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Abstract— This paper explores protograph-based and ACE- an absorbing set. This paper introduces a linear-depersgént
based methods for constructingg-ary low-density parity-check maximization (LDSM) algorithm that specifically addresses
(LDPC) matrices. The ACE approach maximizes approximate the problem of small linear dependent sets.

cycle extrinsic message degree, explicitly avoiding smail-ary . . . - .
stopping sets and implicitly avoiding small absorbing setsin To summarize, this paper proyldes efficient _const_rucuon
addition to ACE, this paper applies linear-dependent-set rax- methods forg-ary LDPC codes with moderate field size to
imization (LDSM) to the binary image of the g-ary LDPC achieve low error floors. These algorithms improve perfor-
matrix. Performance is studied for binary and g-ary instances of mance by constructing LDPC matrices that avoid smaall
erasure channels and additive white Gaussian noise chansellThe ary stopping sets, absorbing sets, and linearly dependesit s

combination of the ACE approach and LDSM provides dramatic ™ d algorith tudied for bi d
error floor improvement for the binary erasure channel and bath € proposed algorithms aré studied lor binary apdry

binary and g-ary AWGN channels. instances of erasure, symmetric, and additive white Ganssi
noise channels.
. INTRODUCTION The paper demonstrates the importance of the channel when

Low-density parity-check (LDPC) codes [1] approach theonsidering the LDPC matrix construction algorithm. The
channel capacity. Specifically, proper degree distributie- combination of the ACE approach and linear-dependent-set
sign [8], [9], [11] allows LDPC codes to approach the Shannanaximization provides dramatic error floor improvement for
limit. For a specified error rate, designing and decodirthe binary erasure channel and both binary arady AWGN
the LDPC code ovelGF(q) where ¢>2 [2], [3], [16] can channels. The improvements obtained with ACE and LDSM
improve the LDPC code parameters oveG&'(2) design to were less significant fog-ary erasure channel.
allow increased code rate, reduced blocklength, or inegtas The paper is organized as follows: Section Il describes the
intersymbol interference (1SI) resilience. Such codescatied matrix representations ferary LDPC codes and presents the
g-ary (or non-binary) LDPC codes, and this paper focuses epstem model. Section Il provides a graphical analysief t
the design of thesg-ary LDPC codes to achieve low errorg-ary decoding problem. Specifically, definitions, propesti
floors. and relationships of-ary cycle setsg-ary stopping sets and

Recently LDPC codes have found application in emergirimearly dependent sets are provided. Section IV provitles t
storage technologies such as Flash memories [19], [20] doW error floor g-ary LDPC code construction algorithms.
Phase Change Memories (PCMs) [18]. These devices requbection V presents the simulation results and discusses the
very good error-rate performance at very high code rate. Theactical aspects of the code construction and decoding. Se
readout channel model is typically memoryless and it can kien VI delivers the conclusions.
either binary-input (e.g, for standard PCMs [18]) gary-
input (e.g., for multilevel cell PCMs [21]). Moreover, Lppc!l- LDPC MATRIX REPRESENTATIONS& SYSTEM MODEL
codes for storage technologies must have extremely low erro This paper uses LDPC codes ov&F'(q), with ¢=2? and
floors. In that regardg-ary LDPC codes that combine veryp an integer. For code ratB, and block lengthV, an LDPC
low error floors and acceptable decoding complexity may plapde is described by an/ x N parity-check matrix,H =
an important role in solid state device readout systemsesin{H;;},_, .., n» WhereH;; € GF(q) andR = 1 —
they typically provide very good performance in the watkrfaM//N. For a specified LDPC matri¥/, the binary mother
region at high coding rate. matrix x (H) and the binary image matri®o(H) are defined

Starting from the baseling-ary protograph approach intro-as follows:.
duced in [17], this paper construcisary LDPC codes with  Definition 1 (Binary Mother Matrix):The binary mother
improved error floors using algorithms that avoid the grapiatrix (BMM) x(H) has the same dimensions &6 and
ical structures that cause the error floor. Stopping sets adéntifies the positions of the non-zero entriesiinso that
absorbing sets are well-known graphical structures thasea x(H;;) = 1 if H;; # 0 andx(H;;) =0 if H;; = 0.
error floors in binary LDPC codes. This paper identifies the Definition 2 (Binary Image Matrix):The binary image
analogous structures fagrary LDPC codes. Fog-ary codes, matrix (BIM) ¢(H) expand<{ into apM x pN binary matrix
linear dependent sets also cause error floor behavior everjli8]. Each elementZ;; of H is represented in)(H) by the
cases where the linear dependent set is neither a stoppiog s@ X p binary matrix that corresponds to that element.



