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Abstract— This paper presents a practical technique that
uses Ping’s interleave(r)-division multiple access and single-user
decoding to provide uncoordinated access for a family of binary-
input binary-output multiple-access channels (MACs) including
the OR-MAC where users’ binary transmissions are combined
with the logical OR operation. Information theoretic calculations
provide the achievable sum-rates and optimal ones densities for
these MACs. Because the required ones densities are significantly
less than 50%, new nonlinear trellis code analysis and design
techniques are introduced to provide the needed codes. Union
bound techniques that predict the performance of these codes
are also presented. Simulation results and a working FPGA
implementation verify the performance and feasibility of the
proposed nonlinear codes and overall multiple access scheme.

Index Terms— Multiuser channels, single-user-decoding, non-
linear trellis codes, binary asymmetric channel, Z channel,
multiple access channel, binary multiplier channel.

I. INTRODUCTION

THERE have been many approaches to providing multiple
users access to the same channel. Access can be coordi-

nated or uncoordinated. Coordinated multiple access schemes
include time-division (TDMA), frequency-division (FDMA),
code-division (CDMA), and rate-splitting [1]. A joint trellis-
code design for all users has been proposed in [2], but this also
requires coordination as a distinct channel code is assigned to
each user.

When coordination is either not possible or not convenient,
uncoordinated multiple access schemes such as Aloha, slotted
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Aloha, carrier-sense multiple access (CSMA), and CSMA with
carrier detection (CSMA-CD) are employed. However, these
schemes do not provide a clear QoS in terms of delay or
delay jitter. One recent approach for uncoordinated multiple-
access that does not introduce delay jitter is Interleave(r)-
Division Multiple-Access (IDMA) [3], which uses interleaving
to distinguish among signals from different users.

This work explores the applicability of the IDMA approach
to a family of with Binary-Input, Binary-Output Multiple
Access Channels (BIBO-MACs). In particular, we consider the
OR Multiple Access Channel (OR-MAC), or its isomorphic
channel, the Binary Multiplier Channel [4, Example 15.3.2],
as a target application for IDMA. Completely uncoordinated
transmissions using IDMA and simple decoding that treats
all signals except the desired signal as noise can theoretically
achieve about 70% of the sum capacity over the OR channel
for any number of users. Thus by sacrificing some portion
of the sum rate, the IDMA approach provides a significant
reduction in complexity over coordinated transmission or joint
decoding approaches, making it practically attractive. We also
explore a more general subset of the BIBO-MAC, which we
call the OR-with-Interference MAC (ORI-MAC).

For OR- and ORI-MACs, IDMA requires channel codes
with low ones densities. This paper investigates Nonlinear
Trellis Codes (NLTCs) [2] to provide the required ones
densities and to permit low-complexity decoding. Addition-
ally, NLTCs can support IDMA even for large numbers of
users. Turbo solutions, which more closely approach the sum-
capacity at the cost of more latency and complexity in the
decoding, have also been explored in our related paper [5].

Section II reviews uncoordinated multiple access in the
BIBO-MAC, and in particular the OR-MAC and ORI-MAC.
Section III presents an NLTC design technique for this appli-
cation. Section IV analyzes the performance of these codes for
large numbers of users, presenting an analytical tool to choose
the proper number of states for the trellis code. Section V
introduces a transfer-function bound for NLTCs operating on
the Z-Channel and a separate bound that applies to any binary
asymmetric channel (BAC). Section VI presents performance
results, and Section VII concludes the paper.

II. THE BIBO-MAC MODEL

In the BIBO-MAC there are N users each transmitting a
binary symbol (bit). For one transmission time, denote the
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transmitted bits as {x1, · · · , xN} and the received binary
symbol as y. Denote by ψm the conditional probability of
receiving a 0 given that the sum of the transmitted bits is m:

ψm = P
(
y = 0

∣∣∣ i=N∑
i=1

xi = m
)
, m ∈ {0, · · · , N}. (1)

The set of parameters {ψm : m = 0, ..., N} depend on the
particular BIBO-MAC.

A. Uncoordinated Access to the BIBO-MAC

This paper applies IDMA to the BIBO-MAC in a com-
pletely uncoordinated manner. Thus, time division is not al-
lowed. For simplicity, we assume all the users are transmitting
all the time at the same rate1 and all the users transmit with
the same ones density p = P (xi = 1), for all i = 1, · · · , N .
Under these assumptions, for a specified ones density p, the
achievable sum of the rates of all the N users, which we will
call the sum-rate RN (p), is upper bounded as follows:

RN (p) ≤H
(

N∑
m=0

(
N

m

)
pm(1 − p)N−mψm

)

−
N∑

m=0

(
N

m

)
pm(1 − p)N−mH(ψm), (2)

where H(·) is the binary entropy function. To maximize the
sum-rate, the optimal ones density is then:

popt = argmaxp∈[0,1]{RN (p)}. (3)

Depending on the particular values ψm, the sum-rate can take
values from 0 (for the case ψm = 1/2, ∀m) to 1 (the upper
bound since the output is binary). This approach may not be
capacity achieving, since higher rates might be achieved with
time division. However, we will investigate cases where time
division is not necessary to achieve capacity or where the
increase in rate possible with time division is small.

B. BIBO-MAC With Single-User Decoding

The BIBO-MAC sum-rate capacity may be achieved with
joint decoding of all the transmitted sequences. However, joint
decoding can be very complex, especially for a large number
of users. In high-speed applications where joint decoding
is unavailable for complexity reasons, Single-User Decoding
(SUD) must be used. With SUD, each user treats all but the
desired signal as noise, transforming the BIBO-MAC into a
Binary Asymmetric Channel (BAC) for each user with the
following cross-over probabilities:

α = P (y=1|x=0) (4)

= 1 −
N−1∑
m=0

(
N − 1
m

)
pm(1 − p)N−1−mψm, (5)

β = P (y=0|x=1) (6)

=
N−1∑
m=0

(
N − 1
m

)
pm(1 − p)N−1−mψm+1. (7)

1In fact, the essential results hold for users with different rates and
correspondingly different ones densities, but considering these cases in detail
would unnecessarily complicate the exposition.

