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Abstract—It is well known in information theory that super-
position coding is an optimal technique for providing a single
transmission that both provides a high data rate when channel
conditions are good and still provides some information when
the channel conditions are poor (perhaps due to jamming).
Typical superposition coding schemes for the additive white
Gaussian noise channel combine signals after the modulator.
For modulation schemes such as GMSK, this standard form
of (additive) superposition is not acceptable because it does
not maintain a constant envelope. This paper introduces a
new approach in which newly designed nonlinear codes allow
superposition to take place before the GMSK modulation. These
codes are demonstrated to operate very close to the boundary of
the achievable rate region for the broadcast binary symmetric
channel which would result from GMSK transmission with
hard decoding. The results also suggest that similarly optimal
performance might be obtainable in the soft decoding regime.

I. INTRODUCTION
In tactical networks, the signal-to-noise ratio (SNR) of

the communication channel is frequently unknown (due to
a dynamic environment, adversarial jamming, etc.). However,
even if the channel quality is poor, it is desirable to maintain
some measure of connectivity so that users have access to
critical information. Moreover, in cases where the channel
quality is relatively good, it is also desirable for the receiver
to have access to additional, non-critical information. Thus,
the challenge is to design a transmission scheme in which a
receiver can decode a stream of critical data in all anticipated
channel conditions, and can also recover an additional stream
of non-critical data when the channel quality is relatively good.
One way to approach this problem is to consider the

two-receiver1 degraded broadcast channel (DBC) in which a
transmitter broadcasts a common transmission to two different
receivers. In the case of the DBC, it is assumed that the signal
received at the second receiver is a degraded (i.e., noisier)
version of the signal received at the first receiver. Typically,
two independent data streams at rates R1 and R2 respectively
are encoded together and broadcast to the receivers. The
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1We restrict our discussion to the two-receiver degraded broadcast channel

in this paper, however the results can be extended to more users.

first receiver is able to decode both data streams (for a
total information rate R1 +R2), while the second (degraded)
receiver is only able to decode the second data stream at rate
R2. By encoding critical information into the second data
stream at rate R2 and non-critical information into the first data
stream at rate R1, we can ensure that a receiver has access to
the critical information when the channel quality is poor, and
that receivers can recover additional, non-critical information
at rate R1 when the channel quality is sufficiently good.

For many DBCs (in particular the AWGN-DBC), an optimal
technique for achieving any point in the capacity region is
called superposition coding. In superposition coding, the two
data streams are independently encoded and modulated, and
the modulated signals are scaled and added together. Receivers
decode the streams through successive decoding. For some
modulation schemes, such as m-ary QAM, this approach
is perfectly acceptable. However, many tactical waveforms
employ constant-envelope modulation (e.g., GMSK), and this
additive superposition of modulated signals is unacceptable
because it destroys the constant-envelope characteristics of the
modulation scheme.

In this paper, we present a coding scheme (based on non-
linear codes) which circumvents this problem by performing
the superposition prior to the modulation. Thus, our encoding
scheme supports the independent encoding of two distinct data
streams (which are recoverable at different channel qualities),
while the modulation and spectral characteristics of the trans-
mitted signal remain unchanged.

This paper is organized as follows. In Section II-A, we in-
troduce the fundamentals of nonlinear turbo-codes. In Section
II-B, we formally define the DBC and give capacity results for
the special case of the binary-symmetric DBC. A systematic
technique for designing nonlinear turbo-codes is described in
Section III. Section IV presents the architecture for our system
and also provides simulation results, demonstrating that our
scheme is nearly optimal. Section V delivers the conclusions
and discusses directions for future work.
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Fig. 1. Block diagram representation of a nonlinear turbo-encoder.

II. BACKGROUND

In this section, we provide the background material required
to describe our superposition coding approach. In the first
subsection, we briefly review the concepts behind nonlinear
turbo-codes, and in the second subsection we formally define
the degraded broadcast channel.

