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Abstract— This paper explores protograph-based and ACE-
based methods for constructingq-ary low-density parity-check
(LDPC) matrices. The ACE approach maximizes approximate
cycle extrinsic message degree, explicitly avoiding smallq-ary
stopping sets and implicitly avoiding small absorbing sets. In
addition to ACE, this paper applies linear-dependent-set max-
imization (LDSM) to the binary image of the q-ary LDPC
matrix. Performance is studied for binary and q-ary instances of
erasure channels and additive white Gaussian noise channels. The
combination of the ACE approach and LDSM provides dramatic
error floor improvement for the binary erasure channel and both
binary and q-ary AWGN channels.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes [1] approach the
channel capacity. Specifically, proper degree distribution de-
sign [8], [9], [11] allows LDPC codes to approach the Shannon
limit. For a specified error rate, designing and decoding
the LDPC code overGF (q) where q>2 [2], [3], [16] can
improve the LDPC code parameters over aGF (2) design to
allow increased code rate, reduced blocklength, or increased
intersymbol interference (ISI) resilience. Such codes arecalled
q-ary (or non-binary) LDPC codes, and this paper focuses on
the design of theseq-ary LDPC codes to achieve low error
floors.

Recently LDPC codes have found application in emerging
storage technologies such as Flash memories [19], [20] and
Phase Change Memories (PCMs) [18]. These devices require
very good error-rate performance at very high code rate. The
readout channel model is typically memoryless and it can be
either binary-input (e.g, for standard PCMs [18]) orq-ary-
input (e.g., for multilevel cell PCMs [21]). Moreover, LDPC
codes for storage technologies must have extremely low error
floors. In that regard,q-ary LDPC codes that combine very
low error floors and acceptable decoding complexity may play
an important role in solid state device readout systems, since
they typically provide very good performance in the waterfall
region at high coding rate.

Starting from the baselineq-ary protograph approach intro-
duced in [17], this paper constructsq-ary LDPC codes with
improved error floors using algorithms that avoid the graph-
ical structures that cause the error floor. Stopping sets and
absorbing sets are well-known graphical structures that cause
error floors in binary LDPC codes. This paper identifies the
analogous structures forq-ary LDPC codes. Forq-ary codes,
linear dependent sets also cause error floor behavior even in
cases where the linear dependent set is neither a stopping set or

an absorbing set. This paper introduces a linear-dependent-set
maximization (LDSM) algorithm that specifically addresses
the problem of small linear dependent sets.

To summarize, this paper provides efficient construction
methods forq-ary LDPC codes with moderate field size to
achieve low error floors. These algorithms improve perfor-
mance by constructing LDPC matrices that avoid smallq-
ary stopping sets, absorbing sets, and linearly dependent sets.
The proposed algorithms are studied for binary andq-ary
instances of erasure, symmetric, and additive white Gaussian
noise channels.

The paper demonstrates the importance of the channel when
considering the LDPC matrix construction algorithm. The
combination of the ACE approach and linear-dependent-set
maximization provides dramatic error floor improvement for
the binary erasure channel and both binary andq-ary AWGN
channels. The improvements obtained with ACE and LDSM
were less significant forq-ary erasure channel.

The paper is organized as follows: Section II describes the
matrix representations forq-ary LDPC codes and presents the
system model. Section III provides a graphical analysis of the
q-ary decoding problem. Specifically, definitions, properties
and relationships ofq-ary cycle sets,q-ary stopping sets and
linearly dependent sets are provided. Section IV provides the
low error floor q-ary LDPC code construction algorithms.
Section V presents the simulation results and discusses the
practical aspects of the code construction and decoding. Sec-
tion VI delivers the conclusions.

II. LDPC MATRIX REPRESENTATIONS& SYSTEM MODEL

This paper uses LDPC codes overGF (q), with q=2p and
p an integer. For code rateR, and block lengthN , an LDPC
code is described by anM × N parity-check matrix,H =
{Hij}i=1,...,M ;j=1,...,N , whereHij ∈ GF (q) andR = 1 −
M/N . For a specified LDPC matrixH , the binary mother
matrix χ(H) and the binary image matrixψ(H) are defined
as follows:.