RSUD
N (p), the achievable sum-rate for N users with SUD

and a fixed common ones density p behaves as follows:

RSUD
N

N
≤ H

(
(1−p)(1−α)+pβ

)−(1−p)H(α)−pH(β) . (8)

C. The OR-MAC

In the OR-MAC, if all users transmit a 0, then the channel
output is a 0. However, if one or more users transmit a 1,
then the channel output is a 1. The OR channel can be used
as a simple communications model that describes a multiple-
user local area network optical channel with non-coherent
combining. For short distances, the effect of noise can be
considered negligible. A 1 is transmitted as light and a 0 is
transmitted as no light. If any user transmits light, light is
received. Only when all users do not transmit light, a 0 is
received. In this simple model it is assumed that there is no
destructive interference between users.

The OR-MAC is a particular case of the BIBO-MAC
channel presented above where:

OR-MAC : ψm =
{

1 for m = 0,
0 for m = 1, · · · , N. (9)

Applying (9) to (2) yields RN ≤ H
(
(1 − p)N

)
so that the

maximum possible sum rate of 1 is achieved with

OR-MAC : popt(N) = 1 − (1/2)1/N . (10)

Note that the achievable sum-rate is 1 regardless of the number
of users N . This means that if joint decoding is employed,
completely uncoordinated transmission on the OR-MAC is
theoretically possible with the same efficiency as TDMA, for
any number of users.

When single-user decoding is used over the OR-MAC, each
user perceives a particular case of the BAC, commonly known
as the Z-Channel, where:

α = 1 − (1 − p)N−1, β = 0. (11)

The achievable sum-rate becomes:

RSUD
N (p) = N ·

[
H
(
(1 − p)N

)− (1 − p)H(α)
]
. (12)

An interesting property of the OR-MAC is that with single-
user decoding its maximum theoretical sum-rate

RSUD
N = max

p
RSUD

N (p) (13)

monotonically decreases only to ln 2 � 0.6931 as the number
of users N increases. This is a relatively small loss in rate
for the substantial reduction in complexity. Also, the optimal
ones density is practically the same as the ones density for
joint decoding. Namely:

popt(N) → 1 − (1/2)1/N , for SUD as N → ∞. (14)

A sketch of the proof of the asymptotic sum rate and the
asymptotically optimal ones density for SUD on the OR-MAC
is as follows: First, we prove that RSUD

N is monotonically
decreasing. Let p(N+1) be the optimal ones density for N+1
equal-rate users under single-user decoding. Compute the
possibly suboptimal ones density p̃(N) for N equal-rate users
as the one that satisfies (1 − p̃(N))N = (1 − p(N + 1))N+1.
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Fig. 1. Maximum OR-MAC sum-rates (in bits) as a function of the number
of users for single-user decoding and joint decoding. Also shown is the sum
rate for single-user decoding with a ones density of 0.5.

Using Eq. 12, note that RSUD
N

(
p̃(N)

)
> RSUD

(N+1)

(
p(N + 1)

)
.

Thus the sum rate is monotonically decreasing because a
possibly sub-optimal ones density for N users leads to a higher
symmetric sum rate than the optimal ones density for N + 1
users.

To prove that the limit is ln 2, prove that for a fixed number
of users N , RSUD

N (p) is quasi-concave as a function of p,
and since RSUD

N (0) = RSUD
N (1) = 0, there exists one (and

only one) local maximum which is the global maximum. Then
prove that the conjectured popt(N) of Eq. (14) tends to the
local maximum when N → ∞. Finally, using the right-hand
expression of Eq. (14) in Eq. (12), and letting N → ∞ reveals
that the limit is ln 2.

Fig. 1 shows the maximum theoretical sum-rate using both
joint decoding (which is always 1) and single-user decoding
(which decreases to ln 2). It also shows the maximum theo-
retical sum-rate of single-user decoding using a ones density
of p = 0.5, which rapidly decreases to zero as the number of
users increases. The poor performance of the p = 0.5 ones
density demonstrates that codes with low ones densities are
required for this application.

D. The OR-With-Interference MAC

We now extend the OR-MAC to handle the possibility of
destructive interference, as might occur in optical multiple
access. As with the OR channel, when all users transmit a
0, a 0 is received. Also, when only one user transmits a 1, a
1 is received. However, when more than one user transmits a
1, there is a certain probability (associated with a destructive
interference event) that a 0 is received. This probability is
always less than 1/2 and decreases as the number of ones
transmitted increases. We call this the OR-with-Interference
MAC (ORI-MAC).

Following the notation introduced in Section II-A, the ORI-
MAC can be expressed as a general BIBO-MAC with the
following constraints:

ORI-MAC :
{
ψ0 = 1, ψ1 = 0,
1/2 ≥ ψm ≥ ψm′ , ∀m′ ≥ m ≥ 2 (15)

As a specific example of an ORI-MAC consider the Coherent
Interference MAC (CI-MAC), for which:

CI-MAC:

{
ψ0 = 1, ψ1 = 0,

ψm = P
(∣∣∣∑m

i=1 e
jθi

∣∣∣2 < σ
)
, ∀m ≥ 2,

(16)
where θi ∼ U [0, 2π) are random variables with uniform
distribution, and σ is a threshold which will be considered
1/2 in this work.