To accomplish the expansion, le{x) = ap + a1x + ... + avoid stopping sets [5], this algorithm also avoids absaybi
ap—12P~1 + 2P with a; € GF(2) be the defining primitive sets [23] and trapping sets [24] which also require cycleh wi
polynomial of the Galois field7F'(q) whereq = 2P. Let A a relatively low cycle EMD.

be thep x p matrix representation of the primitive element It is well-known that the degree distribution plays an
of GF(q). Thus, A is as follows: important role in LDPC code performance. It is possible to
optimize both the degree distribution of the the BMM and the

0 1 0 - 0 distribution of field elements as in [13], [14], [15]. Howeye
o o 1 . 0 optimizing the field-element distribution is computatiipa
A= ) : 1) cumbersome, and prohibitive for field sizes larger thanteigh
6 o0 0o 1 [14]. still, careful selection of the non-zero field elenefit2],
@0 a1 az -0 Op-l [13], [17] in the g-ary parity-check (PC) matrix is crucial for
The powers ofA correspond to the powers of , i.e. the 900d error floor performance. _ _
non-zero elements af F(q). That is,a* < A", wherex € As in [4], we aim to develop a construction algorithm based

{0,...,q—2}. With this notation in handy(H) is comprised 0N & correspondence between decoder failures and graphical

of p x p sub-matrices)(H,;) such that)(H,;)=At if H;;=a! topologies. However, where [4] focused only GIF'(2) we

andy(H;;)=0if H;;=0, whereQ is thep x p all-zeros matrix. are interested in higher Galois field sizes. To highlight the
K—=NR information Symb0|S:fronGF(q) are encoded into Similarities and differences with their binary countetpawe

N coded symbols fronF(q), which can be representedeXte”(_j some definitions introduced in [4] to tljrgary case.

by a g-ary vectorx = {z;};—1...n, z; € GF(q). These Definition 5 @-ary Cycle): A set ofd g-ary variable nodes

coded symbols might be transmitted over-ary input channel @ndd g-ary constraint nodes forms @ary cycle if they are
or a binary input channel. For a-ary-input channel, the connected by edges induced by a BMM such that a path exists

N elements ofx are mapped directly into the modulatedhat travels through every node in the set and connects each

sequences = {s;}._, . For a binary-input channel, thenode to itself without traversing a node twice.

g-ary vectorx is mapped to the binary vectay, by replacing noazfsmigloar; z\r?/_i?/clcéyg:t ?eti)f:é) nséetoffmdor(le-srgr;igacf)elz

each g-ary element with thep bits that correspond to the - ] d ! ] a-

binary representation of thatF(q) element. Then each bit are fo_rmec_i between_ this set and its neighboring constraint s

of x, is mapped direc}ly into the modulated sequesce: ' gg;gﬁ‘g‘;%géag:‘y'g?:g;‘:};ég)eABgﬂe?(g )d s-ary code
Sit. . We user; to identify the vector op bits in x i ) )

t{h;t} jcztnlffé%ond to th@bary symbfglxj. b * word symbols is a-ary stopping set S, if no parity-check
At the receiver, the channel outputs are properly demapp%‘i‘f_i_’ﬁ‘gOp”reosfé]:1 égcl)ljrd:t)sszﬁigga?;it%g23slgt'fé depends en

and the probabilities that are used to initialize the messa ) 9 e

passing algorithm in the decoder [2] are computed. Specf?ir-ely on the BMM x(#) or equivalently its induced bipartite

cally, for a binary-input channel, the channel outpuyjs= graph. ] _ )
{?ﬁ}jﬂ ~. where yz' _ {yg Vi1, represents the set Lemma 1:If all d symbols in ag-ary stopping setS; are
e R ! k It RS

of p channel outputs corresponding to a single transmittgﬁaseFj’ none of them can be rec_overe(_j by message passing,
] ven if all other symbols are received without error.

