
1

Nonlinear Turbo Codes For Higher-Order
Modulations

Miguel Griot, Andres I. Vila Casado and Richard Wesel
Dept. of Electrical Engineering, University of California

Los Angeles, CA 90095
{mgriot,avila,wesel}@ee.ucla.edu

Abstract—

In 1982 Ungerboeck presented a set-partitioning design
technique for trellis coded modulation (TCM). Although
this technique directly assigns constellation points to the
branches of the trellis, it has been shown that the same
optimal code can be accomplished by a convolutional code
with a mapper that assigns a series of coded bits to a
constellation point. This notion has remained with the
appearance of turbo codes. Therefore, parallel concate-
nated trellis coded modulation (PC-TCM) has been tradi-
tionally designed using parallel concatenated convolutional
codes with a bits-to-symbol mapper. This paper shows that
for higher-order modulations using linear codes is too re-
strictive. Parallel Concatenated Nonlinear Trellis Coded
Modulation (PC-NLTCM) which directly assigns constel-
lation points as output-labels to the branches of the trel-
lis can outperform PC-TCM. Simulation results are shown
for a 2 bits/s/Hz 16-state nonlinear turbo code with 8PSK.
This code is less than 0.5 dB away from capacity at a BER
= 10−5 with an interleaver length of 10000 bits, and outper-
forms previous published linear turbo code by around 0.2
dB. To facilitate analysis of the new codes, an extension of
Benedetto’s uniform interleaver analysis to handle nonlinear
constituent codes is presented.

Trellis-Coded Modulation (TCM) was proposed by
Ungerboeck in 1982 [1]. Ungerboeck presented a set-
partitioning design technique which directly assigns con-
stellation points to the branches of the trellis. However, it
has been shown that the same optimal code can be accom-
plished by a linear convolutional code with a mapper that
assigns a series of coded bits to a constellation point. This
notion has remained with the appearance of turbo codes
and Parallel Concatenated Trellis Coded Modulation (PC-
TCM) has been traditionally designed using parallel con-
catenated convolutional codes with a bits-to-symbol map-
per (See among others [2][3][4]).

However, this paper shows that in the case of TCM
for higher-order modulations the use of parallel concate-
nated linear convolutional codes and a mapper is a restric-
tion that may produce suboptimal codes. Using Parallel
Concatenated Nonlinear Trellis Coded Modulation (PC-
NLTCM) which directly assigns constellation points to the
output branches of the constituent codes can improve the
performance. As an example, simulation results are shown
for a 2 bits/s/Hz 16-state nonlinear turbo code with 8PSK.
This code is less than 0.5 dB away from capacity at a BER
= 10−5 with an interleaver length of 10000 bits, and out-
performs previous published linear turbo code by around
0.2 dB in the waterfall region. Moreover, this improvement

This work was supported by the Defence Advanced Research
Project Agency under SPAWAR Systems Center San Diego Grant
N66001-02-1-8938.

in performance comes at no cost, as the decoding algorithm
for linear or nonlinear constituent trellis codes is the same.

To facilitate analysis of the new codes, an extension of
Benedetto’s uniform interleaver analysis for nonlinear con-
stituent codes is presented. A previous extension for non-
linear codes and bit-interleaving has been previously pre-
sented in [5]. This paper presents an extension of symbol-
interleaving. It is shown that the same design criteria
for linear turbo codes can be applied to nonlinear turbo
codes. Namely, we define effective free distance for non-
linear codes, and show that this is an important metric
to maximize when designing constituent codes for a PC-
NLTCM.

This paper is organized as follows. Section I shows
the structure of the parallel concatenated nonlinear trel-
lis structure. Section II shows an extension of Benedetto’s
uniform interleaver analysis to bound the bit-error rate of
parallel concatenated nonlinear codes. Section III shows
a design example for a 2-bits/s/Hz 16-state PC-NLTCM
with 8PSK and shows it outperforms previously proposed
PC-TCM under the same conditions. Section IV delivers
the conclusions.

