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Abstract— Bergmans and Cover identified the capacity region
of the Gaussian degraded broadcast channel, where different
receivers observe the transmitted signal with different signal to
noise ratios. This paper presents a superposition turbo coding
scheme that performs within 1 dB of the capacity region
boundary of the degraded broadcast channel at BER of 10−5.
Performance is consistent over the entire useful range of the
power allocation parameter α.

Coding for the degraded broadcast channel is equivalent to
coding for unequal error protection. Adjusting α changes the
transmitter constellation of our encoder, and changes the degree
to which error protection is unequal. When α is selected to
provide equal error protection, the code is essentially a multilevel
code. This multilevel code performs as well as single level
turbo trellis-coded-modulation schemes with the advantage of
the potential for flexible unequal error protection as α is varied.

Keywords Turbo Coding, Superposition, Time Division,
Degraded Broadcast Channel, Trellis Coded Modulation.

I. INTRODUCTION

In many applications, different receivers could experience
different signal-to-noise ratios (SNRs). For example, in satel-
lite television broadcasting, receivers in rain-fades have very
low SNRs, while other receivers under clear sky have high
SNRs.

With progressive source coding, the data from the video
source encoder is not uniformly important. It is desirable
that the most important data be recovered even by receivers
with poor receiving conditions (i.e. low SNRs). An unequal
error protection (UEP) code provides more protection to more
important data, permitting it to be received on channels with
lower SNR.

Coding for UEP is identical to coding for the degraded
broadcast channel. Consider the Gaussian broadcast channel
with one sender transmitting X and two receivers observing
Y1 and Y2 respectively with

Y1 = X + Z1 (1)

Y2 = X + Z2 (2)

where Z1 ∼ N (0, N1) and Z2 ∼ N (0, N2) with N2 >
N1. This broadcast channel can be re-characterized as the
statistically equivalent “degraded” broadcast channel.

Y1 = X + Z1 (3)

Y2 = Y1 + Z ′
2 (4)

where Z ′
2 ∼ N (0, N2 − N1).
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Fig. 1. Comparison of Superposition Coded Modulation (SCM) and Time-
Division Coded Modulation (TDCM).

The capacity region for the Gaussian degraded broadcast
channel, with signal power constraint P , is given by

R1 < C(
αP

N1
) (5)

R2 < C(
(1 − α)P
αP + N2

) for 0 ≤ α ≤ 1 (6)

where C(x) = log(1 + x) denotes the capacity in bits
per channel use of a two dimensional memoryless Gaussian
channel with SNR x. This region is theoretically achieved
by the superposition coding scheme given by Cover in [1].
Bergmans [2], [3] proved the converse. See also [4] for an
excellent survey of broadcast channel information theory.

Figure 1 illustrates (5-6) for R1 = R2 = 1 by plotting
the required SNRs for R2 (circles) and R1 + R2 (squares)
as a function of α. Since (5) assumes that the R2 data has
already been decoded, the plot is meaningful only when the
SNR(R1 +R2) curve lies above the SNR(R2) curve, i.e. for
α < 1/3.

Figure 1 shows how α controls the UEP tradeoff. As α
decreases, the more important R2 data can be received at
lower and lower SNRs. However, this extra reliability of the
R2 data comes at the cost of decreased reliability for the less
important R1 data which requires a higher and higher SNRs
as α decreases.

Figure 1 also shows the performance of an optimal time-
division coded modulation (TDCM) scheme designed to match
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Fig. 2. Example for constellations in simulation for α = 0.1, α = 0.3

the R1 + R2 performance of superposition coded modulation
(SCM). As shown in the figure, TDCM is theoretically in-
ferior to SCM. However, Wei [5] considered trellis-coded-
modulation (TCM) for UEP using both TDCM and SCM
approaches, and found TDCM to be superior. Gadkari and
Rose [6] explained this behavior by showing that TDCM out-
performs SCM for some UEP regions when the channel code
performance is sufficiently worse than the capacity-achieving
performance assumed in [1], [2], [3]. Recently, Wang and
Orchard [7] carefully designed a TCM-based SCM scheme
which incorporated shaping. This scheme does outperform
TDCM in a UEP region of interest.