Definition 1 (Binary Mother Matrix):The binary mother
matrix (BMM) χ(H) has the same dimensions asH and
identifies the positions of the non-zero entries inH so that
χ(Hij) = 1 if Hij 6= 0 andχ(Hij) = 0 if Hij = 0.

Definition 2 (Binary Image Matrix):The binary image
matrix (BIM) ψ(H) expandsH into apM x pN binary matrix
[13]. Each elementHij of H is represented inψ(H) by the
p x p binary matrix that corresponds to that element.



To accomplish the expansion, leta(x) = a0 + a1x + . . . +
ap−1x

p−1 + xp with ai ∈ GF (2) be the defining primitive
polynomial of the Galois fieldGF (q) whereq = 2p. Let A
be thep× p matrix representation of the primitive elementα
of GF (q). Thus,A is as follows:
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The powers ofA correspond to the powers ofα , i.e. the
non-zero elements ofGF (q). That is,ακ ⇔ Aκ, whereκ ∈
{0, . . . , q−2}. With this notation in hand,ψ(H) is comprised
of p×p sub-matricesψ(Hij) such thatψ(Hij)=A

t if Hij=α
t

andψ(Hij)=0 if Hij=0, where0 is thep x p all-zeros matrix.
K=NR information symbols fromGF (q) are encoded into

N coded symbols fromGF (q), which can be represented
by a q-ary vectorx = {xj}j=1,...,N , xj ∈ GF (q). These
coded symbols might be transmitted over aq-ary input channel
or a binary input channel. For aq-ary-input channel, the
N elements ofx are mapped directly into the modulated
sequences = {sj}j=1,...,N . For a binary-input channel, the
q-ary vectorx is mapped to the binary vectorxb by replacing
each q-ary element with thep bits that correspond to the
binary representation of thatGF (q) element. Then each bit
of xb is mapped directly into the modulated sequences =
{sj}j=1,...,Np

. We usexjb to identify the vector ofp bits in xb
that correspond to theq-ary symbolxj .

At the receiver, the channel outputs are properly demapped
and the probabilities that are used to initialize the message
passing algorithm in the decoder [2] are computed. Specifi-
cally, for a binary-input channel, the channel output isyb =
{yjb}j=1,...,N , where yjb = {yjbk}k=1,...,p represents the set
of p channel outputs corresponding to a single transmitted
GF (q) element represented byxjb. Because the binary channel
is memoryless, the conditional density of thej-th symbol
xj is fj

(

xj = β|yjb

)

=
∏p

k=1 P (x
j
bk

= βk|y
j
bk
) for each

j = 1, . . . , N , β ∈ GF (q), whereβk is the k-th bit of the
binary representation ofβ. For a q-ary-input channel where
eachyj is associated with thej-th transmitted symbolxj , the
conditional densityfj (xj = β|yj) can be properly computed
directly from the respective channel output.

We define fully and partially erased symbols as follows:
Definition 3 (Fully Erased Symbol):A symbol is fully

erased if all the bits that identify its binary representation
are erased.

Definition 4 (Partially Erased Symbol):A symbol is par-
tially erased if some but not all of the bits that identify its
binary representation are erased.

III. D ECODING FAILURES AND THE BIPARTITE GRAPH

The ACE algorithm [4] is an effective algorithm for low-
ering the error floors of irregular binary LDPC codes with
a specified degree distribution. While explicitly designedto

avoid stopping sets [5], this algorithm also avoids absorbing
sets [23] and trapping sets [24] which also require cycles with
a relatively low cycle EMD.

It is well-known that the degree distribution plays an
important role in LDPC code performance. It is possible to
optimize both the degree distribution of the the BMM and the
distribution of field elements as in [13], [14], [15]. However,
optimizing the field-element distribution is computationally
cumbersome, and prohibitive for field sizes larger than eight
[14]. Still, careful selection of the non-zero field elements [12],
[13], [17] in the q-ary parity-check (PC) matrix is crucial for
good error floor performance.

As in [4], we aim to develop a construction algorithm based
on a correspondence between decoder failures and graphical
topologies. However, where [4] focused only onGF (2) we
are interested in higher Galois field sizes. To highlight the
similarities and differences with their binary counterparts, we
extend some definitions introduced in [4] to theq-ary case.

