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Abstract—In broadcast scenarios or in the absence of accurate
channel probability distribution information, code design for con-
sistent channel-by-channel performance, rather than average per-
formance over a channel distribution, may be desirable. Root and
Varaiya’s compound channel theorem for linear Gaussian chan-
nels promises the existence of universal codes that operate reli-
ably whenever the channel mutual information (MI) is above the
transmitted rate. This paper presents two-dimensional trellis codes
that provide such universal performance over the compound linear
vector Gaussian channel when demultiplexed over two, three, and
four transmit antennas. The presented trellis codes, found by ex-
haustive search, guarantee consistent performance on every ma-
trix channel that supports the information transmission rate with
an MI gap that is similar to the capacity gap of a well-designed ad-
ditive white Gaussian noise (AWGN)-specific code on the AWGN
channel. As a result of their channel-by-channel consistency, the
universal trellis codes presented here also deliver comparable, or,
in some cases, superior, frame-error rate and bit-error rate perfor-
mance under quasi-static Rayleigh fading, as compared with trellis
codes of similar complexity that are designed specifically for the
quasi-static Rayleigh-fading scenario.

Index Terms—Compound multiple-input multiple-output
(MIMO) channel, multiple antennas, space–time systems, trellis
codes, universal codes.

I. INTRODUCTION

THE use of multiple antennas at both transmitter and
receiver is crucial in order to harvest the capacity of rich

propagation environments. For example, when the path gains
between transmit and receive antenna pairs are independent
Gaussian random variables (RVs), Foschini [1] and Telatar
[2] showed that outage capacity increases linearly with the
number of transmit–receive antenna pairs. As is common in the
current literature, we refer to a channel resulting from the use
of multiple antennas as a space–time channel.

An instance of signal transmission over a space–time channel
with transmit antennas and receive antennas is often
modeled as

(1)
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where is an complex matrix of path gains, is the
complex input vector, is the complex output vector, and
is the complex additive white Gaussian noise (AWGN) vector
with variance per dimension. For vector channels of the form
(1), signal design criteria for average error-probability perfor-
mance were established in [3] and [4] for the case when the path
gains are characterized by complex Gaussian RVs (Rayleigh
fading). Since then, the design of coded space–time diversity
schemes based on the average performance criterion for quasi-
static Rayleigh fading has been an active research area [5]–[10].

While good average error performance is desirable, it does
not guarantee consistently good “channel-by-channel” perfor-
mance (i.e., universal performance). In fact, most of the code
designs proposed for the average performance criterion degrade
to uncoded performance under certain rank-deficient channels.
Such channels have been of interest due to their deleterious
effect on average channel capacity in certain propagation envi-
ronments [11]–[13]. A simple line-of-sight channel is also rank-
deficient when multiple transmit and receive antennas are em-
ployed. On the other hand, space–time block-code techniques
such as Alamouti repetition [5] perform extremely well on sin-
gular channels, but lose performance on unitary channels. As
an alternative to these extremes, good universal performance
implies good performance on singular as well as unitary chan-
nels, guaranteeing good average performance irrespective of the
quasi-static distribution.

The need for consistent performance across a family of chan-
nels arises in many communication scenarios, including:

• broadcast channels [14];
• frequency-hopped transmissions (e.g., in GSM, EDGE

[15], [16]) where different codewords may experience
different instances;

• multicarrier transmission scenarios [17], [18] where
different frequency responses are different diagonal
instances.

The information-theoretic foundation for the consistent channel-
by-channel performance of universal codes is presented in Root
and Varaiya’s compound channel-coding theorem [19], which
indicates that a single code with rate b/symbol can achieve
reliable transmission of information over any linear Gaussian
channel that induces b/symbol of mutual information (MI),
i.e., over any channel with MI , where

MI (2)

is the MI (in b/symbol) between the input vector and the
output vector in (1), and is the transmit energy per antenna
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per symbol.1 The implication of this result is that good error per-
formance over a set of channels does not have to come at the
expense of significant performance degradation over others. A
universal code delivers similar error performance over all chan-
nels with the same MI. Consider a specific code that transmits
b/symbol over transmit antennas. Let denote the transmit
energy per antenna that this specific code requires to achieve the
target bit-error rate (BER) on the (static) channel . The excess
MI (EMI) requirement of that specific code on this channel is the
difference between the channel MI MI and the rate