GF(q) element represented 3. Because the binary channef ] . .
is memoryless, the conditional density of theh symbol Proof. If all d symbols inS, are erased, every parity

: ; ; check equation that involves a symbol$ has at least two
. . . — RlaY — P J J
“’?J IS fj (IJ =Bl7;) = k= Play, - Brly, ) f_or each erasures. Thus no parity check equation can correct ancerase
j=1,...,N, B € GF(q), where, is the k-th bit of the  gympol in S,. Hence message passing fails to correct any of
binary representation of. For ag-ary-input channel where ine erased symbols ifi; when all are erased. m

eachy; is associated with thg-th transmitted symbat;, the | emma 2: A set of variable nodes such that when all are
conditional densityf; (z; = f|y;) can be properly computederased, none can be recovered by message passing is always
directly from the respective channel output. a stopping set.
We define fully and partially erased symbols as follows: Proof: In a g-ary erasure channel, if an erased variable
Definition 3 (Fully Erased Symbol)A symbol is fully npode cannot be recovered by message passing, all constraint
erasedif all the bits that |dent|fy its binary representatiorhodes connected to it must be connected to at least one
are erased. additional erased symbol. Thus every constraint node must
Definition 4 (Partially Erased Symbol)A symbol is par-  connect either to no variable nodes in the set or more than
tially erased if some but not all of the bits that identify its one variable node in the set. Thus the set is a stoppingmset.
binary representation are erased. RemarkDefinitions 5, 6, 7, Lemmas 1 and 2 are the natural
extensions of the ideas in [4] and [5] to theary case.
Definition 8 (Linearly Dependent Setp linearly depen-
The ACE algorithm [4] is an effective algorithm for low-dent setA,; is a set ofl binary columns of the BIMy(H)
ering the error floors of irregular binary LDPC codes witlthat are linearly dependent. Theddginary columns come from
a specified degree distribution. While explicitly desigrted d g-ary columns ofH. Note thati>d.

Ill. DECODING FAILURES AND THE BIPARTITE GRAPH



The relationships among-ary cycle setsg-ary stopping V. LOow ERROR FLOOR DESIGN
sets and linearly dependent sets provide insight into theThis section introduces two algorithms that mitigate the
structure of a givemy-ary LDPC code. The following lemmas effects of the topological structures identified in the fwes
and theorems elaborate on these relationships bet@eefy,  section. The combination of these algorithms guarantess th
andAq,. the smallestg-ary stopping sets and linearly dependent sets
Lemma 3:In the bipartite graph induced by BMM(H) will be as large as possible for a given degree distribution.
without singly connected variable nodes, evefgry stopping  Among the topological structures introduced in Section il
set contains at least oreary cycle {£i} D {Sa}). g-ary stopping sets and linearly dependent sets are the main
Proof: Sinceg-ary cycle sets ang-ary stopping sets are contributors to the error-rate performance. The following
basically defined over the bipartite graph induced by a BMMubsections introduce two algorithms that aim to counterac

Lemma 1 can be proved as Lemma 1 in [4]. B the effect ofg-ary stopping sets and linearly dependent sets
Theorem 1:The d variable nodes that contain a linearlyrespectively . These algorithms are thv@ry ACE algorithm
dependent set;; must form a stopping sef;. and the LDSM algorithm.

Proof: When thel bits correspondlng 'Fo _thé Ilne_arly A. Theg-ary ACE algorithm
dependent columns af(H) are erased, it is impossible to ; , ) )
successfully decode any of these bits because two differenf* decodmg_ failure occurs when all the varlablg nodes in
codewords exist, one with all these bits equal to zero and oRd 2"y Stopping setS,; are completely erased. Since each
with all these bits equal to one. Since whenlaif these bits cOnstraint node connected & is connected to at least two
are erased, none can be recovered, whed abrresponding variable nodes inSq, and all the variable nodes ifi; are

g-ary symbols are erased, none can be recovered. Hence yfggged. no constraint node can he!p any varlablg nod; in
d symbols form a stopping set by Lemma 2 recover from erasure. Therefore, it is not possible for the

Corollary 1: Eor ag-arv LDPC. code with no sinaly con- d€coder to converge to a codeword, and the decoder fails.

y ary . ; gy The occurrence ofi-ary stopping sets is completely deter-
nected nodes, thé g-ary nodes that contain a linearly depenfn'ned by the configuration of the BMM( ) associated with
dent setA;; must also contain at least one cycle. ! y \gurati M (H) ! Wi