Definition 5 (q-ary Cycle): A set ofd q-ary variable nodes
andd q-ary constraint nodes forms aq-ary cycle if they are
connected by edges induced by a BMM such that a path exists
that travels through every node in the set and connects each
node to itself without traversing a node twice.

Definition 6 (q-ary Cycle Set):A set of d q-ary variable
nodes is aq-ary cycle set ξd if one or moreq-ary cycles
are formed between this set and its neighboring constraint set
in a bipartite graph induced by the BMMχ(H).

Definition 7 (q-ary Stopping Set):A set of d q-ary code-
word symbols is aq-ary stopping setSd if no parity-check
equation ofH includes exactly one symbol inSd.

The presence or absence ofq-ary stopping sets depends en-
tirely on the BMMχ(H) or equivalently its induced bipartite
graph.

Lemma 1: If all d symbols in aq-ary stopping setSd are
erased, none of them can be recovered by message passing,
even if all other symbols are received without error.

Proof: If all d symbols inSd are erased, every parity
check equation that involves a symbol inSd has at least two
erasures. Thus no parity check equation can correct an erased
symbol inSd. Hence message passing fails to correct any of
the erased symbols inSd when all are erased.

Lemma 2:A set of variable nodes such that when all are
erased, none can be recovered by message passing is always
a stopping set.

Proof: In a q-ary erasure channel, if an erased variable
node cannot be recovered by message passing, all constraint
nodes connected to it must be connected to at least one
additional erased symbol. Thus every constraint node must
connect either to no variable nodes in the set or more than
one variable node in the set. Thus the set is a stopping set.

Remark.Definitions 5, 6, 7, Lemmas 1 and 2 are the natural
extensions of the ideas in [4] and [5] to theq-ary case.

Definition 8 (Linearly Dependent Set):A linearly depen-
dent setΛd,l is a set ofl binary columns of the BIMψ(H)
that are linearly dependent. Thesel binary columns come from
d q-ary columns ofH . Note thatl≥d.



The relationships amongq-ary cycle sets,q-ary stopping
sets and linearly dependent sets provide insight into the
structure of a givenq-ary LDPC code. The following lemmas
and theorems elaborate on these relationships betweenξd, Sd,
andΛd,l.

Lemma 3: In the bipartite graph induced by BMMχ(H)
without singly connected variable nodes, everyq-ary stopping
set contains at least oneq-ary cycle ({ξd} ⊃ {Sd}).

Proof: Sinceq-ary cycle sets andq-ary stopping sets are
basically defined over the bipartite graph induced by a BMM,
Lemma 1 can be proved as Lemma 1 in [4].

Theorem 1:The d variable nodes that contain a linearly
dependent setΛd,l must form a stopping setSd.

Proof: When thel bits corresponding to thel linearly
dependent columns ofψ(H) are erased, it is impossible to
successfully decode any of these bits because two different
codewords exist, one with all these bits equal to zero and one
with all these bits equal to one. Since when alll of these bits
are erased, none can be recovered, when alld corresponding
q-ary symbols are erased, none can be recovered. Hence these
d symbols form a stopping set by Lemma 2.

Corollary 1: For a q-ary LDPC code with no singly con-
nected nodes, thed q-ary nodes that contain a linearly depen-
dent setΛd,l must also contain at least one cycle.

Proof: By Theorem 1, thesed nodes form a stopping
set. By Lemma 3, every stopping set contains a cycle.

Corollary 2: If d columns of theq-ary PC matrix sum to
zero overGF (q), these columns containp (p=log2 q) linearly
dependent setsΛd,l with l = d.

Proof: Let D be the index set of thed columns of the
q-ary PC matrix to be summed. The sum overGF (q) of these
columns is the all-zero vector. That is,

∑

j∈D

Hij = 0 (2)

in GF (q) for all i=1, . . . ,M . Recalling thatGF (q) addition
corresponds to modulo-2 addition of the binary images, the
columns of the binary image of theq-ary PC matrix columns
associated with thed q-ary variable nodes have to sum to zero
as well. Thus,

⊕

j∈D

ψ(Hij)tk = 0 (3)

for all k∈{1, . . . , p}, t∈{1, . . . , p}, and all i∈ {1, . . . ,M}.
Therefore, thed q-ary variable nodes inD form p linearly
dependent setsΛd,d, one for each of thep binary columns
(indexed byk in (3)) of the binary image of aGF (q) column.