EMI MI bits (3)

Let MI denote the set of channels that
comprise the most comprehensive compound channel
with capacity b/symbol. The goal of universal b/symbol
code design is to minimize, over this compound channel
with capacity , the worst-case EMI EMI
at fixed target BER [or frame-error rate (FER)], latency, and
decoding complexity. To this end, our study [20] on universal
codes concentrated on vector-labeled universal trellis codes
for the 2 2 compound channel. This paper extends the ideas
in [20] to propose universal space–time trellis codes (STTCs)
formed by straightforward demultiplexing of two-dimensional
(2-D) linear trellis codes over two, three, and four transmit
antennas. These demultiplexed trellis codes have simpler max-
imum-likelihood (ML) decoding than general multidimensional
(vector-labeled) trellis codes, while still providing excellent
performance.

Section II summarizes our results on the worst-case minimum
distance of a space–time code under linear transformations with
equal MI, and derives a simple approximate criterion for uni-
versal behavior. This section also formulates the encoder rate,
constellation size, and trellis complexity requirements for uni-
versal STTCs formed by demultiplexing a 2-D trellis code.

Section III presents several linear trellis codes, found by
exhaustive search over their respective encoder classes. These
codes provide universal performance when demultiplexed over
two, three, and four transmit antennas and received with ML
decoding. The performance variation of universal codes, as
compared with other existing space–time codes over different
channel instances, is illustrated via extensive simulations.
Our discussion ends with simulation results showing that the
average error performance of the proposed universal codes over
quasi-static Rayleigh fading is comparable, and in some cases
superior, to existing space–time codes with similar decoding
complexity designed specifically for the average error-prob-
ability performance. A channel-by-channel look at the 2 2
and 3 3 quasi-static Rayleigh fading demonstrates why the
proposed universal codes deliver excellent average Rayleigh
fading error-probability performance, and why these universal
codes provide a channel-by-channel reliability that codes de-
signed only for good average performance may not provide.
Section IV delivers the conclusions.

1Assuming the input vector has a complex Gaussian distribution with covari-
ance matrix E I .

II. DESIGN GUIDELINES FOR UNIVERSAL STTCS

Let and be two different codewords of a space–time
code for transmit antennas, and let denote
the codeword difference matrix. Under ML decoding, the prob-
ability that the decoder mistakes for conditioned on the
perfect knowledge of the channel matrix at the receiver is
given by

(4)

where trace is the squared
Euclidean norm of the codeword difference matrix when
transformed by the channel , and is the standard
Gaussian tail integral function. For a fixed channel , the
minimum of the squared distance over all will be
called the of the code.

With ML decoding, the universal performance of an STTC
results from its ability to sustain good over a family

of channel instances that support transmission rate . The
smallest value of over this compound channel is a
function of the eigenvalues of the codeword difference matrices.
For a given codeword difference matrix , let
be the vector of eigenvalues of with the ordering

(5)

We will write . The eigenvalues of , where is
an complex channel-gain matrix, will be denoted by

with the ordering

(6)

We will write where . Throughout
the paper, we will assume that .

A. Worst-Case Distance Over the Compound Channel

Consider the compound channel with capacity
b/symbol

MI (7)

For a particular code, we are interested in the minimum of the
squared Euclidean norm, , of a codeword difference
matrix over all instances of the compound channel

. In order to find the minimum of over
all , we first consider the minimum over all

for fixed . It is shown in [20] that for a given code-
word difference matrix and a given set of channel eigenvalues

is minimized when the channel aligns its
strongest modes with the weakest eigendirections of , and
vice versa. In particular, if ,

(8)
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therefore

(9)

The solution to the optimization problem

subject to MI

has the waterpouring form with the worst-case channel

(10)

where is any basis in , and is the eigen-
vector of that corresponds to . The worst-case channel
eigenvalues are given by

(11)

where is the
number of nonzero eigendirections that the worst-case channel
uses and

(12)

is the geometric mean of the smallest eigenvalues of .
This exact solution, however, does not yield a simple criterion

for universality except for , in which case, the worst-case
channel is given by , where is the
eigenvalue corresponding to the weakest eigenvector of .

