

UCLA Graduate School of Engineering - Electrical Engineering Program

Non-Linear Turbo Codes for Interleaver-Division Multiple Access on the OR Channel.

Miguel Griot, Andres I. Vila Casado, and Richard D. Wesel

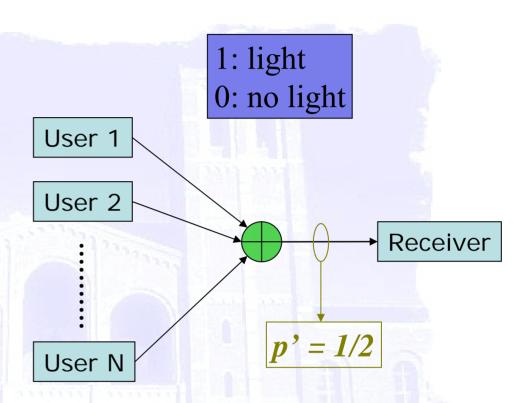
Outline

Uncoordinated multiple access to the OR channel.

- Interleaver-Division Multiple Access (IDMA).
- Single-user decoding: the Z-Channel.
- Parallel Concatenated Non-Linear Trellis Codes (PC-NLTC).
 - Proposed Structure.
 - BER bounding technique (uniform interleaver analysis for non-linear codes).
 - Limitations on the number of users.
- Results.
 - Conclusions.

The OR Multiple Access Channel (OR-MAC)

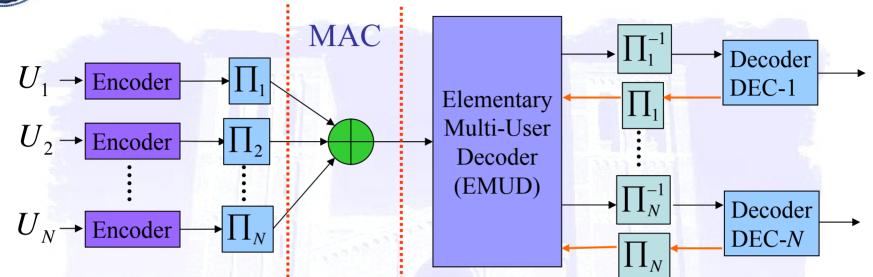
- Simple model for multiple-user optical channel with noncoherent combining.
- 0+X=X, 1+X=1
- N users, all transmitting with the same ones density p: P(X=1)=p,
 P(X=0)=1-p.



Theoretically: Sum-rate = 1 (100% efficiency) can be achieved with a ones density in the transmission of

$$p(N) = 1 - (1/2)^{1/N} \approx \frac{\ln(2)}{N}$$

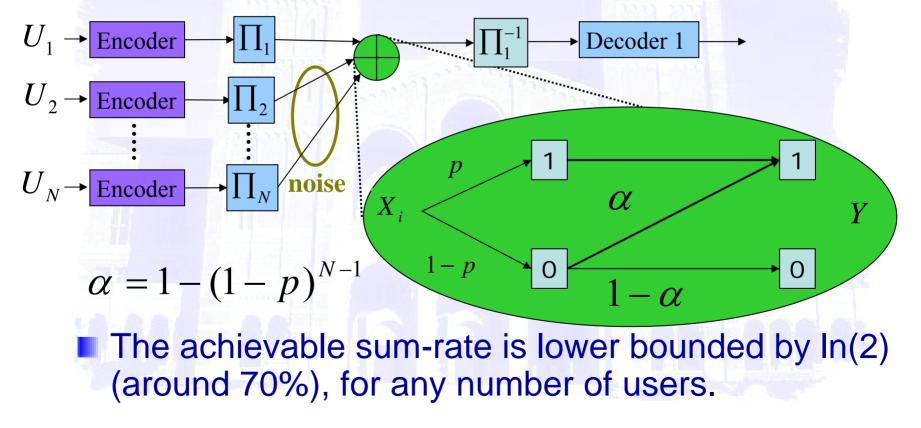
IDMA-Based Architecture



- [Ping et al.'06] for general MAC.
- With appropriately designed codes it can be applied over the OR-MAC.
 - Joint Iterative decoding.
- For a large number of users joint decoding may not be too complex.