I. Parallel concatenated nonlinear codes

The structure of the PC-NLTC encoder has been pre-
sented in [5] and is shown in Fig. 1. It is in essence the
well-known turbo-code structure first proposed in [6] for
systematic linear encoders, except that the output is as-
signed directly to each branch of the trellis by a look-up ta-
ble rather than a linear function. A similar replacement of
a linear operation by a look-up table has been successfully
proposed for the decision feedback equalizer in presence for
use in channels with trailing nonlinear inter-symbol inter-
ference [7]. The encoder consists of two constituent non-
linear trellis encoders (labeled NLTC) linked by an inter-
leaver (labeled Π). Each trellis encoder uses k0 input bits
per trellis section. The NLTC includes a 2ν-state trellis
structure (block S), and a look-up table (block LUT). The
block S stores the current trellis state, while the look-up
table stores the output for each branch of the trellis. Each
output consists of n0 constellation points, resulting in a to-
tal rate of k0/(2n0) bits/symbol. Also, for the application
considered in this work the trellis codes are non-systematic,
and k0 > 1, in which case symbol interleaving [4] will be
used. We denote the input block length in bits as K, and
the interleaver length in symbols as k = K/k0. Also, we
denote the symbol alphabet size as q = 2k0 .

NLTC

S

LUT
0k

0nνΠ
1

2

Fig. 1. PC-NLTC structure.

II. Error Rate Bound of Parallel Concatenated
Nonlinear Codes

Benedetto and Montorsi proposed a method to evalu-
ate the bit error probability of a parallel concatenated
coding scheme averaged over all interleavers of a certain
length in [8]. This upper bound is known as the uniform
interleaver bound, and assumes the use of a Maximum-
Likelihood (ML) decoder. However, this bound cannot be
applied to PC-NLTCs because it assumes a parallel con-
catenation of linear codes. Hence, an upper bound to
the BER is found assuming the all-zero word is transmit-
ted. For nonlinear codes all data-words need to be consid-
ered when finding the upper-bound. Thus, an extension
of the bounding technique proposed in [8] for a parallel
concatenation of nonlinear codes is required. In order to
do that, a new probabilistic interleaver will be defined as
interleaver, which produces similar equations to the linear
case.

Since the codes used in this work are non-systematic,
the BER upper bounding technique will be derived assum-
ing non-systematic constituent encoders. Nevertheless, it
should be clear how to modify the equations in the case
of systematic nonlinear codes. Finally, the analysis con-
templates constituent encoders with more than one input
bit per trellis section, i.e. k0 ≥ 1. In that case, a symbol-
interleaver [4] is assumed, and the symbol error rate (SER),
i.e. the average number of symbols of k0 bits that are in
error, will be computed. Note that for k0 = 1 the symbol
error rate is the bit error rate.

A. Uniform interleaver for nonlinear codes

In this section we extend the uniform interleaver bound-
ing technique in [8] to nonlinear constituent codes and
symbol-interleaving. The main difference is that for non-
linear codes we can no longer assume that the all-zero code-
word is transmitted. We propose a new definition of uni-
form interleaver that extends the results, conclusions and
design criteria drawn in [8] to nonlinear constituent codes.

Definition 1: A Uniform Interleaver of length k (the
number of input symbols) for nonlinear codes is a proba-
bilistic device defined as follows: There are two operations
considered in the interleaver. First, the uniform interleaver
selects any of the k! possible permutations of the symbol
positions with equal probability. Second, for each position,
the value of the q-ary symbol can be changed to any other
q-ary symbol with equal probability.

The reason for this extension is that for nonlinear codes
we need to consider all the possible input pairs. The
uniform interleaver as defined in [8] would maintain the
Hamming weight of both words and their Hamming dis-
tance, which would make the equations more complicated
and would make it harder to draw conclusions from them
(see [5]). With this new definition, any word can be
mapped to any other word, no matter their Hamming
weight. Thus, the only thing preserved after the inter-
leaver is the symbol-wise Hamming distance between any
two input pairs. Therefore, any pair of input words U1 and
Ũ1 such that dH(U, Ũ) = i, can be mapped by the uni-
form interleaver to any other pair of input words satisfying
dH(U2, Ũ2) = i with probability:

P
(
(U1, U2) → (Π(U1), Π(U2))

∣∣∣
dH(U1, U2) = dH(Π(U1), Π(U2)) = i

)
= 1

qk·(q−1)i·(k
i)

.
(1)

Consider any two output codewords of length n, X =
{x1, · · · , xn} and X̃ = {x̃1, · · · , x̃n}. For the AWGN case,
the pairwise probability of error can be upper bounded by:

Pe(X → X̃) = Q

(√
d2

E(X, X̂)
Es

2N0

)
≤ 1

2
e−

Es
4N0

d2
E(X,X̂),

(2)
where Es/N0 is the signal-to-noise ratio and d2

E(X, X̂) is
the squared Euclidean distance assuming unitary power
transmission. Although this paper focuses on the AWGN
channel the technique presented in this work is valid for
any channel, provided an additive distance can be defined
for that channel and the pair-wise error probability can be
upper-bounded by:

P (X → X̃) ≤ νλd(X,X̃) (3)

where the directional distance metric d(X, X̃), and the pa-
rameters ν and λ depend on the channel. Note that (2) is
equal to (3) when d(·) = d2

E(·), ν = 1/2 and λ = e−
Es
4N0 .

Define the Input-Output Distance Enumerating Function
(IODEF) of a given (n, k) code C as

AC(I, D) =
∑

i,d

AC
i,dI

iDd, (4)

where AC
i,d is the number data-word pairs (U, Û) that sat-

isfy dH(U, Û) = i , and the directional distance between
the corresponding codewords d(X, X̃) = d. I and D are
placeholders.

Also define the Conditional IODEF (CIODEF) as:

AC
i (D) =

∑

d

AC
i,dD

d. (5)

Inserting Eq. (5) in Eq. (4), the expression for the IODEF
can be rewritten as:

AC(I,D) =
∑

i

AC
i (D)Ii. (6)

Denote as U all the possible qk input words. Then the
SER can be upper bounded by the union bound:

SER ≤ 1
k

∑

Ui 6=Uj∈U
dH(Ui, Uj)P (Xi → Xj) (7)

Using (3) then:

SER ≤ ν

k

∑

Ui 6=Uj∈U
dH(Ui, Uj)λd(Xi→Xj). (8)

Using the definition of IODEF in (5) then:

SER ≤ ν

k
(1/q)k

∑

i,d

iAC
i,dλ

d =
ν

k
(1/q)k ∂AC(I, D)

∂I

∣∣∣∣∣
D=λ,I=1

.

(9)
Using (3) and (4) the symbol error rate (SER) or bit error
rate in case k0 = 1 can be upper bounded by:

SER ≤ ν

k
· (1/q)k ∂AC(I, D)

∂I

∣∣∣∣∣
D=λ,I=1

. (10)

B. Parallel concatenation of block codes

Denote CP as the (n1 + n2, k) block code resulting from
the parallel concatenation of two codes, an (n1, k) block
code C1 and an (n2, k) block code C2. We will assume
an interleaver of length k (in q-ary symbols), equal to the
input word length, in order to simplify the analysis (An ex-
tension easily can be made for the case when l consecutive
codewords of the constituent codes are used for one opera-
tion of the interleaver, as explained in [8]). The directional
distance is additive, so the directional distance of the con-
catenated codeword is the sum of the directional distances
between the corresponding constituent codewords.

Hence, the conditional IODEF of CP can be expressed
(using (3)) as:

ACP
i (D) =

AC1
i (D) ·AC2

i (D)
qk · (q − 1)i · (k

i

) . (11)

Notice that the uniform interleaver as defined in Sec.
II-A can map any input word to any other input word.
Now, plugging (11) into (10), it can be observed that there
are two terms of the form (1/q)k, corresponding to the
probability of the correct input word and the probability
of that input word being mapped to any other word after
the interleaver. Define the Weighted Input-Output Distance
Enumerating Function (WIODEF) of a given (n, k) code C
as

ÃC(I,D) =
∑

i,d

ÃC
i,dI

iDd, (12)

where ÃC
i,d = AC

i,d/qk. Hence, the symbol error probability
can be upper bounded by:

SER ≤ ν

k

∂ÃC(I, D)
∂I

∣∣∣∣∣
D=λ,I=1

. (13)

Now, using (5) and (12):

ÃCP
i (D) =

ÃC1
i (D) · ÃC2

i (D)
(q − 1)i · (k

i

) . (14)

Note that except for the term 1/qk in Ãi,d, and the term
1/(q− 1)i the equations (12)-(14) for a parallel concatena-
tion of nonlinear codes are the same as for the linear case
[8]. As it turns out, all the conclusions and design crite-
ria derived in [8] apply to nonlinear constituent codes. See
Appendix I for a thorough derivation. In particular, it is
shown that feed-forward encoders are not suitable for par-
allel concatenation, and that recursive convolutional codes
are required. Moreover, an important parameter to maxi-
mize is the effective free distance defined as:

Definition 2: Effective free distance of a constituent
code is the minimum distance in the output between any
two possible input words U and Û with input Hamming
distance dH(U, Û) = 2.