A. Fundamentals of Nonlinear Turbo-Codes

Nonlinear turbo-codes, similar to their linear counterparts,
consist of constituent encoders connected via interleavers. The
key difference between nonlinear and linear turbo-codes is
the following: In a linear turbo code, the output bits from
a consituent encoder are linear combinations of the encoder
state and the input bits. In a nonlinear turbo-code, the output
bits from a constituent encoder correspond to the output of a
lookup-table addressed by the encoder state and the input bits.
See Fig. 1 for a block diagram of a nonlinear turbo-code.
The critical advantage afforded by nonlinear turbo-codes is

their capability of producing codewords with ones densities
other than 50%. As we will demonstrate in the remainder of
this paper, the ability to design a nonlinear turbo-code with
a desired ones density allows one to independently encode
different data streams, XOR the codewords together, send the
modulated sum over a channel, and then successively decode
to recover one or both of the streams depending on channel
quality. As we noted in Section I, this strategy preserves
the constellation of the original modulation scheme, which
is a requirement for constant-envelope modulations such as
GMSK.
A systematic method for designing nonlinear turbo-codes is

given in Section III.

B. Introduction to the DBC

In this section, we define the Degraded Broadcast Chan-
nel (DBC) and introduce the Broadcast Binary Symmetric
Channel (BBSC), which will be of particular interest to us
in Section IV.
Definition 1 (e.g., [1]): A broadcast channel consists of

an input alphabet X and two output alphabets Y1 and Y2 and a

Fig. 2. Channel model for two-user broadcast binary-symmetric channel.

Fig. 3. Encoder scheme for two-user broadcast binary-symmetric channel.

probability transition function p(y1, y2|x). The broadcast chan-
nel is said to be stochastically degraded (or just degraded)
if there exists a distribution p′(y2|y1) such that

p(y2|x) =
∑

y1

p(y1|x)p
′(y2|y1).

In this paper, we will restrict our attention to memoryless
broadcast channels, i.e. p(yn1 , yn2 |xn) =

∏n

i=1
p(y1i, y2i, xi).

Of particular interest to us is the BBSC, which is suf-
ficient to model any binary modulation scheme in which
the demodulator provides hard decisions to the decoder. The
two-user BBSC consists of two binary symmetric component
channels, one with transition probability α and the other with
transition probability β, as shown in Fig. 2. Without loss of
generality, we assume α < β. A simple and optimal encoding
scheme is an independent-encoding approach in which binary
codewords from independent codebooks are added together
using the XOR operation [2]–[7]. We refer to this scheme as
superposition coding, and the encoder structure is shown in
Fig. 3.
The capacity region of a degraded broadcast channel was

established by Cover [1], Bergmans [8] and Gallager [9].
Cover [10] introduced an independent-encoding scheme for
two-user broadcast channels. This scheme is known to achieve
the boundary of the capacity region for the broadcast binary-
symmetric channel (BBSC) and is investigated in [2] [3] [4]
[5]. The class of channels for which independent encoding is
optimal was recently extended in [6], [7].
The capacity region for a BBSC is given by

R1 ≤ h(α ∗ ρ)− h(α)

R2 ≤ 1− h(β ∗ ρ),
(1)
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where h(·) is the binary entropy function, ρ is the ones density
of X1, X2 has 50% ones density and the operation ∗ is defined
by

a ∗ b = a(1− b) + b(1− a), 0 < a, b < 1. (2)

In order to use a superposition coding scheme with R2 > 0,
the codes of the two users cannot both have ones densities of
50%. This precludes the exclusive use of linear codes. Using
the techniques described in Section III, we design a family
of nonlinear turbo codes that can provide a controlled ones
density. Superposition of one of our nonlinear codes with a
linear turbo code produces an overall transmission with the
potential to approach an optimal point the capacity region of
the BBSC.

III. A DESIGN SCHEME FOR NONLINEAR TURBO CODES
A nonlinear turbo code is defined by look-up tables that

map state and input bits to output bits in the trellises of
the constituent codes. By controlling the number of ones in
the look-up table, any desired ones density can be closely
approximated. In general, a brute-force search to find the
look-up table yielding the largest effective free distance is
impractical because the complexity grows exponentially with
the number of states.
In this section, we provide a systematic method for design-

ing nonlinear turbo codes with a complexity that does not grow
exponentially in the number of states. Therefore, our approach
can be used to design codes employing trellises with many
states. We would like to remark that although our technique is
described in the context of binary turbo codes that use identical
constituent encoders, it immediately extends to more general
cases.