Using the definitions and relationships of the topological
structures established in this section, the next section connects
these topological structures with corresponding decodingfail-
ures and introduces algorithms that exploit these correspon-
dences to improve the error-rate performance of theq-ary
LDPC codes.

IV. L OW ERROR FLOOR DESIGN

This section introduces two algorithms that mitigate the
effects of the topological structures identified in the previous
section. The combination of these algorithms guarantees that
the smallestq-ary stopping sets and linearly dependent sets
will be as large as possible for a given degree distribution.

Among the topological structures introduced in Section III,
q-ary stopping sets and linearly dependent sets are the main
contributors to the error-rate performance. The followingtwo
subsections introduce two algorithms that aim to counteract
the effect ofq-ary stopping sets and linearly dependent sets
respectively . These algorithms are theq-ary ACE algorithm
and the LDSM algorithm.

A. Theq-ary ACE algorithm

A decoding failure occurs when all the variable nodes in
a q-ary stopping setSd are completely erased. Since each
constraint node connected toSd is connected to at least two
variable nodes inSd, and all the variable nodes inSd are
erased, no constraint node can help any variable node inSd

recover from erasure. Therefore, it is not possible for the
decoder to converge to a codeword, and the decoder fails.

The occurrence ofq-ary stopping sets is completely deter-
mined by the configuration of the BMMχ(H) associated with
the q-ary LDPC code. As shown above, bothq-ary stopping
sets and linearly dependent sets must contain cycles. Hence,
these graphical structures can be controlled by controlling the
cycles that they must contain. Although introduced for binary
LDPC codes, the ACE algorithm [4] represents an efficient
method to construct the BMM so as to increase the minimum
q-ary stopping set size by increasing the connectivity (the
extrinsic message degree) of small cycles.

B. The LDSM algorithm

A second type of decoding error is caused by partial erasure
of the q-ary variable nodes in aq-ary stopping set, as would
occur whenq-ary symbols are transmitted one bit at a time
over a binary channel. Such partial erasures cause a decoding
error when theq-ary partial erasures include all the bits that
form a binary linearly dependent set in the binary image of the
q-ary PC matrix. In such a case, at least two codewords share
the largest a-posteriori probability, so that even a maximum-
likelihood decoder cannot decode successfully.

In the context of a binary channel, the minimum binary
Hamming distance between two codewords is the minimum
number of linearly dependent columns in the binary image
of the q-ary PC matrix. Moreover, a code with minimum
binary Hamming distancelmin has at least oneΛd,lmin

set
but no Λd,l sets wherel < lmin. Thus increasing the size
of the smallest linear dependent set should also increase the
minimum distance of the code.

We have shown in Theorem 1 that all linearly dependent
sets are contained in stopping sets. However, for a given size
stopping set, the size of the smallest linearly dependent set it
contains depends on the selection of the nonzero field elements
for the columns corresponding to the variables in that stopping



initialize: begin
B = ∅; R = ∅; U = ∅; T = {1};

end initialize

while |B| < N do
begin

for k = 1 to |T | do
begin

R = findcol(B, Tk);
for n = 1 to |R| do
begin

B ← B ∪Rn;
{HiRn}i∈G(Rn) = choose(B, q);
if B = {1, . . . , N}

exit;
end if

end for
U ← U ∪ R;

end for
T ← U ;
end while

function: R = findcol(B, Tk)

Ri ∈ {1, . . . , N} \ B such that
c1({χ(HuTk

)⊕ χ(HuRi
)}u=1,...,M ) is minimized.

end function

Fig. 1. The Linear-Dependent-Set Maximization (LDSM) Algorithm.

set. After the ACE algorithm determines the positions of the
non-zero entries in theq-ary PC matrix, the value of each
non-zeroHij ∈ H must be chosen. This paper introduces
the linearly dependent set maximization (LDSM) algorithm to
choose the non-zero entries so as to maximize the size of the
smallest linearly dependent setsΛd,l.