The purpose of universal coding is to deliver b/symbol with
consistently good error probability across all instances of the

compound channel . This would guarantee
consistent performance for any . In fact, for any

is equivalent to the subset of con-
sisting of square matrices of rank less than or equal to , i.e.,

rank , where
is in the sense that for

if and only if for some unitary . For example,
the subset of singular channels in is equivalent
to the compound channel with . The equiva-
lence implies that a space–time code would have iden-
tical error-probability performance under and with ML
decoding.

An approximate criterion for universality over is
obtained by bounding the worst-case distance over the com-
pound channel. First, an upper bound on the worst-case min-

imum distance on the compound channel comes from the min-
imum distance over the equal-eigenvalue

channels. For a codeword difference

(13)

(14)

where trace is the squared Euclidean norm
of .

Now, a lower bound is obtained as

(15)

In the above set of equations, (a) follows from the concavity
of the logarithm function. To see (b), let
and . Noting that , for the

minimum of subject to , one can
take . An equivalent problem is then to maximize

subject to , where . Since
, the maximum occurs at and for ,

i.e., at and for . Finally, uses the
shorthand notation for trace .
The following lemma summarizes these results.

Lemma 1: The worst-case minimum distance of a space–time
code over the compound channel of capacity b/symbol
is bounded as

where trace is the minimum squared Eu-
clidean distance of the code. The first inequality of Lemma 1
implies that a universal code should have good minimum Eu-
clidean distance. The second inequality of the lemma leads us to
choose, among good minimum Euclidean-distance codes, those
codes with high minimum eigenvalue .
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Fig. 1. A k b/symbol 2-D trellis code.

Ultimately, the universal performance of a code over the com-
pound channel will be measured by its EMI requirement. Nev-
ertheless, this criterion provides us with a basic rule to prune the
search for universal STTCs.

B. Demultiplexing a 2-D Trellis Code

The requirements for design of universal vector-labeled
STTCs for two transmit antennas were considered in [20]. In
this paper, we focus on STTCs generated by straightforward
demultiplexing of a 2-D trellis code over the transmit antennas.
This approach results in more manageable code searches. More
importantly, the resulting STTCs have the same ML decoding
complexity as the demultiplexed code over a single-transmit
antenna channel [6]. Consider a rate- convolutional en-
coder with memory . For b/symbol transmission over
transmit antennas using a -phase-shift keying/quadrature
amplitude modulation (PSK/QAM) constellation, we use this
encoder times (assume for simplicity that divides

evenly). Let denote
the codeword bits that the binary encoder would produce
for successive input bits. If , then we map

onto the -PSK/QAM constellation
for the th transmit antenna, . If , we
puncture out of bits, and group the remaining

bits similarly, keeping the index order. Fig. 1 illustrates a
2-D trellis code.

C. Constellation Size and Trellis Complexity Requirements for
Demultiplexed Universal Space–Time Codes

Universal performance over the compound channel requires
the following design rules for demultiplexed 2-D trellis codes.

• Constellation size: Universal codes are designed to main-
tain redundancy over any instance of the compound
channel. Therefore, the constellation size should be large
enough to transmit b/symbol redundantly, even when
the channel matrix has zero rows.2 Thus, the
constellation size should satisfy . For example,
for 2 b/symbol transmission over antennas, we
propose rate-1/3 convolutional encoders mapping 8-PSK
constellations.

• Trellis complexity: The effective code length (ECL) is the
smallest symbol-wise Hamming weight of an error event.
For a -b/symbol linear trellis code, ECL ,
where is the memory of the encoder [21]. In order to
have , the shortest error event of the single-di-
mensional code should be long enough to occupy at least

2The channel matrix cannot be the zero matrix which has zero MI.

channel symbols when demultiplexed over transmit
antennas. Therefore, [22]. This was
noted earlier in [22]. The trellis complexity requirements
can be relaxed by sacrificing one or more levels of transmit
diversity. In general, for levels of transmit diversity, the
necessary trellis complexity obeys

(16)

With levels of transmit diversity, there is always a
singular channel that supports the transmission rate, under
which two codewords cannot be reliably (with error proba-
bility less than ) distinguished at the receiver. However,
a diversity- code with good can provide universal per-
formance over all channels that establish at least
equally strong spatial eigenmodes. Moreover, as will be il-
lustrated in Section III, missing levels of transmit diversity
can be restored by an outer code.