III. Nonlinear Turbo Codes for Higher-Order
Modulations over AWGN

In this section we will show that directly assigning con-
stellation points to the trellis branches of each constituent
code can potentially produce codes that outperform linear
codes with mapping. As an example, we will design a 2-
bits/s/Hz 16-state PC-NLTCM with 8PSK and compare
its performance against the 16-state turbo code presented
in [4]. In order to make a fair comparison, we will use the
same spread-interleaver technique used in that work and
the same interleaver length K = 10000 bits, and there-
fore k = 2500 symbols with k0 = 4. Each output branch
of each constituent encoder consists of one 8PSK constel-
lation point, which produces a code rate of 2 bits/s/Hz.
This is a valid comparison since there hasn’t been any
published work that shows a turbo code with symbol inter-
leaving that outperforms the code presented in [4] under
same conditions. This code has an effective free distance
of deff,free = 1.171573.

We present a 16-state PC-NLTM that has deff,free = 2.
For the design, we make the following observations. Since
k0 = 4, there are 16 branches leaving each state with each
of the 16 possible inputs. It is clear that parallel branches
should be avoided, so the trellis structure is fully connected,
i.e. there is one (and only one) branch connecting each of
the 16 states with each of the 16 states. The design consists
of assigning each branch and input symbol and an 8PSK
constellation point. These assignments are constrained by
the following conditions:
• Branches starting at a same state cannot be produced by
the same input symbol.
• Branches merging to a same state cannot be produced
by the same input symbol. This constraint avoids error
events with input Hamming distance equal to 1 and can be
satisfied by using recursive encoders.

Note that since the trellis is fully connected, any two
branches leaving a same state at a certain trellis section
will produce 16 error events with input Hamming distance

TABLE I

Output labels for 8PSK. The rows indicate the starting

states Ss, and the columns the ending states Se. s1/s2

indicates that output label is the same for both ending

states.

0/8 1/9 2/10 3/11 4/12 5/13 6/14 7/15

0 0 1 2 3 4 5 6 7
1 4 5 6 7 0 1 2 3
2 0 3 2 5 4 7 6 1
3 4 7 6 1 0 3 2 5
4 0 1 2 3 4 5 6 7
5 4 5 6 7 0 1 2 3
6 0 3 2 5 4 7 6 1
7 4 7 6 1 0 3 2 5
8 2 3 4 5 6 7 0 1
9 6 7 0 1 2 3 4 5
10 2 1 4 3 6 5 0 7
11 6 5 0 7 2 1 4 3
12 2 3 4 5 6 7 0 1
13 6 7 0 1 2 3 4 5
14 2 1 4 3 6 5 0 7
15 6 5 0 7 2 1 4 3

0

1

2

3

4

5

6

7

Fig. 2. Labeling for 8PSK.

equal to 2 in the following trellis section. In other words,
there are 16 length-two error events starting at each of
the 16 states, which have an input Hamming distance of
2. Thus the effective free distance of the code is upper
bounded by these length-two error events. A first step
in the design is to assign output labels to each branch so
that the minimum distance produced by a length-two er-
ror event is maximized. Given the constrains stated above,
there is no need to consider the input symbols at this stage.
Table II shows the output label assignment. The constel-
lation labeling for 8PSK used in this work is shown in
Fig. 2. Each row represents the starting state (Ss) of
the branch, and each column represents the ending state
(Se). This output labeling produces a minimum length-two
error-event distance of 2, assuming unit-norm constellation.

The next step is to search over all the possible input
symbol assignments in order to avoid error events of length
three or more that have input Hamming distance of two,
and output distance of less than 2. This search can be
constrained to recursive trellis structure of the form:

S = A · S + B · u mod 2, (15)

where S = [s1, s2, s3, s4]T represents the state, and

u = [u1, u2, u3, u4] represents the input symbol. The
trellis structure selected is given by:

A =

0 0 0 1
0 1 1 1
1 0 1 1
1 0 0 0

 , B =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (16)

This trellis structure together with the output labeling of
Table II produces a deff,free = 2.