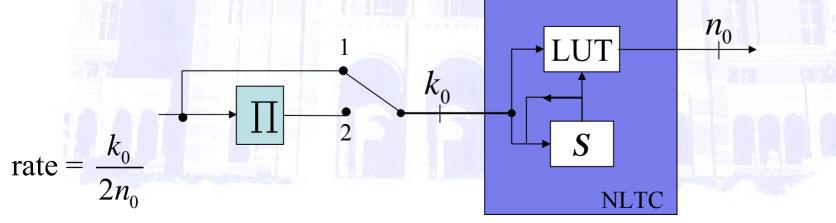
Single-user decoding: Z-Channel

- A practical alternative is to treat all but a desired user as noise.
- When treating other users as noise in an OR-MAC, each user "sees" a Z-Channel.



Parallel Concatenated Non-Linear Trellis Codes

- Non-linear codes with controlled ones densities are required in this application.
- Previous work using Non-Linear Trellis Codes [ISIT'06].
 The NLTC consists of:
 - A 2^{ν} -state trellis structure (block S).
 - A look-up table (LUT) stores an output per branch.
 - The outputs satisfy the required ones density p (nonsystematic)
- PC-NLTC: Two constituent (n_0, k_0) non-linear trellis codes (NLTC) linked by an interleaver (Π) of length *K*.



Distance on the Z-Channel

- The proper definition of distance between two codewords on the Z-Channel is the *directional distance*.
- Definition: Directional distance between two codewords X and \tilde{X} (denoted $d_D(X, \tilde{X})$) is the number of positions at which X has a 0 and \tilde{X} has a 1.
- Then, for an (n,k) code over the Z-Channel:

$$BER \leq \frac{1}{2k} \frac{1}{2^k} \sum_{(U,\tilde{U})} d_H(U,\tilde{U}) \cdot \left(\alpha^{d_D(X,\tilde{X})} + \alpha^{d_D(\tilde{X},X)} \right)$$

Where U, \tilde{U} are any possible data words, $d_H(U, \tilde{U})$ their Hamming distance, and X, \tilde{X} their respective codewords.

Design Criteria

- Choose a target sum-rate (SR). In our case, SR=0.6 (capacity ~ 0.7).
- Choose the number of states of the trellis code (more on this later).
- Choose k_0 . For a 6-user OR-MAC, using 8-state trellis codes, and a SR=0.6, then the average Hamming weight of the output per branch is ~ $0.54k_0$. We chose $k_0 = 2$.
- The length in bits of the output per trellis branch is then $n_0(N) \approx N \cdot k_0 / SR$.
- Assign a Hamming weight to each branch of the NLTC in order to maintain the optimal ones density.
- Total freedom on where to place those ones: branch and position.

Analytical BER Bound

- We provide a method to predict the BER of parallel concatenated non-linear codes over asymmetric channels, in particular the Z-Channel, under Maximum Likelihood decoding.
- We extend the uniform interleaver analysis proposed in [Benedetto '96].
- Uniform interleaver: given the two constituent codes, average over all possible interleavers of a certain length K.
- Key difference: **non-linearity** of the constituent codes.
 - We cannot assume that the all-zero codeword is transmitted. We need to average over all possible codewords.
 - Constituent codes are **non-systematic**.

Uniform interleaver analysis

- Linear case: the all-zero codeword is assumed to be transmitted.
- Consider any other input data:

Communication Systems Laboratory, UCLA

 $1 \left(0 T t^k \right)$

 $A_{i,r_1}^{C_1}, A_{i,r_2}^{C_2} \rightarrow A_{i,r_1+r_2}^{C_p}$

Uniform interleaver analysis (3)

Non-linear case: we need to average over all possible transmitted codewords.