P f_’ Bv Th 1 thesd nodes f - the ¢g-ary LDPC code. As shown above, bajkary stopping
i BrOE. y 3 eorem t' es n;) est orm a s olpplng sets and linearly dependent sets must contain cycles. Hence
set. by Lemma 5, every stopping set contains a.cyc €W ihese graphical structures can be controlled by contptlire
Corollary 2: If d columns of theg-ary PC matrix sum to

_ ) cycles that they must contain. Although introduced for bna
zero overG F'(q), these columns contajn(p=log, g) linearly | ppc codes, the ACE algorithm [4] represents an efficient
dependent setd;; with [ = d.

method to construct the BMM so as to increase the minimum

Proof: Let D be the index set of the columns of the ,_ary stopping set size by increasing the connectivity (the
g-ary PC matrix to be summed. The sum ov&F(q) of these aytrinsic message degree) of small cycles.

columns is the all-zero vector. That is, )
B. The LDSM algorithm

Z H;; =0 (2) A second type of decoding error is caused by partial erasure
j€D of the ¢-ary variable nodes in a-ary stopping set, as would
. . N occur wheng-ary symbols are transmitted one bit at a time
in GF(q) for all i=1,..., M. Recalling thatGF'(¢) addition  qyer a binary channel. Such partial erasures cause a decodin

corresponds to modulo-2 addition of the binary images, tRgror when thej-ary partial erasures include all the bits that
columns of the binary image of theary PC matrix columns oy g pinary linearly dependent set in the binary image ef th
associated with thé g-ary variable nodes have to sum to ZerQ_ary PC matrix. In such a case, at least two codewords share

as well. Thus, the largest a-posteriori probability, so that even a maximu
@ Y(Hij) =0 (3) likelihood decoder cannot decode successfully.
jeD In the context of a binary channel, the minimum binary
Hamming distance between two codewords is the minimum
for all ke{1,...,p}, te{l,...,p}, and allic {1,...,M}. number of linearly dependent columns in the binary image

Therefore, thed g-ary variable nodes irD form p linearly of the ¢g-ary PC matrix. Moreover, a code with minimum
dependent setd; 4, one for each of the binary columns binary Hamming distancé,,;, has at least ond,,,,, Set
(indexed byk in (3)) of the binary image of & F(q) column. but no A,4,; sets where < I,,,,. Thus increasing the size
B of the smallest linear dependent set should also increase th
Using the definitions and relationships of the topologicahinimum distance of the code.
structures established in this section, the next sectionetts  We have shown in Theorem 1 that all linearly dependent
these topological structures with corresponding decofiilg sets are contained in stopping sets. However, for a given siz
ures and introduces algorithms that exploit these cormespatopping set, the size of the smallest linearly dependadrit se
dences to improve the error-rate performance of ghery contains depends on the selection of the nonzero field etsmen
LDPC codes. for the columns corresponding to the variables in that stapp



iniialize: begin Hamming distance of @-ary LDPC code. The LDSM al-
B=9,R=0,U=02,T ={1}; - . . .
end initialize gorithm aims to construgj-ary LDPC codes having linearly
dependent sets\;; where d,,;, = min{d} and l,;, =
g:gﬁ] |Bl < N do min{l} are as large as possible.
for k = 1to |T] do The role ofg-ary stopping sets and linearly dependent sets
begin can be translated tg-ary and binary non-erasure scenarios.
ffgrjlfzdf‘;g?éfgg In those cases, variables with poor observation religbéie
begin analogous to erasures. Thus, increasing the miningamny
?Hf B}g R _ choosets. 0 stopping set size and the minimum linearly dependent set
S O i size should represent an effective method for generating
exit; ary LDPC codes suited for message-massing decoding even
end if in AWGN. Moreover, by employing the ACE algorithm as
g“ﬂorU U R previously described to avoid smaHary stopping sets, small
end for ' absorbing sets and trapping sets are also avoided.
i V. SIMULATION RESULTS
function: R — findcol(B, Tx) This section presents simulation results for both binary-
Ri € {l,...,N}\ B such that input channels and-ary-input channels using-ary LDPC
cr({x(Huy,) ® x(Hur;)}u=1.....) is minimized. codes. Each code hasV, R,q) = (2500,1/2,16), where
end function N is the number of symbols for each codewortl,is the
code rate and is the alphabet size. Specifically, 2506-ary
symbols correspond to 10000 transmitted bits. The primitiv

