−2)

2n/2
√

πΓ(n+1
2 )∫ ∞

0

s(n−1)e−(s2+nA2−2s
√

nA cos φ)/2dsdφ.

(19)

The computation in(18) and (19) becomes numerically
unstable whenn becomes large. The following asymptotic
approximations should be used for largen:

Ωn(θs) ≈
Γ(n

2 + 1)(sin θs)(n−1)

nΓ(n+1
2 )

√
(π) cos θs

≈ (sin θs)(n−1)

√
2πn cos θs

, (20)

Qn(θs, A) ≈ 1√
nπ

√
1 + G2(θs, A) sin θs

×

[G(θs, A) sin θse
−(A2−AG(θs,A) cos θs)/2]n

AG(θs, A) sin2 θs − cos θs

,

(21)

whereG(θs, A) = (1/2)[A cos θs +
√

A2 cos2 θs + 4].
2) Random-Coding Bound and Error Exponent:Assuming

a Gaussian input, the RCB for the AWGN channel has an
explicit form [15, p. 340]. As in the BSC case, we need to
compute the error exponent. For the rateR (in nats) in the
range:

1
2

ln

(
1
2

+
A

4
+

1
2

√
1 +

A2

4

)
≤ R ≤ 1

2
ln(1 + A), (22)
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whereA = Es/No. The error exponent is

Er(R) =
A

4β

[
β + 1− (β − 1)

√
1 +

4β

A(β − 1)

]

+
1
2

ln

[
β − A(β − 1)

2

(√
1 +

4β

A(β − 1)
− 1

)]
,

(23)

whereβ = e2R. When R is less than the left hand side of
(22), the error exponent becomes

Er(R) = 1− β +
A

2
+

1
2

ln
(

β − A

2

)
+

1
2

ln β −R, (24)

where

β =
1
2

(
1 +

A

2
+

√
1 +

A2

4

)
. (25)

These bounds can again be extended to erasure channels
through the erasure-puncture equivalence. It is worth not-
ing that the equivalence only exists for erasure channels. If
the scaling coefficients are arbitrary real numbers, then the
channels become periodic fading channels. In this case, the
optimal codewords lie on the surface of an ellipsoid. Thus,
the SPB literally becomes an ellipsoid-packing bound, which
is extremely difficult to compute.

3) Numerical Analysis and Simulation Results:In parallel
with the BSC case, we compute the random-coding exponents
for two channels with erasure pattern “11111” and “00111”.
We set the SNR to be1.0 for the first pattern and2.1748 for
the second such that both channels have capacity 0.5 bit. The
random-coding error exponents are plotted in Fig. 3 for various
code rates. Again, the erasure channel is more favorable in
terms of error exponent.
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Fig. 3. Random-coding error exponents for an AWGN channel with capacity
0.5 bit. 11111–unerased channel, 00111–erasure channel.

In what follows, we compare the SPB and the RCB to the
simulation results from three different codes: a trellis code, an
LDPC code and a turbo code.

Example 1:A trellis code
The rate-1/3 trellis code [171 46 133] (in octal) proposed

in [1] as a universal code for periodic erasure channels was
simulated. This code was designed by minimizing the sum
of the residual Euclidean distances and the sum of the SNRs

over all the possible erasure patterns. A Gray-labeled 8PSK
constellation was employed. The blocklength was 46 symbols.
We denote the standard AWGN channel by CH1 and the one
with erasure pattern “01” by CH2. The EMI for CH1 is (per
complex symbol)

EMI1 = log(1 + SNR)−R. (26)

And the EMI for CH2 is

EMI2 = 1/2 log(1 + SNR)−R. (27)
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Fig. 4. Sphere-packing bound (spb), random-coding bound (rcb) and trellis
code simulation results (sim) for AWGN channel with blocklength 46. 11–
unerased channel, 01–erasure channel.

The bounds on frame error rate together with the simulation
results are plotted against SNR in Fig. 4(a) and against EMI
in Fig. 4(b). If only looking at the SNR plot and ignoring the
SPB and RCB, one might assume that the code performance
is much worse in the erasure channel because it needs a
larger SNR. However this is not correct. The erasure channel
inherently requires a larger SNR than the AWGN channel to
provide the same capacity. Like the BSC case, the erasure
channel requires less EMI according to both the bounds and
the simulation results. Fig. 4 shows that the bounds for the two
channels differ considerably at short blocklength, meaning that
constant EMI is not possible across both channels. This gap
becomes much smaller at longer blocklengths.