The maximum achievable sum rate of the ORI-MAC, with
coordinated time division, is 1. To see this, note that if the
outputs of all but one user are set to 0, then the maximum
achievable rate for that user is 1. Hence, with coordinated
time division, any combination of rates with sum-rate equal
to 1 can be achieved.

For the ORI-MAC without time division, it can be proven
that the sum-rate capacity, for both joint and single-user
decoding, is lower bounded by a strictly positive number
regardless of the number users, as stated in the following
theorems.

Theorem 1: Using a ones density of the form

p(N) = 1 − δ1/N , (17)

the achievable sum rate on the ORI-MAC without time divi-
sion is lower bounded by:

RN ≥ max
δ∈[1/2,1]

{
H
(
δ + ψ2f(δ)

)
− f(δ)H(ψ2)

}
, (18)

for any number of users N , where f(δ) = 1 − δ + δ ln δ.
Theorem 2: Using a ones density of the form shown in

(17), the achievable sum rate on the ORI-MAC without time
division and with single-user decoding is lower bounded by:

RSUD
N ≥ max

δ∈[1/2,1)

{
ln δ
[(
H (ψ2(1 − δ)) −H (g(δ))

)

+
(
ψ2(1 − δ) − g(δ)

)
log2

(
g(δ)

1 − g(δ)

)]}
(19)

for any number of users N , where g(δ) = δ + ψ2f(δ).
The proofs are sketched as follows: First prove that the

values of the sum rates RN (p) in (2) and RSUD
N (p) in (8)

with p(N) as in (17) are decreasing with N for fixed ψm’s.
Given a certain value of ψ2, consider the worst case scenario
ψm = ψ2, ∀m ≥ 2. Then use (17) in (2), and let N → ∞ to
prove Theorem 1. Use (17) in (5,7) and (8), and let N → ∞
to prove Theorem 2.

For example, part of the argument for Theorem 1 is to
evaluate the following expression from (2):

H

(
N∑

m=0

(
N

m

)
pm(1 − p)N−mψm

)
(20)

= H
(
δ + ψ2

[
1 − δ − δN

(
δ−1/N − 1

)])
(21)

→ H (δ + ψ2 [1 − δ + δ ln δ]) (22)

where
lim

N→∞
N
(
δ−1/N − 1

)
= − ln δ . (23)

Fig. 2 shows achievable sum-rates (without time division)
for the ORI-MAC for ψm = ψ2 for all m ≥ 2 (the worst
possible channel given ψ2) as a function of ψ2 for joint
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Fig. 2. Achievable sum-rates without time division for the ORI-MAC for
ψm = ψ2 for all m ≥ 2 as a function of ψ2 for joint decoding and for
single-user decoding. Curves are shown for N = 2, 4, and 64 users as well
as for the limiting case of N → ∞ (according to Thms. 1 and 2).

decoding using (2) and for single-user decoding using (8).
Curves are shown for N = 2, 4, and 64 users as well as for
the limiting case of N → ∞ (according to Thms. 1 and 2).

The asymptotic lower bounds of Thms. 1 and 2 are tight
for 64 or more users. Note that as ψ2 goes to 0, and hence
the ORI-MAC tends to the OR-MAC, the sum-rate asymptotic
lower bounds tend to OR-MAC achievable sum-rates, both for
joint decoding and single-user decoding.

Fig. 3 shows the optimal δs for the ORI-MAC without time
division for ψm = ψ2 for all m ≥ 2 as a function of ψ2 for
joint decoding and for single-user decoding. Curves are shown
for N = 2, 4, and 64 users as well as for the limiting case
of N → ∞ (according to Thms. 1 and 2). Note that as ψ2

goes to 0, δ tends to 1/2 regardless of the number of users
for both joint decoding and single-user decoding, resulting
in the optimal δ for the OR-MAC. Also note that the δ that
maximizes the asymptotic lower bound is relatively close to
the optimal delta for a finite N both for joint decoding and
for single-user decoding.

III. NLTC WITH CONTROLLED ONES DENSITY

With IDMA, every user has the same channel code, but
each user’s encoder output bits are permuted using a randomly
drawn interleaver, unique with extremely high probability. The
receiver is assumed to know the interleaver of the desired
user. With IDMA in the OR-MAC, a receiver sees the desired
signal corrupted by a memoryless Z-channel. We performed
simulations comparing an NLTCM code under two channels:
1) a 6-user OR-MAC (or ORI-MAC) channel using IDMA and
2) the equivalent Z-channel (or BAC) that the receiver would
see if the errors were not generated by other users’ codewords
but by random errors. The performance was the same. Thus,
in the context of IDMA, the remaining challenge is the design
of good codes with the desired ones densities for the binary
asymmetric channel and for the Z-Channel.

Papers appearing since the 1950’s have addressed the prob-
lem of designing codes with p = 0.5 for the binary asymmetric
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Fig. 3. Optimal δs for the ORI-MAC for ψm = ψ2 for all m ≥ 2 as
a function of ψ2 for joint decoding and for single-user decoding. Curves
are shown for N = 2, 4, and 64 users as well as for the limiting case of
N → ∞ (according to Thms. 1 and 2).

channel, and in particular the Z-Channel. See [6] for a unified
discussion of such codes and [7] for recent advances in this
field.

Two recent papers, [8] and [9], addressed the problem of
designing codes with a nonuniform ones density in the output
by using sparse LDPC codes over large finite fields, i.e. using
symbols fromGF (q) in the parity-check matrix. However, this
solution requires a much more complex decoder than binary
LDPC codes. Moreover, in the application considered in this
work, the required low ones densities would lead to very large
values of q. Also, the possible values of q limit the granularity
of the output distribution.