The LDSM algorithm is performed sequentially, column by
column. LetN be the number of theq-ary variable nodes
(columns) andM be the number of theq-ary check nodes
(rows) of the q-ary LDPC code. LetH , χ(H) and ψ(H)
be the q-ary PC matrix, the binary mother matrix and the
binary image ofH respectively. LetB = {Bi}i=1,...,|B|, R =
{Ri}i=1,...,|R|, T = {Ti}i=1,...,|T | and U = {Ui}i=1,...,|U|

be sets of column indices, i.e.,Bi, Ri, Ti, Ui ∈ {1, . . . , N}.
Further, letc1(z) be the number of ones in the binary sequence
z. Finally, letG(t) be the set of the row indexes of the non-
zero entries of thet-th column of theq-ary PC matrix, i.e.,
G(t) = {i ∈ {1, . . . ,M} : χ(Hit) = 1}. With this notation,
Fig. 1 describes the LDSM algorithm.

For a given BMM, the LDSM algorithm assigns Galois
field elements to the column that is the most connected to
the previously assigned columns. The elements are assigned
to maximize the size of the smallest binary linearly dependent
sets in the BIM.

Specifically, the function{HiRn
}i∈G(Rn)=choose(B, q)

first computes the vector space spanned by the binary columns
of the submatrix of the BIM comprised of theq-ary columns
that have been assigned so far. Then, it selects the non-zero
entries of theRn column to maximize the number ofpM -
length vectors that are orthogonal to that vector space.

Avoiding small linearly dependent sets increases the binary

Hamming distance of aq-ary LDPC code. The LDSM al-
gorithm aims to constructq-ary LDPC codes having linearly
dependent setsΛd,l where dmin = min{d} and lmin =
min{l} are as large as possible.

The role ofq-ary stopping sets and linearly dependent sets
can be translated toq-ary and binary non-erasure scenarios.
In those cases, variables with poor observation reliability are
analogous to erasures. Thus, increasing the minimumq-ary
stopping set size and the minimum linearly dependent set
size should represent an effective method for generatingq-
ary LDPC codes suited for message-massing decoding even
in AWGN. Moreover, by employing the ACE algorithm as
previously described to avoid smallq-ary stopping sets, small
absorbing sets and trapping sets are also avoided.

V. SIMULATION RESULTS

This section presents simulation results for both binary-
input channels andq-ary-input channels usingq-ary LDPC
codes. Each code has(N,R, q) = (2500, 1/2, 16), where
N is the number of symbols for each codeword,R is the
code rate andq is the alphabet size. Specifically, 250016-ary
symbols correspond to 10000 transmitted bits. The primitive
polynomial of the considered16-ary Galois Field isa(x) =
1 + x + x4. In this paper we consider Quasi-Regular (QR)
LDPC codes [7], [9]. Further, each code is characterized by
an average column weightt = 2.6 in order to have a fair
comparison in terms of error-rate performance. The maximum
number of iterations of the decoding MP algorithm [2], [3]
has been set to 50.

The16-ary LDPC codes have been constructed in a modular
manner. First, the binary mother matrix is defined by using one
of the following algorithms:(i) protograph-based algorithm
[17]; (ii) ACE algorithm [4]; (iii) protograph-based ACE
algorithm in which the connections of the BMM are defined
by using the ACE algorithm [4] constrained by the protograph
that is considered..

For the protograph-based PC matrices the number of trans-
mitted variable nodes of the protograph has been set to 10,
while the number of check nodes of the protograph has
been set to 5. The protograph is copied and permuted 250
times to produce the 2500-symbol LDPC codes. The ACE
PC matrices and the protograph-based ACE PC matrices have
been constructed by setting thedACE andη parameters [4] to
20 and 1 respectively. The value ofη is strictly related to the
average column weight that has been taken into account.

The non-zero entries of theq-ary PC matrices are then cho-
sen by using the following algorithms:(a) random selection,
where the non-zero elements are randomly selected from the
non-zero elements inGF (q); (b) careful selection, where the
non-zero elements in each row of theq-ary PC matrix are
selected by using the method introduced in [17];(c) selection
by the linearly dependent set maximization (LDSM) algorithm.