$$U^{K}, \tilde{U}^{K} \longrightarrow Code 1 \longrightarrow d_{D}(X_{1}, \tilde{X}_{1}) = d_{1}$$

$$\Pi (U^{K}), \Pi (\tilde{U}^{K}) \longrightarrow Code 2 \longrightarrow d_{D}(X_{2}, \tilde{X}_{2}) = d_{2}$$

$$\Pi (U^{K}), \Pi (\tilde{U}^{K}) \longrightarrow Code 2 \longrightarrow d_{D}(X_{2}, \tilde{X}_{2}) = d_{2}$$

$$d_{H} (U^{K}, \tilde{U}^{K}) = d_{H} (\Pi (U^{K}), \Pi (\tilde{U}^{K})) = i,$$

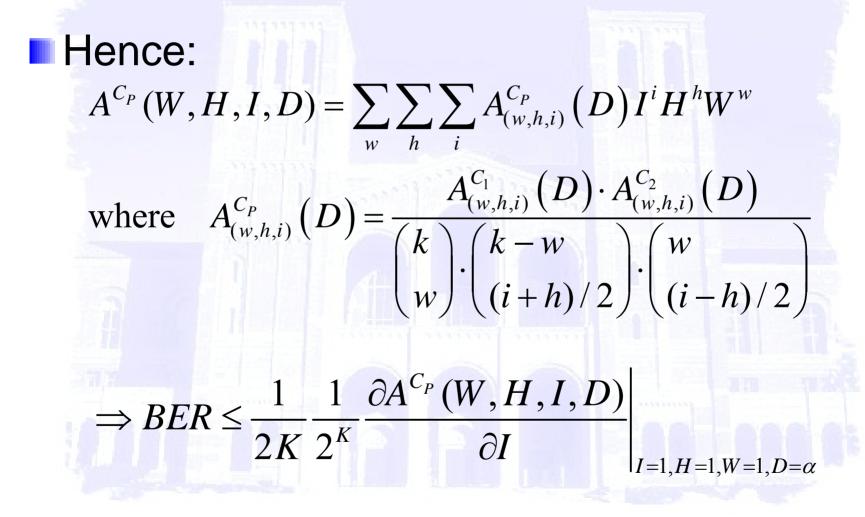
$$Probability (U^{K}, \tilde{U}^{K} \rightarrow \Pi (U^{K}), \Pi (\tilde{U}^{K}))$$

$$= \left[\binom{K}{w}, \binom{K-w}{(i+w-\tilde{w})/2}, \binom{w}{(i-w+\tilde{w})/2} \right]^{-1}$$

$$A^{C_{1}}_{(w,\tilde{w},i,d_{1})}, A^{C_{2}}_{(w,\tilde{w},i,d_{2})}$$

$$\rightarrow A^{C_{p}}_{(w,\tilde{w},i,d_{1}+d_{2})}$$

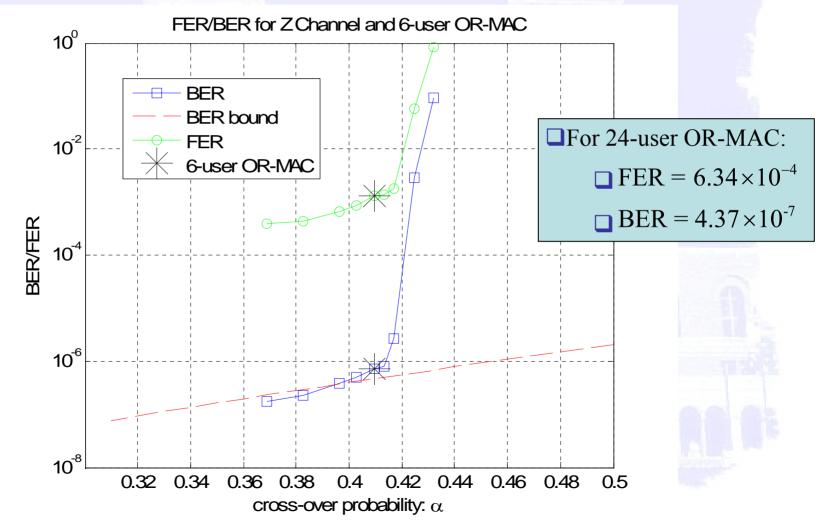
Uniform interleaver (3)



Results for 6-user OR-MAC

Parallel concatenation of 8-state NLTCs.

Sum-rate = 0.6, block-length = 8192, 12 iterations.