Example 2:An LDPC code
As shown in Fig. 5, the difference between the SPB and

RCB becomes negligible as the blocklength becomes large.
Also shown in the Fig. 5 are simulation results of a rate-
1/4 blocklength-20000 binary LDPC code mapped to 5000
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16QAM symbols. This code was optimized simply for the
AWGN channel. Based on [18], this is not unreasonable as a
universal LDPC code design choice. Its parity-check matrix
was generated according to the following degree distribution,

λ(x) = 0.356x + 0.219x2 + 0.175x5

+ 0.057x6 + 0.1x15 + 0.0926x16

ρ(x) = 0.5x3 + 0.5x4.

(28)

The graph-conditioning methods in [19], [20] and [21] were
used to lower the error floor. Systematic design of LDPC codes
for periodic erasure channel through density evolution can be
found in [22].

Four different channels were considered, including the
standard AWGN channel and three erasure channels. The
simulation performance of this code in terms of EMI improves
as fraction of erasures increases until the most severe erasure
channel, where the actual rate per unerased symbol grows
so large for the 16QAM constellation that the effect of non-
Gaussian input distribution becomes appreciable.
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Fig. 5. Sphere-packing bound (spb), random-coding bound (rcb) and LDPC
code simulation results (sim) for blocklength 5000 on an AWGN channel.
11111–unerased channel, 01110, 01110, 01010–three erasure channels.

Example 3:A turbo code
Performance of the rate-1/3 turbo code SC-5 proposed in

[10], [23] is shown in Fig. 6. This code was found through
computer search by optimizing the threshold of the constituent
codes over both erasure patterns. The blocklength was 10000
8PSK symbols. The bounds still suggest that the erasure
channel requires less EMI, but the simulation result shows the

opposite. This is because the 8PSK constellation size is simply
too small when half of the symbols are erased. Each 8PSK
symbol in the erasure channel carries 2 bits of information. At
this rate, the uniform distributed 8PSK achieves significantly
lower capacity than the Gaussian distributed input. The same
phenomenon was observed in the previous LDPC example,
where the code performs worse in terms of EMI in the most
erased channel. However, it was less severe in that case
because of a larger constellation.
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Fig. 6. Sphere-packing bound (spb), random-coding bound (rcb) and turbo
code simulation results (sim) for blocklength 10000 on an AWGN channel.
11–unerased channel, 10–erasure channel.

VI. CONCLUSION

This paper begins by reviewing compound-channel coding
theorem. A new proof of the theorem for linear Gaussian
channels is presented. Like most coding theorems, only the
asymptotic behavior of codes for a compound channel is
stated in the theorem. We investigate the performance limits of
universal codes with finite blocklengths by using the random-
coding bound and the sphere-packing bound. It is shown that
although the probability of error approaches zero uniformly
under all the channels in the family, the difference in per-
formance for different channels can be significant at finite
blocklengths.

In particular, we observe that short-blocklength channels
with erasures are more EMI-efficient than channels without
erasures. This was also illustrated in Fig. 5 of [1], Fig. 6 of
[3] and Fig. 3 of [9] where the erasure channels (singular
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channel for [3] and [9]) were more favorable channels. Once
the input blocklength is on the order of 5000 bits, the bounds
indicate that uniform behavior over all channels is a practical
goal. However, we note that a sufficiently large constella-
tion is required to avoid degradation on erasure channels.
Furthermore, LDPC codes seem well-suited to provide this
behavior. It is interesting to notice that in all three examples,
regardless of blocklength the codes perform approximately
0.2 bit EMI away from the SPB. So with careful design, the
short-blocklength trellis codes can be as universal as the long-
blocklength turbo and LDPC codes.
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VIII. A PPENDIX: PROOF OFTHEOREM 1

We start with the casemr = mt = m. The result will be
generalized tomr 6= mt afterwards. Following [8], we divide
the proof into two steps. We will show the theorem is true
when the set of the channels is finite, then extend the result to
uncountably many channels by bounding the error probability
of an arbitrary channel.