III. UNIVERSAL SPACE–TIME CODES

FROM 2-D TRELLIS CODES

The search for universal codes is complicated by the nonad-
ditive nature of error-event eigenvalues over trellis branches. In
previous work [20], for , a finite sampling of channels
was used to approximate the worst-case minimum eigenvalue
of the code over multiple forward trellis searches. In this paper,
since we want to consider and , as well as

, a small set of test channels (including the unitary and
several rank-deficient diagonal channels) are used in this paper
to prune the set of codes considered by the stack-based algo-
rithm of [23] to determine codes with the best worst-case eigen-
values.

Besides the worst-case minimum eigenvalue , three other
code parameters will be useful for interpreting the performance
of space–time codes in different scenarios. These parameters
are the minimum squared Euclidean distance of the code,

, the diversity order of the code,
rank , and the minimum product distance

. The worst-case th eigenvalue
over all is denoted by .

All codes presented in this section are found by exhaustive
search over their class of encoders to maximize the worst-case
minimum-eigenvalue under a transmit diversity constraint

, while sacrificing no more than 20% of the max-
imum squared Euclidean distance achievable within the
same class. In cases where cannot be attained without
less than 20% loss in squared Euclidean distance, the search was
carried out without the squared Euclidean distance constraint.
Ties are resolved by looking at the average bit multiplicity of
worst-case eigenvalues.

A. Universal Codes for Transmit Antennas

Table I lists demultiplexed universal trellis codes and com-
parison codes for b/symbol transmission over two,
three, and four transmit antennas. We consider the
b/symbol case in detail.

Example 1: b/symbol: Table I lists
rate- PSK trellis codes for 16, 32, and 64 states (codes
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TABLE I
R B/SYMBOL TRELLIS CODES FOR N TRANSMIT ANTENNAS. A RATE-k=n CONVOLUTIONAL ENCODER OUTPUTS NR CODE BITS WHICH ARE MAPPED ON

N � 2 -PSK/QAM. 16 QAM, QPSK: GRAY LABELING, 4PSK: NATURAL LABELING. 8 PSK: GRAY LABELING 0,2,3,1,5,7,6,4 IN OCTAL AROUND THE CIRCLE

#2, #3, and #4, respectively). These codes deliver universal
performance over the 2 2 compound channel when they are
demultiplexed over two transmit antennas. Fig. 2(a) displays
the simulated BER performance of code #4 as well as two other
64-state transmit-diversity schemes over the 2 2 compound
channel as a function of EMI. With perfect channel state infor-
mation at the receiver, the performance of the ML decoder on
unitary channels does not depend on the particular instance
of . However, on singular channels, the performance of the
code varies with the direction of the nonvanishing eigenvector
of the channel matrix, except for the case of an orthogonal
transmit design, e.g., Alamouti repetition [5]. For orthogonal
transmit designs, the ML performance of the code depends only
on the sum of the eigenvalues of the channel matrix.

At BER , code #4 requires no more than 0.88 b of
EMI per transmit antenna on singular channels, and requires
0.93 b of EMI per transmit antenna on unitary channels. The
rate- 64-state maximal-free-distance convolutional code
[25] with quaternary (Q)PSK modulation (code #14 in Table I)
requires 0.84 b of EMI on unitary channels at BER .

At BER , code #4 handles every instance of the 2 2
compound channel within 0.1 b of EMI per transmit antenna
of the best rate-1/2+ QPSK AWGN trellis code of similar
complexity on the AWGN channel. The performance of the
code over singular 2 2 channels is the performance of the code
over 2 1 channels.