Fig. 1. The Linear-Dependent-Set Maximization (LDSM) Afigam. polynomial of the consideredi6-ary Galois Field isa(z) =
1 + = + 2*. In this paper we consider Quasi-Regular (QR)

LDPC codes [7], [9]. Further, each code is characterized by
set. After the ACE algorithm determines the positions of then average column weighit= 2.6 in order to have a fair
non-zero entries in the-ary PC matrix, the value of eachcomparison in terms of error-rate performance. The maximum
non-zeroH;; € H must be chosen. This paper introducesumber of iterations of the decoding MP algorithm [2], [3]
the linearly dependent set maximization (LDSM) algorithon thas been set to 50.
choose the non-zero entries so as to maximize the size of th&@he16-ary LDPC codes have been constructed in a modular
smallest linearly dependent setg ;. manner. First, the binary mother matrix is defined by using on

The LDSM algorithm is performed sequentially, column byf the following algorithms:(i) protograph-based algorithm
column. Let N be the number of thg-ary variable nodes [17]; (ii) ACE algorithm [4]; (iii) protograph-based ACE
(columns) andM be the number of the-ary check nodes algorithm in which the connections of the BMM are defined
(rows) of theg-ary LDPC code. LetH, x(H) and ¢)(H) by using the ACE algorithm [4] constrained by the protograph
be theg-ary PC matrix, the binary mother matrix and théhat is considered..

binary image offf respectively. LetB = {B;};—1,.. 5, R = For the protograph-based PC matrices the number of trans-
{Ri}i=1,.. g, T = {Ti}iz1,.., 7y @d U = {U;};—:1,..jyy mitted variable nodes of the protograph has been set to 10,
be sets of column indices, i.eB;, R;,T;,U; € {1,...,N}. while the number of check nodes of the protograph has

Further, letc; (z) be the number of ones in the binary sequendeeen set to 5. The protograph is copied and permuted 250
z. Finally, let G(t) be the set of the row indexes of the nontimes to produce the 2500-symbol LDPC codes. The ACE
zero entries of the-th column of theg-ary PC matrix, i.e., PC matrices and the protograph-based ACE PC matrices have
Gt)={ie{1,...,M} : x(Hy) = 1}. With this notation, been constructed by setting thigcr andn parameters [4] to
Fig. 1 describes the LDSM algorithm. 20 and 1 respectively. The value gfis strictly related to the
For a given BMM, the LDSM algorithm assigns Galoisaverage column weight that has been taken into account.
field elements to the column that is the most connected toThe non-zero entries of theary PC matrices are then cho-
the previously assigned columns. The elements are assigeed by using the following algorithms$:) random selection,
to maximize the size of the smallest binary linearly depahdewhere the non-zero elements are randomly selected from the
sets in the BIM. non-zero elements i/ F(q); (b) careful selection, where the
Specifically, the function{H;r, };cc(r,)=ChooseB,q) non-zero elements in each row of theary PC matrix are
first computes the vector space spanned by the binary colursetected by using the method introduced in [1(¢); selection
of the submatrix of the BIM comprised of theary columns by the linearly dependent set maximization (LDSM) algarith
that have been assigned so far. Then, it selects the non-zerdhe simulations considered both binary-input channels and
entries of theR,, column to maximize the number @fAM/- g-ary-input channels. Specifically, we considered the lyinar
length vectors that are orthogonal to that vector space.  erasure channel (BEC) in Fig. 2, the binary AWGN channel
Avoiding small linearly dependent sets increases the pingBAWGNC) in Fig. 3, theg-ary erasure channel (qEC) in



BER

=== Proto w/ CS, t=2.6
-Q= ProtoACE w/ CS, t=2.6, dACE=20, n=1
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Fig. 2. Bit Error Rate performance of the considegdry LDPC codes
on the BEC channel. The binary mother matrices are constiuey using
protograph-based algorithm (“proto”) [17], ACE algorithffACE") [4] and

protograph-based ACE algorithm (“protoACE”). The nonezentries in the
g-ary PC matrix are randomly selected (“RS”), carefully s&d (“CS”) or
selected by means of the LDSM algorithm (“LDSM”). The averagplumn