A. State sub-tables, branch distance, and merge distance
Throughout this section, we consider a trellis corresponding

to a constituent code of the turbo code. We assume that the
trellis has � states and each trellis transition corresponds to k
input bits and n output bits. Using this notation, we define a
state sub-table.
Definition 2: A state sub-table M(s) corresponding to

state s is a 2k-by-n binary matrix describing the mapping
of input-bits to output-bits when the encoder is in state s
as follows. When the encoder is in state s and the input-
bits are b1, . . . , bk, the encoder outputs the n bits in the
row corresponding to the k-tuple b1, . . . , bk. Without loss of
generality, we assume that the rows of M(s) are indexed by
the binary k-tuples in lexicographical order.
We also define the minimum branch-distance and the min-

imum merge-distance as follows:
Definition 3: The branch-distance of state s is the mini-

mum distance between the rows of M(s), the branch-distance
of a trellis is the minimum of the state branch-distances. The
merge-distance of a state and the merge-distance of a trellis
are defined analogously as the minimum distances between
the n-bit outputs of trellis transitions that merge into a state.
As discussed above, designing the constituent codes for a

nonlinear turbo code includes defining a look-up table that

maps state and input bits to output bits in a trellis. A look-
up table that defines a constituent code with a large effective
free distance is preferable to one that defines a constituent
code with a small effective free distance. A good heuristic for
determining whether a look-up table will produce a code with
a large effective free distance is to analyze the distances at the
branches and merges of the trellis. Our approach is based on
the following key observation:
Observation 1: If Π1 and Π2 are 2k × 2k and n × n per-

mutation matrices respectively, then a state sub-tableM(s′) =
Π1M(s)Π2 has the same branch distance properties as M(s)
in the sense that the set of distances between outputs from
state s is the same as the set of distances between outputs
from state s′.

B. Description of Design Scheme
With this observation in mind, we now describe our design

approach:
1) If we require a constituent code with ones density u1,
choose ν to be the nearest integer to u1 · n · 2k.

2) Select parameters db and dm, where db is the desired
branch-distance of the trellis and dm is the desired
merge-distance of the trellis.

3) Create a state sub-tableM(1) with exactly ν ones. This
ensures that the average ones density of the output bits
from state 1 is ν

n·2k
which is approximately u1. The

state sub-table is designed by carefully placing the ones
so that the branch-distance is greater than db. If this is
not possible, then return to step 2 and select a smaller
db. This step is the main source of complexity. If n and
k are sufficiently small, a good M(1) can be found via
a brute-force search.

4) For each other state s ∈ {2, . . . , �}, choose random
permutation matrices Π1 and Π2 and set M(s) =
Π1M(1)Π2. By Observation 1, this ensures that the
trellis has branch-distance greater than db.

5) Check the resulting merge-distance of the trellis. If it is
less than dm, return to step 4. If a maximum number of
iterations is reached, return to step 2 and select a smaller
dm.

6) Check the effective free distance of the obtained code.
Steps 3-5 are generally repeated several times to produce
several candidate codes. Usually, we select the code with
the largest effective free distance.

With this scheme, we can construct nonlinear turbo codes
without an exhaustive computer search over all lookup tables
with the desired ones density. Since we only manually design
a sub-table for one state, the complexity does not grow
exponentially in the number of states. Through a series of
many experiments, we have observed that this procedure is
effective for designing nonlinear turbo codes that approach
capacity in channels demanding nonuniform ones densities. In
the remainder of this paper, we use this technique to design
nonlinear turbo codes for BBSCs.
Further details on nonlinear turbo code design, along with

applications to a variety of channels, can be found online [11].
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IV. SYSTEM ARCHITECTURE AND RESULTS
In this section we apply the idea of superposition coding

for the BBSC to develop a coding architecture that supports
the encoding of two independent data streams at different
priorities. We design the encoder so that both streams can be
decoded when channel quality is good, and the high-priority
data stream can be decoded even when the channel quality is
poor. Furthermore, this encoding scheme preserves the original
modulated constellation and is therefore suitable for constant-
envelope modulations, such as GMSK. Simulation results are
given to demonstrate the near optimality of our codes.
Our approach can be extended to encode more than two

independent data streams at different priorities, but this more
general case is not discussed in order to simplify the presen-
tation.

A. System Architecture
The architecture for our coding system is identical, in

principle, to that for the BBSC. In particular, we consider
two independent data streams which we refer to as the
High-Priority Data (HPD) and the Low-Priority Data (LPD).
We design our encoders so that the HPD can be recovered
whenever Es/N0 is greater than some threshold η1 and the
LPD can be recovered whenever Es/N0 is greater than η2
(we assume η1 < η2). If the rate of the LPD is R1 and the
rate of the HPD is R2, then the critical design parameter is ρ,
the ones density of the codewords for the LPD encoder. This
density determines the Es/N0 thresholds η1 and η2 via the
tradeoff described by (1). As an example, the evolution of the
thresholds η1 and η2 vs. the ones density ρ is shown in Fig. 4
for (R1, R2) = (0.1, 0.408).