In this paper, we use turbo codes to design an SCM. Since
turbo codes closely approximate capacity achieving perfor-
mance, it is not surprising that our SCM closely approach
the theoretical SCM curve in Figure 1. In all of our examples,
the turbo coded SCM architecture at BER of 10−5 performs
within 1 dB of the capacity region boundary of the degraded
broadcast channel over the entire useful range of the power
allocation parameter α.

For our SCM architecture, we use the symbol-interleaved
parallel-concatenated turbo TCM (PCTCM) structure of
Fragouli and Wesel [8], [9]. The bit-interleaved turbo TCM
scheme of Benedetto, Divsalar, and Montorsi [10] is a pos-
sible alternative, but bit-interleaving further complicates the
initial and subsequent soft information computations. We
also implemented SCM using the symbol-interleaved turbo
TCM structure of Robertson and Wörz [11], and found its
performance to be quite similar to the results presented in this
paper, about 0.1 dB worse than SCM based on the Fragouli
and Wesel symbol-interleaved architecture.

Section II discusses the power allocation parameter α in
detail, and shows that when α takes a certain value, SCM
reduces to multi-level coding as discussed in [12]. Section
III presents the detail of our SCM turbo TCM architecture.
Section IV presents simulation results for two-rate SCMs using
8-point circle constellation and 16-point square constellation
as well as a three-rate example using 64-QAM. Section V
concludes the paper.

II. RECONFIGURABILITY USING α

The α in (5-6) controls the ratio of power allocation to the
two data streams. For practical constellations, it decides the
Euclidean distances between the constellation points. For a
fixed-rate two-rate structure with R1 = R2 = 1, α can take a
value from 0 to 0.5 according to (5-6). However, as shown in
Figure 1, with two-stage decoding, only α between 0 and 1/3
makes sense.

When α equals 1/3, the two-rate structure becomes a single
rate structure theoretically. It is essentially a multilevel code
(MLC), and our two-stage decoding is actually the two-level
MLC decoding [12]. By choosing α within (0, 1/3), we con-
figure the system to support two rates with two corresponding
operating SNRs.

For standard 16-QAM, the α in (5-6) can be easily deter-
mined as 0.2. Solving (5-6) for the maximum N1 and N2 with
R1 = R2 = 1 and α = 0.2 yields N1 = 0.2P and N2 = 0.6P
respectively. The resulting error free SNRs are 7.0 dB and
2.2 dB as shown in Figure 1. Additionally, incorporating the
constraint to 16-QAM signaling [13] reduces the tolerable
noise to N1 = 0.1917P and N2 = 0.5651P respectively. As a
result, the error free SNRs are 7.2 dB and 2.5 dB for standard
16-QAM (α = 0.2).

Figure 2 shows the 16-point constellations resulting from
α = 0.1 and α = 0.3. Figure 2 also illustrates the edge-profile
optimal constellation labeling [14] of the 16-point square
constellations used in simulation. It can be seen that the 2
MSB bits of four constellation labelings in the same quadrant
are identical.

Figure 2 also shows how α allocates power. For the 16-
point square constellation in Figure 2, the 16-point square
constellation can be considered as one QPSK constellation
added to another QPSK constellation. Two bits of rate-R2
data are modulated as a QPSK signal which can be mapped
to one of four “empty dots” with amplitude of

√
(1 − α)P .

Then, two bits of rate-R1 data are modulated as another QPSK
signal which can be represented by a solid dot with amplitude
of

√
αP , using one of four “empty dots” as its origin.

The following theorem shows that the MLC coding scheme
is the special case of multi-rate degraded broadcast channel
when all receivers have the same error free SNR. Hence, it is
likely we can tune a good MLC code into a good degraded
broadcast channel code, or vice versa.