Definition 1: [13] The setA(n)
ε of jointly-typical sequences

(x(n), y(n)) with respect to the distributionp(x, y) is the set
of n-sequences with empirical differential entropiesε-close to
the true entropies, i.e.,

A(n)
ε = { (x(n),y(n)) ∈ X (n) × Y(n) :∣∣∣∣−

1
n

ln p(x(n))− h(X)
∣∣∣∣ < ε,

∣∣∣∣−
1
n

ln p(y(n))− h(Y )
∣∣∣∣ < ε,

∣∣∣∣−
1
n

ln p(x(n), y(n))− h(X,Y )
∣∣∣∣ < ε, }

(29)

where

p(x(n), y(n)) =
n∏

i=1

p(xi, yj). (30)

For a given covariance matrixS, the Gaussian distribution
maximizes the entropy. Thus to prove Theorem 1, we only
need to consider Gaussian input due to the Gaussianity of the
noise.

Lemma 1:Let y = Hx + z, whereH is a deterministic
matrix of dimensionm × m and x and z are independent
Gaussian random vectors of dimensionm×1 with zero mean
and covariance matricesS andK, respectively. Consider i.i.d.
length-n sequence(x(n),y(n)) of dimension2mn× 1 drawn
according top(x,y),

Pr
{

(x(n), y(n)) /∈ A(n)
ε

}
< 6e−

nε2
4m . (31)

Proof: We bound the probability that the first inequality
in (29) is violated.

Pr
{
− ln p(x(n)) ≤ nh(X)− nε

}

(a)
= Pr

{
nm

2
− nε− 1

2
x(n)

ᵀ
K(n)−1

x(n) ≥ 0
}

(b)

≤
(
et( m

2 −ε)Ee−
t
2 xᵀK−1x

)n

=
(
e

mt
2 −εt−m

2 ln(1+t)
)n

(c)

≤
(
e

mt2
4 −εt

)n

(d)
=

(
e−

ε2
m

)n

,

(32)

whereK(n) in (a) is a block diagonal matrix of dimension
nm × nm with K along the diagonal, and (b) is due to
the Chernoff bound and the factx(n) is i.i.d. The variablet
assumes positive real values andE stands for expectation. The
inequality (c) is becauset− ln(1 + t) ≤ t2/2 for 0 ≤ t < 1.
We substitutet = 2ε/m < 1 in (c) and arrive at (d).

The other direction goes similarly.

Pr
{
− ln p(x(n)) ≥ nh(X) + nε

}

= Pr

{
−nm

2
− nε +

1
2
x(n)

ᵀ
K(n)−1

x(n) ≥ 0
}

≤
(
e−t( m

2 +ε)Ee
t
2 xᵀK−1x

)n

=
(
e−

mt
2 −εt−m

2 ln(1−t)
)n

(a)

≤
(
e

mt2
2 −εt

)n

(b)
=

(
e−

ε2
2m

)n

,

(33)

where (a) is becauset + ln(1− t) ≥ −t2 for 0 ≤ t ≤ 0.5. We
obtain (d) by substitutingt = ε/m in (a). Combine (32) and
(33) we get

Pr

{∣∣∣∣−
1
n

ln p(x(n))− h(X)
∣∣∣∣ ≥ ε

}
< 2e−

nε2
2m ≤ 2e−

nε2
4m .

(34)
Similarly, we can prove

Pr

{∣∣∣∣−
1
n

ln p(y(n))− h(Y )
∣∣∣∣ ≥ ε

}
< 2e−

nε2
2m ≤ 2e−

nε2
4m ,

(35)

Pr

{∣∣∣∣−
1
n

ln p(x(n), y(n))− h(X, Y )
∣∣∣∣ ≥ ε

}
< 2e−

nε2
4m .

(36)
Finally, we arrive at (31) by the union bound.

The following lemma gives bounds on the power of input
and output of the channel.