Fig. 4. The relationship between η1 and η2 versus ρ for choice of rates
R1 = 0.1 and R2 = 0.408.

The encoder/modulator implemented in this work consists
of one linear and one nonlinear turbo-encoder joined via the
XOR operation. The XOR of the outputs from the encoders are

Fig. 5. Superposition Encoder/Modulator Architecture.

Fig. 6. Superposition Demodulator/Decoder Architecture.

fed into a GMSK modulator with modulation index h = 1/2,
BT = 0.3, and differential precoding. The encoder/modulator
architecture is shown in Fig. 5.
The demodulator/decoder consists of an optimal hard-

decision GMSK demodulator followed by a linear turbo-
decoder which, in turn, is successively followed by the non-
linear turbo-decoder. The demodulator/decoder architecture is
shown in Fig. 6.

B. Simulation Results

In this section, we present simulation results for two distinct
choices of code rates. Each case requires a nonlinear turbo-
code with rate R1 and ones density ρ. These codes were
designed using the techniques described in Section III. All
simulations were performed using an AWGN channel.

Fig. 7. BER Curves for the HPD and LPD codes at rates R2 = 1/15 and
R1 = 1/20 respectively versus Es/N0. Theoretical capacities (η1 and η2)
for the respective codes are given by vertical dashed lines.
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Case 1: R1 = 1/20, R2 = 1/15, ρ = 0.05: In this case,
we used a rate-1/20 nonlinear turbo-code with ρ = 0.05 and
blocklength 80,000 for the LPD, and a rate-1/15 linear turbo
code with blocklength 7,500 for the HPD. In both cases, we
also designed extended spread interleavers for each turbo code
[12]. In Fig. 7 we show the BER curves resulting from sim-
ulating our codes using GMSK over an AWGN channel. For
a BER of 10−4, the HPD and LPD codes are approximately
1.8 dB and 1.0 dB away from capacity respectively. From
this figure we see three distinct operating regions in which
none, the HPD only, or the HPD and LPD data streams can
be reliably decoded.
Case 2: R1 = 0.3, R2 = 0.2, ρ = 0.125: In this case,

we used a rate-0.3 nonlinear turbo-code with ρ = 0.125 and
blocklength 10,000 for the LPD, and a rate-0.2 linear turbo
code with blocklength 2,500 for the HPD. In both cases, we
also designed extended spread interleavers for each turbo code.
In Fig. 8 we show the BER curves resulting from simulating
our codes using GMSK over an AWGN channel. For a BER
of 10−4, the HPD and LPD codes are approximately 2.1 dB
and 1.5 dB away from capacity respectively. The slight loss
in performance relative to Case 1 can be explained by the
significantly shorter blocklengths and higher code rates which
are used.

Fig. 8. BER Curves for the HPD and LPD codes at rates R2 = 1/5 and
R1 = 3/10 respectively versus Es/N0. Theoretical capacities (η1 and η2)
for the respective codes are given by vertical dashed lines.

C. Remarks
Our simulations and capacity calculations assumed hard-

decisions from the demodulator. It is also possible to design
decoders which take advantage of soft information provided
by, for example, a soft-output Viterbi algorithm such as
proposed in [13]. Based on our demonstrations employing
hard-decisions, our results suggest that similarly optimal per-
formance might be achieved in the soft-decoding regime.

V. CONCLUSIONS
For many channels, superposition coding is an optimal

technique for constructing a single transmission that provides a
high data rate when channel quality is good and still provides
some information when the channel quality is poor (due to
jamming, shadowing, etc.).
Typical superposition coding schemes for the additive white

Gaussian noise channel combine signals after the modulator.
For constant-envelope modulation schemes such as GMSK,
which are common in tactical waveforms, this standard form
of additive superposition is unacceptable because it does
not preserve the original modulated constellation. This paper
introduced a new approach, in which newly designed nonlinear
turbo-codes are superposed prior to the modulation.
These codes were demonstrated to operate very close to

the boundary of the achievable rate region for the broadcast
binary symmetric channel (which results from a binary mod-
ulation scheme coupled with a hard-decision demodulator).
Our results also suggest that similarly optimal performance
might be obtainable in the soft decoding regime, which is one
possible direction for further work.
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