In this section we present a design technique for trellis codes
with an arbitrary ones density for the binary asymmetric chan-
nel and for the Z-Channel specifically. We use a conventional
shift register for a rate-1/n0 feed-forward encoder in order to
determine the state transitions of the trellis. However, instead
of using linear operations specified by generator polynomials
to compute the encoder output for each branch, a nonlinear
lookup-table directly assigns the encoder output values for
each branch as in [2].

Denote the desired target sum-rate as Rtgt. The number n0

of output bits per trellis branch is chosen, as a function of the
number of users N , as follows:

n0(N) = N/Rtgt, (24)

where Rtgt is chosen so that n0 is a natural number.
Denote the desired (optimal) ones density as p. In order to

provide the required ones density, each of the branches needs
to have the proper Hamming weights (Wh). Consider a 2ν-
state encoder producing a trellis with B = 2ν+1 branches in
each stage. To achieve an optimal ones density of p, there
should be Bw branches with Hamming weight w = 
p · n0�
and Bw+1 = B−Bw branches with Hamming weight w+ 1,
where Bw should be chosen to minimize the deviation (Δ)
from the desired ones density:

Δ = |p · n0 − (Bw+1 · (w + 1) +Bw · w)/B|. (25)
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Given the Hamming weights of each branch, the remaining
task is to assign the positions of the ones in each label. We
provide a design technique that assigns these positions with
the goal of maximizing the minimum distance between code-
words. This design technique uses a non-standard definition of
distance specific to the Z-Channel and the BAC. We introduce
this distance in the next section.

A. Directional Hamming Distance, Z-Channel ML Decoding

Consider any two words of length n bits, X =
{x1, · · · , xn} and X̃ = {x̃1, · · · , x̃n}. Define the Directional
Hamming Distance dD(X, X̃) as the number of positions
where xi = 0 and x̃i = 1 for i ∈ {1, · · · , n}. Note that
dD(X, X̃) is not necessarily equal to dD(X̃,X).

Denote the received word as Y = {y1, · · · , yn}. Given the
received word Y , any possible transmitted codeword X on
the Z-Channel must satisfy dD(Y,X) = 0, since there cannot
be any one-to-zero transitions. The most likely transmitted
codeword X̂ , is the codeword that minimizes the number of
zero-to-one transitions dD(X,Y ) among those codewords X
satisfying dD(Y,X) = 0. Hence, the ML decoder for the Z-
Channel chooses the codeword X̂ as:

X̂ = argminX∈N
[
dD(X,Y )

]
, (26)

where N is the set of codewords that satisfy dD(Y,X) = 0.
As in (4), let α be the probability of a zero-to-one transition

in the Z-Channel. Using Eq. (26), the directional pairwise error
probability between two different codewords X and X̃ (the
probability of transmitting X and decoding X̃ if those were
the only two codewords in the codebook) under ML decoding
is:

Pe(X → X̃) =

⎧⎪⎨
⎪⎩

1
2α

dD(X,X̃) WH(X) = WH(X̃)
αdD(X,X̃) WH(X) < WH(X̃)
0 WH(X) > WH(X̃)

(27)

where WH(·) denotes the Hamming weight. If two codewords
have different Hamming weights, the codeword with the
smaller Hamming weight will never be incorrectly decoded
by a maximum likelihood (ML) decoder when the code with
the larger Hamming weight is transmitted. On the other
hand, if both codewords have the same Hamming weight, the
directional Hamming distances are equal and errors can be
made in either direction. In any case, the directional distance
that affects pairwise error probability is the larger of the two.
Thus, a proper definition of pair-wise distance for the Z-
Channel is:

dZ(X, X̃) = max[dD(X, X̃), dD(X̃,X)] . (28)

This metric for the Z-Channel is well known, appearing in [6]
and [7] among other papers.

B. Conservative Branch-Wise Distance for the Z Channel

The definition of distance in (28) for the Z channel cannot
be applied branch-wise, since it is impossible to tell from an
individual branch which codeword will end up having more
Hamming weight. For that reason, we will use a conservative
definition of distance for our trellis code design, considering

both directional distances. Namely, our definition of branch-
wise distance between any two branches bi and bj is

dD,min = min[dD(bi, bj), dD(bj , bi)]. (29)

Our code designs maximize this conservative branch-wise
metric.

With this branch-wise metric, codewords with equal Ham-
ming weights produce larger values of dD,min than codewords
with different Hamming weights, so we will assign output
values to the trellis branches with Hamming weights as similar
as possible, preferably equal.

C. Conservative Branch-Wise Distance for the BAC
For the case of the BAC, with zero-to-one transition

probability α and one-to-zero transition probability β, The
probability of Y (of length n) being received given that X
was transmitted is

P (Y |X) = αdD(X,Y ) + βdD(Y,X)

+ (1 − α)n−WH (Y )−dD(Y,X) + (1 − β)WH (Y )−dD(X,Y ).

The ML decoder chooses X̂ to maximizes P (Y |X):

X̂ = argminX

h
dD(X, Y ) ln

“1 − β

α

”
+ dD(Y, X) ln

“1 − α

β

”i
.

We have not found a simple relationship between the direc-
tional distances dD(X, X̃) and dD(X̃,X), and the pairwise
error probability Pe(X → X̃). However, this work considers
channels with significant asymmetry, where β is much smaller
than α. In that case, the pairwise error probability may be ap-
proximated by the previous discussion. Thus, when designing
the NLTC, the same conservative branch-wise definition of
distance dD,min is used for both the Z-Channel and the BAC.

D. Nonlinear Trellis Code Design

The main task of our nonlinear trellis code (NLTC) design
is to assign output values to the branches of the trellis to
maintain the desired average ones density p while maximizing
the minimum directional distance dD,min of the NLTC given
the parameters of code (ν, p and n0). We propose a design
technique that provides a lower bound on the minimum conser-
vative distance and maximizes it by extending Ungerboeck’s
rules for trellis design [10]. The design technique consists of
the following steps.