Fig. 3 shows a performance comparison between the 2
bits/s/Hz 16-state turbo code for proposed in [4], and the
PC-NLTCM presented in this work. The same symbol in-
terleaver has been used for both codes. The interleaver
length is K = 10000 bits, or k = 2500 symbols from the
symbol interleaving perspective. It can be observed that
the nonlinear code outperforms the linear code by a lit-
tle less than 0.2 dB. At BER = 10−5, the PC-NLTCM is
within 0.5 dB from the constrained capacity 2.8 dB.

Fig. 3 also shows the uniform-interleaver BER bounds
for each code. In order to plot the BER bound and not the
SER bound, we assumed that any symbol error is equally
likely, the symbol in error is equally likely to have any of
the 15 possible values (leaving out the correct symbol), and
therefore we used a correction factor on the error bound of

BERbound ≈ k0 · 2k0−1

2k0 − 1
SERbound. (17)

The reason why the BER bound is not tight in the error
floor is that the interleaver design plays an important role
in these high-rate applications, as shown in [4], and there-
fore an average interleaver would perform much worse than
the carefully designed one used here. However, at the de-
sign stage, it gives a good prediction of which code would
perform better than the other.

It is worth mentioning that this is merely one exam-
ple where constraining the design to a linear code with
a mapper could be too restrictive, and directly assigning
constellation points to each branch could produce a larger
effective free distance and a better parallel concatenated
code. General nonlinear turbo code design is a rich area
for continued research.

IV. Conclusions

Parallel concatenated nonlinear trellis codes can be ben-
eficial for higher-order modulations. Although trellis coded
modulation can achieve optimal performance using convo-
lutional codes with a proper labeling, we showed with an
example that for parallel concatenated trellis coded modu-
lation using convolutional codes with labeling may be sub-
optimal under certain scenarios. As an example, we have
designed a rate 2 bits/s/Hz 16-state parallel concatenated
nonlinear trellis code for 8PSK, which outperforms the best
previously reported linear turbo code with labeling by 0.2
dB over AWGN under same conditions. This code is within
0.5 dB away from capacity at a BER = 10−5. Moreover,
this improvement comes with the same decoding complex-
ity as with convolutional codes as constituent codes.

2.8 3 3.2 3.4 3.6 3.8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

0
 [dB]

[7]
Bound [7]
PC−NLTCM
PC−NLTCM bound

Fig. 3. BER vs. Eb/N0 comparison, for 2 bits/s/Hz 16-state parallel
concatenated codes with 8PSK.

To facilitate analysis of the new codes, an extension of
Benedetto’s uniform interleaver analysis for nonlinear con-
stituent codes was derived. It was shown that the design
criteria for linear codes can be generalized to nonlinear
codes. In particular, we define effective free distance for
nonlinear constituent codes, and conclude that this is an
important parameter to maximize at the design stage.

Appendix

I. Computing the SER Bound for Constituent
Nonlinear Trellis Codes

Biglieri et al. presented a union bound in [9][10] for gen-
eral trellis codes, using a 22ν-state trellis diagram. This
concept can be used to find ACP (I, D) for the case of par-
allel concatenated nonlinear trellis codes.

As in [9], the product state diagram consists of state
pairs, (se, sr), where se is the encoder state and sr the
receiver state. Following Biglieri’s notation, the product
states can be divided into two sets, the good states denoted
by SG and the bad states denoted by SB defined as

SG = {(se, sr) | se = sr}, SB = {(se, sr) | se 6= sr}. (18)

By suitably renumbering the product states, we get the
transition matrix

S(I, D) =
[

SGG(I,D) SGB(I, D)
SBG(I,D) SBB(I, D)

]
, (19)

where the N ×N matrix SGG(I,D) accounts for the tran-
sitions between good product states, the N × (N2 − N)
matrix SGB(I, D) accounts for the transition from good
product states to bad product states, and so forth. N is
the number of encoder states 2ν . For each transition in the
product state diagram from product state S1 to S2, the
branch label is:

(1/q)IdH(ue,ur)Dd(xe,xr), (20)

where ue and xe denote the input and output word for the
encoder states respectively, and ur and xr denote the input
and output word for the receiver. Note that since, there
are q = 2k

0 possible inputs per trellis branch, (1/q) is the
the probability of each branch transition given a certain
current state.