Another scheme that delivers 2 b/symbol over two transmit
antennas consists of a good AWGN-trellis-coded modulation
(TCM) followed by Alamouti repetition [5] (Code #28 in
Table I). The 64-state rate-2/3 Ungerboeck TCM [24] achieves
BER at SNR dB on the AWGN channel. On
the compound 2 2 channel, the EMI requirement of this
scheme is a function of the sum of the channel eigenvalues
[20]. On singular channels, this concatenated scheme requires
only 0.55 b of EMI per antenna at BER , whereas
on unitary channels, the EMI is requirement is 1.26 b per
transmit antenna. Among the codes examined, code #4 has
the most consistent channel-by-channel performance, and the
space–time block (STB) TCM (code #28) has the least
consistent channel-by-channel channel performance.
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Fig. 2. (a) Channel-by-channel performance of the universal 64-state rate-1=3 + 8 PSK code (#4) over the 2�2 compound channel. Best- and worst-case (for
BER = 10 ) singular channels are identified via extensive simulation. For comparison, the AWGN performance of the 64-state maximal free-distance rate-1=2
convolutional encoder (with QPSK) (code #14), as well as the compound channel performances of the 64-state rate-2=3+ 8 PSK Ungerboeck-TCM + Alamouti
block signaling (code #28), the 64-state STTCM (code #24) of Aktas and the 32-state super-orthogonal code (#29) of Siwamogsatham are provided. (b) Channel-by-
channel performance of the universal R = 2 b/symbol QPSK code (#8) over the 3�3 compound channel. Best- and worst-case (for BER = 10 ) singular
channels are identified via extensive simulation. For comparison, the performance of the 32-state space–time code of [6] (code #26) is provided. Code #26 was
proposed for average Rayleigh-fading performance. Each frame consists of 127 data symbols and 3 symbols for trellis termination.

B. Universal Codes for and Transmit Antennas

Example 2: b/symbol: For b/symbol
transmission over transmit antennas, our search fo-
cused on rate-1/5 convolutional encoders. Two information bits
produce ten codeword bits, one of which is punctured, and the
remaining nine are used to map 3 8 PSK constellations. An ex-
haustive search over 16-state encoders and all 1-out-of-10 punc-
turing patterns resulted in code #7 in Table I ( is punctured).
Code #7 has and , whereas the 16-state
4-PSK STTC of [6] (code #25 in Table I) has and

. Code #7 achieves BER with a worst-case
EMI of 1.3 b/antenna on the singular channels. Code #25 cannot
perform reliably under certain singular channels, due to its lim-
ited diversity.

The -constrained optimal- search over 32-state en-
coders and all puncturing patterns resulted in an encoder that
uses only four out of the eight constellation points. This encoder
may simply be represented as a 32-state rate-1/3 convolutional
code driving QPSK (code #8).

Fig. 2(b) displays the BER performances of code #8 and
the 32-state code of [6] (code #26 in Table I) on the com-
pound 3 3 channel. Code #8 achieves BER with a
worst-case EMI of 0.85 b/antenna, code #26 requires about
0.95 b of EMI in the worst case. Code #8 provides more con-
sistent performance than code #26. Section III-D compares the
average error performance of these codes under quasi-static
Rayleigh fading.

At b/symbol transmission over antennas, a
3-b/symbol maximal- scheme was found as a re-
sult of an exhaustive search over 32-state rate-1/2 QPSK codes
(code #9). The parameters of the 32-state maximal-free-distance
rate-1/2 encoder + QPSK code [25] (code #16) is provided for
comparison. Code #9 is not universal over the 3 3 compound
channel because it does not have full transmit diversity. How-
ever, it exhibits consistent performance over all channels with
strong presence.

C. Universal Codes by Concatenation of Algebraic Block
Codes and Rank-Deficient TCMs With Good Eigenvalue Spread

When the required trellis complexity for full diversity ex-
ceeds practical limits, the concatenation of a rank-deficient
trellis code with an outer code may restore the diversity order
at the expense of reduced transmission rates.