The trellis paths of two valid codewords split from a com-
mon state at some trellis section, and merge to a common state
at some other trellis section. Since a feed-forward encoder is
used, two valid codewords must traverse different branches
produced by a common input in ν consecutive trellis sections
before a merge. The design procedure begins by ensuring all
branches produced by the same input to have a conservative
distance (dD,min) of at least 1 between each other. Thus, if
each of those sections adds at least 1 to the conservative
distance, then for the overall trellis dD,min ≥ ν. This can be
accomplished if

(
n0
w

) ≥ 2ν , where w = 
p · n0�. This last
inequality is satisfied in the applications considered in this
work, since the code-rates are very small (n0 is large).

Once the weights of the branches are chosen, and branch
labels are selected to ensure dD,min ≥ 1, we assign branch
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Fig. 4. Example of extension of Ungerboeck’s distance bound focusing on splits and merges. Shown at left are the 4 branches produced by a split from the
all-zero state in the previous trellis section. Shown at right are the 4 branches that merge to the all-zero state in the next trellis section. Branches are labeled
(input:output). For both splitting and merging, any pair of branches in the four branches belonging to the group all have the maximum dD,min of 2.

labels to the branches. Our approach for this assignment
is based on Ungerboeck’s idea of maximizing the distance
between splits and merges [10]. Given that our branch labels
will have Hamming weights of w or w + 1, the best we can
hope for is to guarantee that dD,min ≥ w between branches
that share a split or merge.

Ungerboeck’s rule can be extended more deeply into the
trellis, and maximize not only the distance between splits, and
the distance between merges, but the distance between the 4
branches emanating from a split in the previous trellis section,
or the 8 branches emanating from a split two sections before,
and so on. The same can be done with the merges moving
backwards in the trellis.

Notice that lower bounding by w the distance for all sets
of 8 branches emanating from a split two sections earlier
also lower bounds by w the distance between all 4 branches
emanating from any split a single trellis section earlier, and
lower bounds by w every pair of branches at the beginning of
any split. The same idea applies to the merges. If we consider
h sections after a split, and g sections before a merge, the new
bound for the minimum conservative distance is of the overall
trellis is

dD,min ≥ (w − 1)(h+ g) + ν + 1. (30)

The sum h + g for which (30) can hold is limited by the
parameters of the design. For example h+ g ≤ ν + 1. All the
branches of the relevant splits and merges must have distance
of at least w between each other when (30) is satisfied. Thus,
the sum h + g is limited by constraints resulting from the
requirement that h and g must be small enough that the
relevant sets of branches in each of the h or g trellis sections
of the split or merge are all separated by the maximum
conservative distance. Note that the condition need only be
enforced for the trellis section involving the most branches (i.e.
the last section of a split or the earliest section of a merge).
The condition will then automatically be satisfied by the trellis
sections involving fewer branches since these smaller groups
are themselves strict subsets of larger groups that meet the
enforced condition.

From the splitting point of view, the largest groups contain
2h branches, which should have conservative distance of at
least w between each other. Satisfying w ·2h ≤ n0 is required

to guarantee a conservative distance of w between any two
branches in a group of 2h branches. From the merging point
of view, the largest groups contain 2g branches, and therefore
the requirement is w ·2g ≤ n0. Note that each branch belongs
to one group of 2h and one group of 2g, but no pair of branches
belongs to the same two groups.

As an example, consider a rate-1/8 (n0 = 8) 8-state trellis
(ν = 3), where a ones density of p = 1/4 is required. The
Hamming weight of each output must be w = n0·p = 2. There
are 2ν+1 = 16 branches. There are

(
8
2

)
= 28 possible outputs

with w = 2. Hence, we can choose 16 different outputs (from
the 28 possibilities) with dD,min ≥ 1 between each other.

Since w = 2, the maximum conservative distance between
two outputs is 2. The maximum number of outputs with
dD,min = 2 between each other is n0/w = 4. Therefore we
can choose h = g = 2 so that 2h = 2g = 4.

For an eight-state code, h = 2 implies that we need
to maximize the distance between every group of branches
departing from the states (abX), with ab fixed for each group
and X ∈ {0, 1}, with any input (there are 4 branches in each
group). To satisfy g = 2 we maximize the distance between
any group of branches departing from states (XXc) with the
same input (there are also 4 in each group).

Fig. 4 shows an example for a = 0, b = 0, and c = 0.
Specifically, it shows the 4 branches produced by a split from
the all-zero state in the previous trellis section (at left) and the
4 branches that can produce a merge to the all-zero state in the
next trellis section (at right). In this example, it is the branch
connecting the zero state to itself that appears in both the
splitting group and the merging group. For both splitting and
merging, any pair of branches in the four branches belonging
to the group has the maximum dD,min of 2.

Table I shows a labeling that achieves (30) for the example
of a rate-1/8 (n0 = 8) 8-state trellis (ν = 3), with a ones
density of p = 1/4 and h = g = 2. Table I is constructed
so that outputs in the same row (corresponding to a g = 2
merge) or the same column (corresponding to an h = 2
split) do indeed have dD,min = 2. Therefore, using (30) the
minimum distance of the code is dD,min = 8, which is the
maximum possible conservative distance given the parameters
of the example. The first column of Table I is illustrated in
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TABLE I

EXAMPLE OF LABELING DESIGN. S DENOTES THE CURRENT STATE, u

DENOTES THE INPUT BIT. EACH OUTPUT CORRESPONDS TO THE BRANCH

PRODUCED BY THE INPUT u WHEN THE CURRENT STATE IS S .