Theorem 1: Consider the Gaussian broadcast channel with
one sender and k receivers, k ≥ 1, we have Yi = X + Zi,
where Zi ∼ N (0, Ni)

R1 < C(
α1P

N1
), · · · , (7)

Ri < C(
αiP∑i−1

j=1 αjP + Ni

), · · · (8)

where 1 ≤ i ≤ k, and
∑k

i=1 αi = 1.
if N1 = N2 = · · · = N , then, the rate region reduces to

k∑

i=1

Ri < C(
P

N
). (9)

Proof: Sum R1, · · · , RN with Ni = N . �
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Fig. 3. PCTCM Superposition Turbo TCM Encoder for Two Rates and a
16-point Square Constellation

This theorem explains why our multi-rate superposition
turbo TCM schemes, when configured for single rate, can
perform as well as the typical single rate turbo TCM in
simulation. If Ni = N and the rates have been fixed to satisfy
(9), (7-8) can always be solved for α1, · · · , αk. So a good
single rate code may be obtained from a good multi-rate code
as a special case.

III. THE SUPERPOSITION TURBO TCM

A. Encoder

Figure 3 shows the structure of a superposition turbo
encoder based on the structure of [8], [9] for the family of 16-
point square constellations, for which examples are illustrated
in Figure 2. It is a parallel concatenated TCM with constituent
encoder of rate-4/4. In fact, the constituent code consists of
two identical recursive convolutional codes of rate-2/2. The
rate-2/2 recursive convolutional encoder may be considered as
a rate-2/3 recursive convolutional encoder with one systematic
bit punctured.

The upper rate-4/4 constituent encoder has as systematic
outputs the two most significant input bits (MSBs) while
the lower rate-4/4 encoder has as systematic outputs the two
least significant input bits (LSBs). Thus the systematic bits
are evenly divided between the constituent encoders, and the
overall turbo code cannot be catastrophic.

The rate-2/2, 8-state recursive convolutional encoder within
the constituent encoders is obtained through exhaustive com-
puter search, and optimized for normalized dE

s2, where dE
s2

represents effective free distance. The superscript E refers to
the output squared Euclidean distance, and the subscript s2
denotes the symbol-wise input weight is two.

According to Fragouli [9], an upper bound on effective
free distance for convolutional encoder with multiple “discon-
nected” shift registers is constrained by the minimum length
shift register. Thus, the number of memory elements of two
recursive convolutional encoders in the same constituent code
should be the same. We found a good rate-4/4 constituent
code with identical rate-2/2 recursive convolutional encoders
for the two input MSBs and for the two input LSBs. The
8-state recursive convolutional code we found by optimizing
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Fig. 4. PCTCM Superposition Turbo TCM Encoder for Two Rates and a
8-point Circular Constellation

normalized dE
s2 is

A =




0 1 0
0 0 1
1 1 0



 , B =
[

0 0 1
0 1 1

]
, (10)

C =




1 0
0 0
1 0



 , D =
[

1 0
0 1

]
. (11)

in the encoder state-space description:

[s1 s2 s3]j+1 = [s1 s2 s3]j · A + [u1 u2]j · B (12)

[y1 y2]j = [s1 s2 s3]j · C + [u1 u2]j · D (13)

We applied extended spread symbol interleavers [8] to the
above constituent code. The extended spread symbol inter-
leaver is a semi-random interleaver due to the random selection
without replacement of N integers from 1 to N under certain
constraints.

Figure 4 shows the superposition turbo TCM encoder for
8-point circular constellation. Two levels of superposition are
used for this structure. A BPSK data stream (i.e. the LSB)
is added on top of a QPSK data stream. Since we use rate-
1/2 code for the LSB, we encode two 8-PSK symbols at the
same time. The rate-2/2 8-state recursive convolutional code
described by (10-13) is also used for each sub-code of the
constituent code for the 8-point circular constellation encoder.

Our superposition turbo TCM encoder for 64-point square
constellation is the direct extension of the encoder in Figure
3. Three levels of superposition are used for this structure.
Three QPSK data streams are summed together to generate the
transmitted data stream. Again, the code described by (10-13)
is used for each sub-code of the constituent code.

B. Decoder

We use two-stage decoding for the two-rate encoder of Fig-
ure 3. Figure 5 shows the detailed data flow of the decoder for
implementation. It is similar to the “onion peeling” algorithm
in [15].