Although ÃC(I, D) can be computed using S(I,D), it
becomes very complex in terms of number of operations.
In order to reduce complexity, two approximations can be
made: (1) Use the same idea presented in [8]: every path in
the trellis representation starts and ends in the same state.
Any possible incorrect word departs from a good state to a
bad state at some trellis section a certain number of times
m, and returns to a good state the same number of times
m. (2) In the encoding process, at any trellis section, the
encoder state can be any of the possible N = 2v states with
equal probability.

Define the approximated single-error event function as:

E(I,D) = ps{SGB(I − SBB)−1SBG}1, (21)

where ps = [1
N

1
N · · · 1

N] is the probability distribution of the
encoder states and 1 = [11 · · ·1]T. This placeholder counts
the length, in trellis sections, of an error event. Then,
E(I, D) can be written as:

E(I, D) =
∑

i,d

ei,dD
dIi (22)

Now define:

Ej(I, D) =
[
E(I, D)

]j

=
∑

i,d

ei,d,jI
iDd, (23)

which counts every concatenation of j single-error events,
without leaving any trellis section between them, using ap-
proximation (2). Every error event can be represented as a
concatenation of single-error events. Using approximation
(2), a concatenation of j single-error events, with a total
length l can be positioned in

K[l, j] ≤
(

k − l + j

j

)
≈ kj

j!
, (24)

ways in the trellis. Note that the two terms in (24) are not
exactly equal, since the error events start at a particular
state, and there might be positions where the concatena-
tion of two error events is not possible. However, for k large
the upper bound becomes very tight. Also, the symbols of
the rest of the k− l positions of both input words are equal
and could be almost any of the possible qk−l combinations,
which divided by the term qk appearing in Ãi,d gives q−l

which is already counted by the terms (1/q) appearing in
the branch labels in S(I, D) (see (20)). Therefore, for each
constituent code,

ÃC ≈
∑

j

kj

j!
Ej(I,D). (25)

Using (13), (14) and (25), and using the fact that
(
k
i

) ≈
ki/i! for k sufficiently large and i small , we get:

SER ≈
∑

i,j1,j2,d1,d2

ν
ii!

j1!j2!
k(j1+j2−i−1)

(q − 1)i
eC1
i,d1,j1

eC1
i,d2,j2

λd1+d2 .

(26)
Therefore, as k increases, the performance of the code

will be driven by the terms with the largest possible value
of (j1 + j2 − i − 1). For recursive encoders, that happens
for a concatenation of error events with i = 2. Therefore,
an important parameter to maximize is the effective free
distance as defined in Sec. II-B. As for linear encoders,
feed-forward encoders lead to really bad performance since
i can be equal to 1 in which case j1 + j2 − i− 1 = 0.

References

[1] Gottfried Ungerboeck. Channel coding with multilevel/phase
signal. IEEE Trans. on Info. Theory, pages 55–67, Jan 1982.

[2] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. Parallel
Concatenated Trellis Coded Modulation. In ICC ’96, June 1996.

[3] D. Divsalar and F. Pollara. Turbo trellis coded modulation with
iterative decoding for mobile satellite communications. In IMSC
’97, June 1996.

[4] Christina Fragouli and Richard Wesel. Turbo-encoder design for
symbol-interleaved parallel concatenated trellis-coded modula-
tion. IEEE Trans. on Info. Theory, 47:873–890, Mar 2001.

[5] M. Griot, A.I. Vila Casado, and R.D. Wesel. Non-linear turbo
codes for interleaver-division multiple access on the OR channel.
In GLOBECOM ’06. IEEE Global Telecomm. Conf., 27 Nov. -
1 Dec. 2006.

[6] C. Berrou and A. Glavieux and P. Thitimajshima. Near shannon
limit error-correcting coding and decoding: turbo-codes. pages
873–890, May 1993.

[7] K.D. Fisher, J.M. Cioffi, W.L. Abbott, P.S. Bednarz, and
C.M. Melas. An adaptive RAM-DFE for storage channels.
IEEE Transactions on Communications, 39:1559–1568, Novem-
ber 1991.

[8] S. Benedetto and G. Montorsi. Unveiling turbo codes: Some
results on parallel concatenated coding schemes. 42, Mar 1996.

[9] E. Biglieri. High-Level Modulation and Coding for Nonlinear
Satellite Channels. 32, May 1984.

[10] Y. J. Liu, I. Oka, and E. Biglieri. Error probability for digital
transmission over non-linear channels with application to TCM.
36, Sep 1990.