S u output S u output S u output S u output
000 0 11000000 010 0 00101000 100 0 00010001 110 0 00000110
000 1 00110000 010 1 10000010 100 1 01000100 110 1 00001001
001 0 00001100 011 0 01000001 101 0 00100010 111 0 10010000
001 1 00000011 011 1 00010100 101 1 10001000 111 1 01100000

the left portion of Fig. 4. The first row of Table I is illustrated
in the right portion of Fig. 4.

IV. HANDLING A LARGE NUMBER OF USERS

For a target sum-rate Rtgt and a specified target BER, there
may be a limitation on the number of users N using the
NLTCs of this paper if the number of states 2ν is not large
enough. As seen in Section II-A, the optimal ones density for
a certain number of users is well approximated by (17), where
δ depends on the channel (see Fig. 3).

Let Wb(N) be the total number of ones in all of the 2ν+1

branches in a single trellis section of a code designed for N
users. We have the following:

Wb(N) ≈ 2v+1n0p(N) (31)

=
N(1 − δ1/N )2v+1

Rtgt
, (32)

where (32) follows from (24) and (17). Wb(N) increases
monotonically with the number of users N. Using (23) we
have

Wb(N) → − ln(δ)2v+1

Rtgt
, (33)

so that Wb(N) converges to a finite limit as N becomes large.
On the other hand, from Eq. (24) the number n0(N) of

output bits per trellis section linearly increases with N . Hence,
for a large enough number of users, n0(N) becomes greater
than Wb(N). Let Nc denote the smallest number of users at
which n0(Nc) ≥Wb(Nc).

The design of a code for Nc users is straightforward. For
each branch, add ones in positions that aren’t used in previous
branches until its assigned Hamming weight is reached. More-
over, the best code for Nc users is essentially the best code
for any number of users greater than Nc. The only difference
is that as N grows more zeros are added to the output.

The channel degrades as N increases, hence degrading the
code performance. However, for Nc sufficiently large, this
degradation becomes marginal, as both α and β converge to
fixed values. For example, in the OR-MAC, using (10) in (11)
yields:

α(N) = 1 − (1/2)(N−1)/N , (34)

which converges to 1/2 as N goes to ∞. Nc increases with ν,
so choosing ν sufficiently large (e.g. large enough to handle
the α = 1/2 case on the OR-MAC), a target sum rate can
be achieved regardless of the number of users with essentially
the same performance.

Fig. 5 shows the number of output bits per trellis section
n0 and the total number of ones Wb in all the branches of a
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Fig. 5. Total number of ones (Wb) in the output of all branches of a single
trellis section and number of output bits per branch (n0) vs. number of users
(N ), for the OR-MAC with Rtgt = 0.3 for ν = 5 and ν = 6. For the
OR-MAC, δ = 1/2.

trellis section vs. the number of users, for ν = 5 and ν = 6
codes designed for the OR-MAC, using a target sum rate of
Rtgt = 0.3 and δ = 1/2. With ν = 5, Nc = 44 and α(Nc) =
0.492. With ν = 6, Nc = 89 and α(Nc) = 0.496, which is
already very close to α(∞) = 0.5.

The question is whether a code designed for Nc = 44 can
continue to perform well as the number of users increases
beyond 44 (with proper added zeros) and α increases beyond
0.492 towards 1/2. If not, can the ν = 6 code designed
for Nc = 89 continue to perform well as the number of
users increases beyond 89 (with the proper added zeros to the
output) and α increases beyond 0.492 towards 1/2? As will be
corroborated in Section VI, ν = 6 is sufficient to achieve the
target sum-rate of 0.3 with consistent performance regardless
of the number of users.

V. TRANSFER FUNCTION BOUND FOR NLTC CODES

Ellingsen [11] provided a combinatorial expression for
an upper bound on the BER of linear block codes over
the Z-channel under ML decoding. For convolutional codes
assuming binary PAM or QPSK, Viterbi [12] introduced an
analytical technique using generating functions to provide a
union bound on the BER of convolutional codes. Viterbi’s
technique is based on a 2ν-state diagram for the convolutional
encoder. In the case of general trellis codes where high
level constellations introduce nonlinearity, Biglieri [13][14]
generalized Viterbi’s algorithm by using the product state
diagram with 22ν-states. Biglieri’s algorithm can be applied
to nonlinear trellis codes over the Z-channel, and more gen-
erally over the BAC, with modifications on the pairwise error
probability measure.

A. Transfer Function Bound Over the Z-Channel

The directional pairwise error probability between two
different codewords X and X̃ under ML decoding over the
Z-Channel is shown in (27). Hence, for a specified pair of
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codewords X and X̃ , the sum of the two directional pairwise
error probabilities is

Pe(X → X̂) + Pe(X̂ → X) (35)

= αmax(dD(X,X̂),dD(X̂,X)) (36)

≤ 1
2

(
αdD(X,X̂) + αdD(X̂,X)

)
(37)

Thus, if Pe(X → X̂) is replaced (not always upper-bounded)
by 1

2α
dD(X,X̂) for all the codeword pairs X and X̂ , the

transfer function bound technique applied to the NLTC will
still yield a valid overall upper bound because of (37).

As in [13], the product state diagram consists of state pairs,
(se, sr), where se is the encoder state and sr the receiver
state. Following Biglieri’s notation, the product states can be
divided into two sets, the good states denoted by SG and the
bad states denoted by SB , defined respectively as follows:

SG = {(se, sr) | se = sr}, SB = {(se, sr) | se = sr}. (38)

By suitably renumbering the product state pairs with single-
value states s, we get the transition matrix

S(W, I) =
[
SGG(W, I) SGB(W, I)
SBG(W, I) SBB(W, I)

]
, (39)

where the Ns×Ns matrix SGG(W, I) accounts for transitions
between two good product states, the Ns × (N2

s −Ns) matrix
SGB(W, I) accounts for transitions from good product states
to bad product states, and so forth. Ns = 2ν is the number of
encoder states.