==@==Proto w/ CS, t=2.6
-Q = ProtoACE w/ CS, t=2.6, dACE=20, n=1

= @ = ProtoACE w/ RS, t=2.6, d, . =20, n=1
| m@= | ACEW/ CS , t=2.6, d, =20, n=1
. mfem | ACE W/ LDSM, t=2.6, dACE=20, n=1

Lan et al., (8192,4096) code
Divsalar et al., (8192, 4096) ARJA code
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Fig. 3. Bit Error Rate performance of the considetedry LDPC codes on
the binary AWGN channel. The codes are described in Fig. 2mxte codes
from Lan et al. and Divsalar et al. which are binary LDPC cddes [27] and
[26] respectively. Specifically, the codes in [26] are pdemb LDPC codes.
The marker indicated with a star is only an upper bound on #réopnance
of ACE with LDSM at 1.5 dB because no errors have yet been obdeafter

weight is t, whereasd,cg andn are the setup parameters for the ACE10'° decoded bits.
algorithm. The absissa labelg g is the binary erasure probability. The
code from Lan et al. is the best comparable binary LDPC coolm fi27].

show the best error floor performance over each considered

Fig. 4, and thej-ary AWGN channel (QAWGNC) in Fig. 5. For channel. The error floors of these codes are significantlgtow
the BAWGNC the signal is mapped onto a BPSK constellatiof1an those related to protograph-based ACE constructeescod
whereas a symmetric ultracomposite [22] Gray-labeled 16he protograph constraints induce a sort of “super-strattu
QAM modulation is used for the GAWGNG£16). on the bipartite graph. This limits the-ary stopping set
The red solid line, the blue dashed line and the bladRitigation of the protograph-based ACE algorithm so that it
dash-dot line represent an LDPC code whose BMM ha‘.ﬁ; not be as effective as that delivered by the standard ACE
been constructed by means of the protograph-based algorit@lgorithm for quasi-regular and irregular codes.
the protograph-based ACE algorithm and the ACE algorithm Further, the selection of the non-zero entries performed
respectively. The square marker, the circle marker, andgie by using the LDSM algorithm provides improvement in the
marker indicate an LDPC code whose non-zero entries énror floor region for every channel that has been studied
the g-ary PC matrix mother matrix are randomly selectedy.r.t. the selection algorithm in [17]. The gain provided by
carefully selected and selected by using the LDSM algorithbDSM algorithm is substantial for the BEC, binary AWGN
respectively. channel and;-ary AWGN channel, but not significant for the
The code that has been constructed by means of thary erasure channel. This is expected sincegthey erasure
protograph-based algorithm in [17] shows the best perfathannel has no partial erasures, which are the target of the
mance in the waterfall region. However, it also shows tHdDSM algorithm.
worst performance in terms of error floor on every channel
that has been considered. The codes whose binary mother
matrix has been constructed using the protograph-based ACE
algorithm have similar error-rate performance in the water
region to those of the protograph-basedry LDPC code  This paper provides a construction method feary LDPC
(except in theg-ary AWGN simulaton). Further, they showcodes based on a careful geometrical and graphical analysis
lower error floors than the protograph-bagesaty LDPC code. For GF(16), code construction examples and simulations are
Specifically, the selection of the non-zero entries in ¢he provided. Avoiding smallg-ary stopping sets through &
ary PC matrix delivered by the algorithm in [17] provides aary version of the ACE algorithm and linearly dependent
effective improvement of the performance w.r.t. the randosets through the new LDSM algorithm provided substantial
selection algorithm. This benefit is shown in the waterfaimprovement in the error floor over other construction al-
region as in the error floor region as well. gorithms. Simulation results over BEC and binary AWGN
On the other hand, the-ary LDPC codes whose binarychannel are very interesting as those channels can model the
mother matrix is constructed by means of the ACE algorithneadout channel of emerging storage technologies [18], [21

VI. CONCLUSIONS
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Fig. 4. Bit Error Rate performance of the considetedry LDPC codes on
the g-ary erasure channel. The codes are described in Fig. 2. B$issa
label e, ¢ is the g-ary erasure probability.
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-9 = ProtoACE w/ CS, t=2.6, dACE:ZO, n=1
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Fig. 5. Bit Error Rate performance of the considergdry LDPC codes

on the g-ary AWGN channel ¢=16 with 16-QAM modulation). The codes
are described in Fig. 2 except the codes from Hou et al. whiehttee best
comparable binary LDPC codes from [25].
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