Lemma 2:With the same setup as in Lemma 1, denote the
total power of vectorx(n) by Px = Tr(S). Then for anyε > 0,

Pr
{
‖ x(n) ‖2≥ n(Px + ε)

}
≤ e−c1n, (37)

wherec1 = 1
2 [ ε

Px
− ln(1 + ε

Px
)]. Furthermore, if the channel

satisfies the conditions in Theorem 1, for any input complying
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with the power constraint‖ x(n) ‖2≤ nPx, the output satisfies,

Pr
{
‖ y(n) ‖2≥ nPy | x(n)

}
≤ e−c2n, (38)

wherePy = 2α2
0Px + 2mα2 + 2 and c2 = 1

2 [ 1
mα2

− ln(1 +
1

mα1
)]. The constantsα0, α1, α2 are defined in Theorem 1,

andm is defined in Lemma 1.
Proof: This is a direct result of the Chernoff bound. For

details, see Lemma 5,8 of [8] and Lemma 5 of [24].
In the following lemma, we prove the existence of universal

codes for a finite set of channels.
Lemma 3:With the same setup up as Theorem 1, denote

L = |I|, the cardinality of the index setI. AssumeL to be
finite, any rateR < C(I) is achievable.

Proof: We will use the same idea as in [13], namely
random codes and joint typical-set decoding. We generate i.i.d.
codewords according to the distribution ofx. The codewords
are denoted byx(n)(w), w = 1, 2, ..., 2nR. The receiver looks
for codewords that are jointly typical with the received vector
given knowledge of the channel index at the receiver. If a
single codeword is found, it is declared to be the transmitted
codeword. Otherwise an error is declared. The receiver also
declares an error if the chosen codeword does not satisfy
the power constraint. Without loss of generality, assume that
codeword 1 is sent.

Define the following events:

E0 =
{
‖ x(n)(1) ‖2> Px

}
, (39)

Ei =
{

(x(n)(i), y(n)) ∈ A(n)
ε )

}
. (40)

Let Pn
s be the sum of error probabilities of individual channels

when codeword 1 is sent.

Pn
s =

L∑

i=1

Pi {E|W = 1}

(a)

≤
L∑

i=1


Pi(E0) + Pi(Ec

1) +
2nR∑

j=2

Pi(Ej)




(b)

≤
L∑

i=1

(
e−c1n + 6e−

nε2
4m + e−n(ln 2)(Ii(x;y)−R−3ε)

)

(c)

≤ L
(
e−c1n + 6e−

nε2
4m + e−nε ln 2

)
−→ 0, asn −→∞.

(41)

where (a) is due to the union bound,Pi(·) is the probability of
an error event under theith channel. The first two terms of (b)
are due to Lemma 1 and 2; the third term (which also appears
in (8)) upper-bounds the probability that a wrong codeword
is jointly typical with the transmitted codeword. Its proof is
discussed in [13]. SinceR < C(I) ≤ Ii(x, y), ∀i ∈ I,
we can select small positiveε to satisfy R < C(I) − 4ε,
which results in (c). Thus, for any individual channel in the
compound channel, the error probability also approaches zero.
By deleting the worst half of the codewords we obtain a code
with low maximal probability of error.

To extend the result to arbitrary setI, we need to form a
dense finite subset and establish the relationship of the error

probabilities between an arbitrary channel and its neighbor in
the subset. The following lemma reveals the relationship.

Lemma 4:Let (H1,K1) and (H2,K2) be two chan-
nels satisfying the constraints in Theorem 1. Denotex(n)

and y(n) to be the input and outputn-sequence ofm-
dimensional vectors, respectively. LetPH1,K1{y(n)|x(n)} and
PH2,K2{y(n)|x(n)} be thenm-variate probability densities
for the output signal sequencey(n) given x(n), for the n-
extension of the two channel (H1,K1) and (H2,K2), respec-
tively. Then for thosex(n) satisfying‖x(n)‖2 ≤ nPx andy(n)

satisfying‖y(n)‖2 ≤ nPy,

PH1,K1{y(n), x(n)}
PH2,K2{y(n), x(n)} ≤ en(c3(δ,η)+c4), (42)

where

c3(δ, η) =
1

2α2
1

(
Py + α2

0Px + α0

√
PxPy

)
δ

+
1
α2

1

(
α0Px +

√
PxPy

)
η,

(43)

c4 =
1
2

(ln det(K2)− ln det(K1)) , (44)

The variablesδ = ‖K1 − K2‖, η = ‖H1 − H2‖, the
numbersα0 andα1 are defined in Theorem 1.