The (i, j) entry of S(W, I) is a branch label for the
transition from state s = i to state s = j in the product
state diagram. The i→ j branch is labeled by

p(i→ j)W dD(xe,xr)IdH(ue,ur), (40)

where dH(·, ·) denotes the Hamming distance, ue and xe

denote the input and output word for the encoder states
respectively, and ur and xr denote the input and output word
for the receiver states. The probabilities p(i→ j) are 1/2 for
rate-1/n codes (more generally 2−k for rate-k/n codes).

The transfer function T (W, I) is

T (W, I) = ps{SGGSGB(I − SBB)−1SBG}1, (41)

where ps = [ 1
Ns

1
Ns

· · · 1
Ns

] is the marginal probability distri-
bution of the encoder states and 1 = [11 · · · 1]T . The BER
bound is computed as

BER ≤ 1
2
· 1
k
· ∂T (W, I)

∂I

∣∣∣∣∣
W=α,I=1

. (42)

B. Transfer Function Bound Over the BAC

For the BAC, using a variation of the Bhattacharyya bound-
ing technique [15], the sum of the error probabilities of
transmitting either sequence and decoding the other can be

upper bounded by:

P
(
X → X̂

)
+ P

(
X̂ → X

)
(43)

=
∑
Y

min
{
P (Y |X) , P

(
Y |X̂

)}
(44)

≤
∑
Y

√
P
(
Y |X̂

)
P (Y |X) (45)

=
∏

i

∑
yi

√
P (yi|x̂i)P (yi|xi) (46)

=
∏

i

g(i) (47)

= (
√
α(1 − β) +

√
β(1 − α))dH(X,X̂), (48)

where

g(i) =

{
1 xi = x̂i√
α(1 − β) +

√
(1 − α)β xi = x̂i

. (49)

Replacing the branch label of Eq. (40) by

p(i→ j)W dH(xe,xr)IdH(ue,ur), (50)

the BER is upper bounded by

BER ≤ 1
2
· 1
k
· ∂T (W, I)

∂I

∣∣∣∣∣
W=

√
α(1−β)+

√
β(1−α),I=1

. (51)

VI. PERFORMANCE RESULTS

We have tested NLTC performance over the uncoordinated
OR-MAC and CI-MAC with single-user decoding for different
numbers of users varying from 6 to 1500.

A. NLTC on the OR-MAC

Fig. 6 shows the BER (obtained by C++ simulation) of three
64-state NLTC codes designed to work in a 6-user OR-MAC,
along with their transfer function bounds computed using (42).
The codes are a rate-1/17 NLTC code with p = 2/17, a
rate-1/18 NLTC code with p = 1/8 and a rate-1/20 NLTC
code with p = 1/8. The exact specification of all the codes
presented in this paper can be found in [16].

The ones densities of p = 1/8 and p = 2/17 are close
to 0.1079, the optimal density for a 6-user OR-MAC with
single-user decoding (using (17) with δ = 0.5040 which
maximizes (8) for six users). Dark circles show the BER at the
values of α produced by the 6-user OR-MAC with single-user
decoding. The sum-rates achieved are RSUD

6 = 6/17 ≈ 0.353,
RSUD

6 = 1/3 ≈ 0.333 and RSUD
6 = 0.3 respectively. Note

that these sum rates are significantly lower that the theoretical
sum rate of ln 2 = 0.6931 just as trellis codes fall short
of approaching capacity on the AWGN channel. In [5] we
demonstrate nonlinear turbo codes that achieve a sum rate of
0.6 on the OR-MAC with BER below 10−6 for up to 24 users.

The 3 sum-rate points discussed above have been simu-
lated both with six users employing IDMA with single-user
decoding and with a single user communicating over the Z-
channel with the corresponding value of α . Both cases gave
the same bit error rates (within the expected variation due to
Monte Carlo simulation with 100 errors), which corroborates
the theory.
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Fig. 6. Bit Error Rate (BER) of three 64-state NLTC codes versus the Z-
Channel crossover probability (α). Dashed lines show the BER bounds for
each rate using (42). For all three rates C++ simulation results are shown.
Additionally, FPGA simulation results are shown for the rate-1/20 code. Dark
circles show the BER at the values of α produced by the 6-user OR-MAC
with single-user decoding.

The transfer function bounds are very close to the simulated
performance in all three cases. The transfer function bound
is an upper bound on the expectation assuming maximum
likelihood decoding, and it is not unexpected for a finite-
traceback-depth simulation to be slightly above the bound (as
in the case of the rate-1/17 code). Our decoding depth is 35 for
this simulation. Also, some variation around the expectation
is to be expected.

In order to prove that NLTC codes are feasible today for
high speeds, a hardware demonstration was built using fiber
optics and Xilinx Virtex2-Pro 2V20 FPGAs. The implemen-
tation had an equivalent gate count of 360K gates and is able
to encode and decode the rate-1/20 NLTC code concatenated
with a Reed-Solomon block code at an information rate of
70Mbps. A detailed description of the FPGA implementation
can be found in [17], [18].

Results for the rate-1/20 NLTC code obtained in the FPGA
testbed are also shown in Fig. 6. Due to design constraints,
the hardware Viterbi decoder has a maximum path distance
metric of 20, and hence 1-to-0 transitions are given a distance
of 20 instead of ∞. This difference causes the deviation from
the theoretical bound at low bit error rates.