The simulations considered both binary-input channels and
q-ary-input channels. Specifically, we considered the binary
erasure channel (BEC) in Fig. 2, the binary AWGN channel
(BAWGNC) in Fig. 3, theq-ary erasure channel (qEC) in
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Fig. 2. Bit Error Rate performance of the consideredq-ary LDPC codes
on the BEC channel. The binary mother matrices are constructed by using
protograph-based algorithm (“proto”) [17], ACE algorithm(“ACE”) [4] and
protograph-based ACE algorithm (“protoACE”). The non-zero entries in the
q-ary PC matrix are randomly selected (“RS”), carefully selected (“CS”) or
selected by means of the LDSM algorithm (“LDSM”). The average column
weight is t, whereasdACE and η are the setup parameters for the ACE
algorithm. The absissa labelεBEC is the binary erasure probability. The
code from Lan et al. is the best comparable binary LDPC code from [27].

Fig. 4, and theq-ary AWGN channel (qAWGNC) in Fig. 5. For
the BAWGNC the signal is mapped onto a BPSK constellation,
whereas a symmetric ultracomposite [22] Gray-labeled 16-
QAM modulation is used for the qAWGNC (q=16).

The red solid line, the blue dashed line and the black
dash-dot line represent an LDPC code whose BMM has
been constructed by means of the protograph-based algorithm,
the protograph-based ACE algorithm and the ACE algorithm
respectively. The square marker, the circle marker, and triangle
marker indicate an LDPC code whose non-zero entries in
the q-ary PC matrix mother matrix are randomly selected,
carefully selected and selected by using the LDSM algorithm
respectively.

The code that has been constructed by means of the
protograph-based algorithm in [17] shows the best perfor-
mance in the waterfall region. However, it also shows the
worst performance in terms of error floor on every channel
that has been considered. The codes whose binary mother
matrix has been constructed using the protograph-based ACE
algorithm have similar error-rate performance in the waterfall
region to those of the protograph-basedq-ary LDPC code
(except in theq-ary AWGN simulaton). Further, they show
lower error floors than the protograph-basedq-ary LDPC code.
Specifically, the selection of the non-zero entries in theq-
ary PC matrix delivered by the algorithm in [17] provides an
effective improvement of the performance w.r.t. the random
selection algorithm. This benefit is shown in the waterfall
region as in the error floor region as well.

On the other hand, theq-ary LDPC codes whose binary
mother matrix is constructed by means of the ACE algorithm
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Fig. 3. Bit Error Rate performance of the consideredq-ary LDPC codes on
the binary AWGN channel. The codes are described in Fig. 2 except the codes
from Lan et al. and Divsalar et al. which are binary LDPC codesfrom [27] and
[26] respectively. Specifically, the codes in [26] are precoded LDPC codes.
The marker indicated with a star is only an upper bound on the performance
of ACE with LDSM at 1.5 dB because no errors have yet been observed after
1010 decoded bits.

show the best error floor performance over each considered
channel. The error floors of these codes are significantly lower
than those related to protograph-based ACE constructed codes.
The protograph constraints induce a sort of “super-structure”
on the bipartite graph. This limits theq-ary stopping set
mitigation of the protograph-based ACE algorithm so that it
is not be as effective as that delivered by the standard ACE
algorithm for quasi-regular and irregular codes.

Further, the selection of the non-zero entries performed
by using the LDSM algorithm provides improvement in the
error floor region for every channel that has been studied
w.r.t. the selection algorithm in [17]. The gain provided by
LDSM algorithm is substantial for the BEC, binary AWGN
channel andq-ary AWGN channel, but not significant for the
q-ary erasure channel. This is expected since theq-ary erasure
channel has no partial erasures, which are the target of the
LDSM algorithm.

VI. CONCLUSIONS

This paper provides a construction method forq-ary LDPC
codes based on a careful geometrical and graphical analysis.
ForGF (16), code construction examples and simulations are
provided. Avoiding smallq-ary stopping sets through aq-
ary version of the ACE algorithm and linearly dependent
sets through the new LDSM algorithm provided substantial
improvement in the error floor over other construction al-
gorithms. Simulation results over BEC and binary AWGN
channel are very interesting as those channels can model the
readout channel of emerging storage technologies [18], [21].
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Fig. 4. Bit Error Rate performance of the consideredq-ary LDPC codes on
the q-ary erasure channel. The codes are described in Fig. 2. The absissa
label εqEC is theq-ary erasure probability.
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Fig. 5. Bit Error Rate performance of the consideredq-ary LDPC codes
on the q-ary AWGN channel (q=16 with 16-QAM modulation). The codes
are described in Fig. 2 except the codes from Hou et al. which are the best
comparable binary LDPC codes from [25].
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