Example 3: (31,21) Binary Bose–Chaudhuri–Hocquengem
(BCH) Code Code #21: We consider the (31,21) binary BCH
code concatenated with the 64-state rate-1/4 + 16 QAM scheme
(code #15) to deliver b/symbol over three transmit
antennas. The decoding is achieved by a Max-Log-a posteriori
probability (APP) Bahl–Cocke–Jelinek–Raviv (BCJR) [26] fol-
lowed by a single iteration Max-Log-APP decoding of the BCH
code. The interleaver is a 372-b-long block interleaver hosting
12 codewords from the outer code in a 124-data-symbol packet
with trellis termination. At BER , this scheme requires
no more than 1 b of EMI on the collection of 40 channels we
simulated.
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Fig. 3. (a) BER and FER performance of the 64-state universal trellis code (code #4), as compared with the 64-state code of [6], over the quasi-static Rayleigh
fading channel, N = 2. Each frame consists of 127 data symbols and 3 symbols for trellis termination. ML decoding on the entire frame. (b) BER and FER
performances of the 32-state universal trellis code (code #8), as compared with the 32-state code of [6] (code #26), over the 3�1 and 3�3 quasi-static Rayleigh
fading channels. Each frame consists of 127 data symbols and 3 symbols for trellis termination. ML decoding on the entire frame.

Fig. 4 Distribution of the ratio of eigenvalues ofHH , whereH is anN �N
matrix of independent and identically distributed complex Gaussian RVs. Top
to bottom: Cumulative distribution function (CDF) of � =� in 3�3 Rayleigh
fading, CDF of� =� in 2�2 Rayleigh fading, CDF of� =� in 3�3 Rayleigh
fading.

D. Universal STTCs Under Quasi-Static Rayleigh Fading

Universal STTCs deliver good average error performance
under quasi-static Rayleigh fading, as long as the quasi-static
period is longer than several traceback depths of the codes.
Fig. 3(a) compares the FER and BER performances of code
#4 and the 64-state code of [6] (code #24) over 2 1 and 2 2
quasi-static Rayleigh fading. The universal code has slightly
better FER and BER over the SNR range displayed. Fig. 3(b)
compares the FER and BER performances of code #8 and the
32-state code of [6] (code #25) over 3 1 and 3 3 quasi-static
Rayleigh fading. The two codes have similar BER and FER
performances over the range of SNRs displayed, with code #8
performing slightly worse in FER for the 3 3 scenario.

Fig. 4 displays the probability distribution of the ratio
in Rayleigh fading for . For two transmit an-
tennas, the probability that the eigenvalues are more than
10 dB apart is 0.45. For , this probability is 0.83. Uni-
versal code design which takes into account the performance
over singular channels (through high ) results in good codes

for the average Rayleigh fading performance, while also deliv-
ering consistent channel-by-channel performance not provided
by codes designed only for Rayleigh fading.

IV. CONCLUSIONS

Wireless communication with multiple transmit antennas ex-
poses the transmitted signals to a rich variety of channels. When
accurate statistical characterization of the path gains is not pos-
sible, or when the code is used in a broadcast scenario, universal
code design aims to deliver consistently good error-probability
performance on any instance of the channel. The compound
channel-coding theorem guarantees the existence of universal
codes with a consistently close proximity to capacity on any in-
stance of a continuum of space–time matrix channels. For con-
sistent channel-by-channel performance across the rank-uncon-
strained compound channel with ML decoding, a uni-
versal space–time code should have good minimum Euclidean
distance and a good minimum eigenvalue over all codeword
differences. Perhaps more importantly, universal codes should
obey binary encoder rate, ECL, and constellation size require-
ments. Space–time codes designed for the average error perfor-
mance often ignore some of these requirements.

In this paper, we presented universal STTCs formed by
demultiplexing 2-D linear trellis codes over two, three, and
four transmit antennas. The straightforward demultiplexing of a
trellis code ensures that the ML-decoding complexity is similar
to that of a single-transmit-antenna scenario. For two and
three transmit antennas, trellis codes that achieve full transmit
diversity with a large smallest eigenvalue and good Euclidean
distance within their class were presented. For three and four
transmit antennas, trellis codes that achieve two and three
levels of transmit diversity with maximum smallest nonzero
eigenvalue and good Euclidean distance were presented.
The best- and worst-case performances over the compound
channel are identified via extensive simulation. Due to their
channel-by-channel consistency, these universal codes deliver
excellent average error-probability performance, regardless of
the statistical distribution of the channel instances.
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