Section IV suggested that for the OR-MAC, a 64-state
NLTC has enough states to perform well for even a large
number of users. Table II shows BERs for 6 to 1500 users.
The performance is practically the same for all the cases
corroborating the analysis of Section IV.

B. Concatenation of NLTC Code With a Block Code

A good solution for applications that require a very low
BER is to include as an outer code a high-rate block code
that can correct a small number of symbol errors, dramatically
lowering the BER.

We implemented concatenation of the rate-1/20 NLTC code
with a (255-byte, 247-byte) Reed-Solomon code for the 6-user
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Fig. 7. BER of 64-state NLTC codes vs. α over the BAC. The asterisk
shows the code performance over the 6-user CI-MAC.

TABLE II

PERFORMANCE OF 64-STATE NLTCS FOR DIFFERENT NUMBERS OF USERS

(N) AND A SUM-RATERSUD
N = 0.3, ON THE OR-MAC.

N n0 RN α BER
6 20 0.3 0.439 1.0214 × 10−5

100 344 0.291 0.4777 1.1046 × 10−5

300 1000 0.3 0.4901 1.2157 × 10−5

900 3000 0.3 0.4906 1.2403 × 10−5

1500 5000 0.3 0.4907 1.2508 × 10−5

OR-MAC scenario. The rate of this code is (247/255)(1/20)
= 0.0484 which gives a sum-rate of approximately 0.2906.
The observed BER was 2.48 × 10−10. Although simulations
with the concatenated Reed-Solomon code for more than 6
users have not been performed, it can be inferred from results
of Section VI-A that the system proposed in this work can
achieve almost 30% of full capacity, with a BER on the order
of 10−10 even for a large number of users.

C. NLTC for 6-User Coherent Interference MAC

Fig. 7 shows the performance of a 64-state NLTC code on
the CI-MAC with single-user decoding. This rate-1/30 NLTC
gives a sum-rate of 0.2 for six users. It has a ones density
p = 1/15. It was designed for the 6-user CI-MAC, which
with single-user decoding has a maximum theoretical sum-
rate of RSUD

6 = 0.48 with a ones density of p = 0.059.
Fig. 7 also shows the analytical bound computed using (51).
This analytical bound is not as tight as for the Z-Channel since
(48) is not as tight as (37), which was used for the Z channel.

Large numbers of users can also be handled on the CI-
MAC. However, more NLTC states are required than for the
OR-MAC. Table III shows the performance of 128-state NLTC
codes for a sum-rate of 0.2, and different numbers of users.

VII. CONCLUSIONS

This paper considers binary-input binary-output multiple
access channels (MACs), focusing on the OR-MAC in which
users’ binary transmissions are combined using the logical OR
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TABLE III

PERFORMANCE OF 128-STATE NLTC FOR DIFFERENT NUMBERS OF USERS

N AND A SUM-RATERN = 0.2, ON THE CI-MAC.

N RN α β BER
6 0.2 0.2832 0.0622 1.46 × 10−5

32 0.2 0.3107 0.0664 2.71 × 10−5

104 0.2 0.3147 0.0677 6.35 × 10−5

operator. With the OR-MAC, the sum of all the user rates can
be 1 with coordination such as time division or joint decoding,
but this paper is interested in the uncoordinated scenario in
which there is no time division and each receiver employs
single-user decoding (SUD).

Specifically, this paper designs trellis codes for use in an
interleave(r)-division multiple access (IDMA) scheme [3] to
provide uncoordinated use of the OR-MAC by numerous
users. Good performance in this scenario hinges on each
user transmitting with a ones density that is significantly less
than 50%. The needed low ones densities require nonlinear
trellis codes. This paper provides design metrics and design
techniques that deliver the needed trellis codes both for
the OR-MAC and for a more general OR-with-Interference
(ORI) MAC. Specific code designs and simulation results are
provided.

A new transfer function union bound provides extremely
accurate BER performance for the new nonlinear trellis codes
on the Z-channel induced by the OR-MAC. A new trans-
fer function union bound using the Bhattacharyya bounding
technique is also provided for the general binary asymmetric
channels such as those induced by the ORI-MAC. Though not
as accurate as the Z-channel characterization, this bound still
gives a good BER characterization for the ORI-MAC.

Under SUD, the highest possible sum rate for the OR-MAC
is ln 2 which is about 70% of the sum rate with time division.
The new nonlinear trellis codes can provide 30% of the time-
division OR-MAC sum rate while delivering a BER on the
order of 10−5. The concatenation of these codes with a high-
rate Reed Solomon achieves 29% of the time-division OR-
MAC sum rate while delivering a BER on the order of 10−10.
In other work [5] we have designed nonlinear turbo codes that
achieve 60% of the time-division OR-MAC sum rate while
delivering a BER on the order of 10−6.

Still, the nonlinear trellis codes of this paper provide the
option of sacrificing a portion of sum rate in order to permit
a system to be completely uncoordinated and to use low-
complexity Viterbi decoding. This uncoordinated approach is
especially attractive in environments with a large number of
users, and we provided simulation results showing that the
IDMA-NLTC approach can support as many as 1500 users on
the OR-MAC while still achieving 30% of the time-division
OR-MAC sum rate and delivering a BER on the order of 10−5.

The OR-MAC can be used as a simple communication
model that describes the multiple-user local area network op-
tical channel with non-coherent combining. We have built a 6-
user optical system transmitting data on a single wavelength to
demonstrate the IDMA-NLTC approach in an optical setting.
This system employs fiber optics and Xilinx Virtex2-Pro 2V20
FPGAs. The implementation has an equivalent gate count of

360K gates and is able to encode and decode the rate-1/20
NLTC code concatenated with a Reed-Solomon block code at
an information rate of 70Mbps. A detailed description of the
FPGA implementation can be found in [17], [18].
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