Communication Systems Laboratory, UCLA

Limitation on the number of users

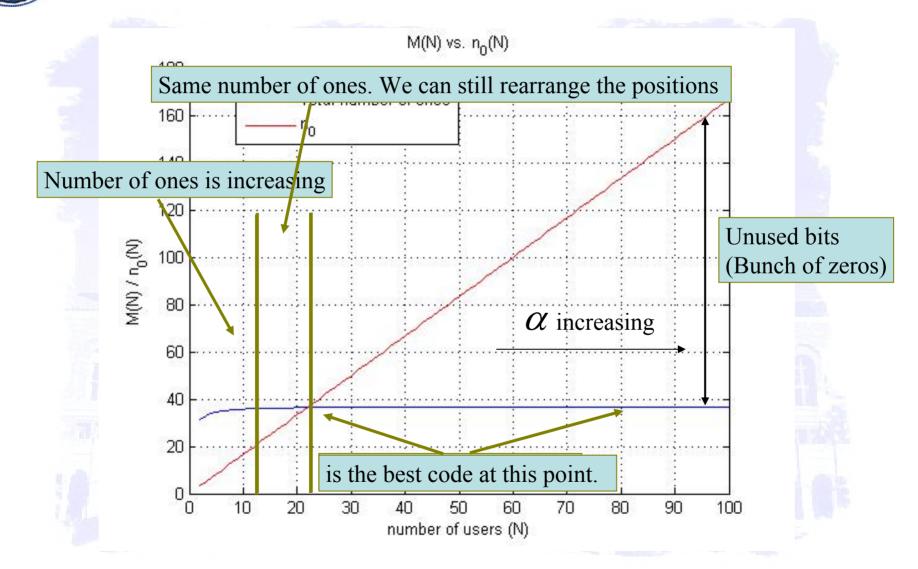
There may be a limitation in the number of users for a certain number of states of the trellis.

- Notation:
 - 2^v-state encoder.
 - k_0 input bits per trellis section.
 - SR : Target sum-rate.
 - \square $n_0(N)$: # output bits per branch.
 - M(N) total number of ones in all branches.

Limitation on the number of users

 $(1)n_0(N) = N \cdot k_0 / SR.$ $(2)M(N) = p(N) \cdot n_0(N) \cdot (\# \text{ branches})$ $\Rightarrow M(N) = \left(\frac{k_0 \cdot 2^{k_0 + \nu}}{SR}\right) \cdot \left[N\left(1 - (1/2)^{1/N}\right)\right]$ $\Rightarrow \lim_{N \to \infty} M(N) = \ln(2) \cdot \frac{k_0 \cdot 2^{k_0 + \nu}}{SR}$ $\rightarrow v = 3, k_0 = 2, SR = 0.6$ In our design: $\rightarrow M(N) = \frac{2^5}{0.6} \left[N \left(1 - (1/2)^{1/N} \right) \right]$ $\rightarrow n_0(N) = \frac{N}{0.6}$

Limitation after 23 users



Communication Systems Laboratory, UCLA

For 8-state PC-NLTC

	N	α	FER	BER
	6	0.43877	9.45×10^{-4}	6.54×10^{-7}
	24	0.48115	6.34×10^{-4}	4.37×10^{-7}
	30	0.48312	1.01×10^{-3}	1.88×10^{-5}
3	48	0.48605	6.12×10^{-3}	2.58×10^{-4}
i	60	0.48702	1.50×10^{-2}	1.13×10^{-3}
	72	0.48766	2.60×10^{-2}	2.98×10^{-3}

Conclusions

- A new family of codes has been presented: parallel concatenation of non-linear trellis codes.
- Application: uncoordinated access to the OR multiple access channel, using an IDMA-based system, with single-user decoding.
- They have proven to work well close to capacity (a sum-rate of 0.6 vs. ln(2)~0.7).
- A tight analytical prediction of the BER of a PC-NLTC over the Z-Channel has been derived. This technique can be generalized to non-linear codes in general, and other asymmetric channels.
- There is a limitation on the number of users for a fixed trellis structure. For an 8-state NLTC, the performance deteriorates for more than 24 users.
 We present a thorough analysis on this limitation.

Thank you!

Questions?