Proof: See Lemma 7 of [8].
Now we are ready to prove the theorem. Define theδ-

neighborhood of the channel(H, K) ∈ I to be the set
of channels(H ′, K′) ∈ I satisfying ‖K − K ′‖ ≤ δ and
‖H − H ′‖ ≤ δ. The conditions in Theorem 1 guarantee
that the channel space is compact. We can select a finite
subsetI ′ ⊂ I such that for an arbitrary channel inI, in
its neighborhood there exists at least one channel belonging
to I ′. We denote|I ′| to be Lδ to emphasize its relationship
with δ.

For anyR < C(I) ≤ C(I ′)), by Lemma 3, we can find a
sequence of codes whose probability of error overI ′ vanishes
as the blocklength grows. The code can be applied to the whole
channel space in the following manner. If the channel is inI ′,
then the receiver uses its own typical set decoder described in
Lemma 3, otherwise the receiver uses the typical set decoder
from its neighbor that is inI ′. The probability of error when
the receiver uses its neighbor’s decoder can be bounded. To
be specific, let(H,K) ∈ I and(H ′,K ′) ∈ I ′ satisfy‖K −
K′‖ ≤ δ and‖H −H ′‖ ≤ δ, by Lemma 4 we get,

PH,K

{E ∩ Ec
0 ∩ Ec

y

} ≤ en(c3(δ,δ)+c4)PH′,K′
{E ∩ Ec

0 ∩ Ec
y

}
,

(45)

whereE is the event that the receiver makes an error, E0 is
defined in (39) and Ey is the event thaty(n) violates the power
constraints.

Using Taylor expansion ofdet(K ′) at K we can show
that det(K ′)/ det(K) ≤ 1 + P (δ)/αm

1 , where P (δ) is a
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polynomial withP (0) = 0. Then, (45) becomes

PH,K

{E ∩ Ec
0 ∩ Ec

y

}

≤ exp
{

n

[
c3(δ, δ) +

1
2

ln
(

1 +
P (δ)
αp

1

)]}
PH′,K′

{E ∩ Ec
0 ∩ Ec

y

}

≤ exp
{

n

[
c3(δ, δ) +

1
2

ln
(

1 +
P (δ)
αp

1

)]}
PH′,K′ {E}

≤ exp
{

n

[
c3(δ, δ) +

1
2

ln
(

1 +
P (δ)
αp

1

)]}
·

Lδ

(
exp {−c1n}+ 6 exp

{
−nε2

4p

}
+ exp {−nε ln 2}

)

(46)

The last inequality is due to Lemma 3. Sincec3(δ, δ) and
P (δ) approach zero whenδ goes zero andLδ is independent
of n, we can select sufficiently smallδ to ensure the overall
exponent in the last expression to be negative. Then asn goes
zero,PH,K

{E ∩ Ec
0 ∩ Ec

y

}
vanishes. Now we use the union

bound,

PH,K {E} ≤ PH,K {E0}+PH,K {Ey}+PH,K

{E ∩ Ec
0 ∩ Ec

y

}
.

(47)
According to Lemma 2, the first two terms vanish as the
blocklength approaches infinity, thus the code works for any
channel inI. The converse is due to the fact that there exists
a channel inI whose mutual information is less thanC + ε.
So any rate greater thanC + ε will not be achievable for that
channel.

To extend it tomr 6= mt, let m = max(mt,mr) we can
expandH to be of dimensionm×m by padding zero columns
or rows. Simultaneously we expandy and z by appending
zeros whenmr < mt or expandx whenmr > mt. If a code
works for the expanded compound channel, it also works for
the original compound channel.

Remark 1: With proper modification, the proof can be
extended to the complex case where the input and noise are
circularly symmetric Gaussian random vectors.

Remark 2: The above proof simplifies the error probability
computation by using typical set decoding. This requires
channel side information at the receiver. The original proof
in [8] is stronger since it does not have this assumption.
One could, however, argue that the rate loss due to channel
estimation is negligible when the blocklength goes to infinity.
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