

UCLA Electrical Engineering Department – Communication Systems Lab.

Nonlinear Turbo Codes for the broadcast Z Channel

Richard Wesel Miguel Griot Bike Xie Andres Vila Casado

Outline

The stochastically degraded Broadcast channel. The broadcast Z channel (B-Z channel) Optimal transmission strategy. Capacity region. Channel coding design, nonlinear turbo codes: Controlled ones density. Designed for the Z channel and the Z channel with erasures. Simulation results. Conjecture: optimal transmission strategy for a particular set of broadcast channels. Conclusions

The stochastically degraded channel

Capacity region for sending independent information over the degraded channel $X \rightarrow Y_1 \rightarrow Y_2$ is the convex hull of the closure of the rate pairs

Optimal transmission strategy

Sketch of proof: General case Y₂ Χ, Y₁ $R_2 \leq I(X_2;Y_2)$ p_2 α $R_1 \leq I(X;Y_1 \mid X_2)$ \succ We need to prove that $q_1=0$ (or $p_1=1$) \succ Without loss of generality $q_1 \leq 1 - p_1$ >Consider any (R_1, R_2) point achieved with $p_2 \neq 0, p_2 \neq 1, q_1 \neq 0, p_1 \neq 1, q_1 \neq 1 - p_1$

Proof for the B-Z channel

Perceived channels

Implementation

Encoding: OR of two parallel concatenated nonlinear trellis codes [GlobeCom'06].

$$W_1 \longrightarrow \text{PC-NLTC 1} \xrightarrow{X_1 \sim p_1} W_2 \longrightarrow \text{PC-NLTC 2} \xrightarrow{X_2 \sim p_2} \xrightarrow{X_2 \sim p_2} X$$

Decoding receiver 1(hard):

Parallel Concatenated Nonlinear Trellis Codes

- Presented in GlobeCom'06 (for Z channel).
- The NLTC consists of:
 - A 2^{ν} -state trellis structure (block S).
 - A look-up table (LUT) stores an output per branch.
 - The outputs satisfy the required ones density p (nonsystematic)
- PC-NLTC: Two constituent (n_0, k_0) non-linear trellis codes (NLTC) linked by an interleaver (Π) of length *K*.

Communication Systems Laboratory, UCLA

Example

Results

8-state nonlinear turbo codes.

$$k_0 = 2$$

R ₁	R_2	p ₁	p ₂	K ₁	K ₂	BER ₁	BER ₂
1/12	1/5	0.106	0.56	4800	1700	2.54×10^{-5}	1.24×10^{-5}
1/6	1/6	0.196	0.5	2048	2048	7.01×10^{-6}	5.33×10^{-6}
1/3	1/9	0.336	0.3739	1536	1536	7.13×10^{-6}	6.70×10^{-6}
1/2	1/22	0.463	0.1979	5632	1024	9.27×10^{-7}	3.27×10^{-6}

The broadcast Z channel

Also true for (AWGN, + operator), (BSC, XOR).

Conjecture

Conclusions

- We have presented an optimal transmission strategy for the Broadcast Z Channel.
- Simple encoding and decoding.
- A practical implementation that works close to capacity has been presented.
- Nonlinear turbo codes, specifically designed for the Z channel and the Z channel + erasures, have been designed.
- Conjecture: simple transmission strategy could be used to a set of stochastically degraded broadcast channels.