The first decoding stage decodes the two input MSBs. It
uses an 8-state-trellis, and calculates the metric by summing up
the squared Euclidean distances between the received symbol
and all four constellation points of the same quadrant.
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Before starting the second decoding stage, the received 16-
point square constellation symbols are converted to QPSK
symbols. The first decoding stage essentially selects a quadrant
of the 16-point square constellation. The four points in this
quadrant are shifted and possibly reflected about the X or
Y axis to produce a noise-distorted point from a QPSK
constellation whose labeling is the same regardless of the
originating quadrant.

The second decoding stage decodes two input LSBs by
decoding the resulting QPSK symbols. The block diagrams of
the multi-stage-decoding for the three-rate encoder using a 64-
point square constellation and two-rate encoder using a 8-point
circular constellation are similar to that for 16-point square
constellation in Figure 5. We use a three-stage algorithm for
the three-rate decoder, and a two-stage algorithm for the two-
rate decoders.

Generally, with the constituent code consisting of multi-
ple independent codes, joint decoding outperforms separately
decoding the multiple codes. But, in this degraded broadcast
channel, two-stage decoding has essentially the same perfor-
mance as that of joint decoding. Moreover, the complexity
of the joint decoding algorithm is sixteen times that of the
two-stage decoding scheme with our specific 16-point square
constellation labeling.

For receivers with high SNR, the two input MSBs are
effectively error free. Joint decoding with 64-state trellises
performs the same as two-stage decoding with 8-state trellises.

For receivers with low SNR, only the first stage of two-stage
decoding is conducted. By summing up the squared Euclidean
distance between the received symbol and all four constellation
points belonging to the same quadrant as the metric, the first
decoding stage in fact performs joint decoding of the two
MSBs of the 16-QAM symbol.

IV. SIMULATION RESULTS

This section discusses simulation results for two-rate and
three-rate superposition turbo TCM structures with a 16-point
square constellation, an 8-point circular constellation and 64-
QAM. The interleavers used in the simulations are semi-
random interleavers [8]. To describe an interleaver we give
the constraint parameters (defined in [8]) in the following
order: (S, T,X), where S1 = S2 = S, T1 = T2 = T , and
X1 = X2 = X .
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A. Two-rate Superposition with a 16-point Constellation

Figure 6 shows SNR required for BER = 10−5 vs. α for
the two-rate encoder using a 16-point square constellation. For
the various α’s from 0.1 to 0.3077 that we simulated, the
error free SNR is within 1.0 dB of constrained capacity at
BER of 10−5. The symbol interleaver has design parameters
(S = 54, T = 6,X = 1) and lengths 8,192. The constituent
code searched was optimized for the 16-QAM (i.e. α = 0.2).
But, it works fine with other α’s. For 16-QAM (α = 0.2), at
high and low SNRs, the performance is within 0.6 dB and 1.0
dB of constrained capacity at BER of 10−5 respectively.

The first two curves listed in the legend of Figure 6 are
theoretical results from (5-6) with fixed rates R1 = R2 = 1.
Both the transmitted signal and noise are assumed to be
Gaussian for these two curves. The third and forth curves
are numerically calculated constrained capacities, in which the
noise is still Gaussian, but the transmitted signals are 16 equi-
probable constellation points placed according to α. Curves
five and six are the simulation results with various α. The last
curve is the numerically calculated constrained capacity for
single rate scheme using the 16 constellation points associated
with a particular α.

Taking into account that the transmitted signal is not Gaus-
sian, when α = 0.33015 (instead of 1/3), the two-rate and
single rate schemes should theoretically perform the same. Our
simulation results for an α of 0.3077 are as good as that of
typical single rate TCM with α of 0.2 [8], [11]. The theoretical
performance of the single rate scheme is not sensitive to the
change of α for α ≥ 0.2.

B. Two-rate Superposition with an 8-point Constellation

Figure 7 shows SNR required for BER = 10−5 vs. α for
a two-rate structure using an 8-point circular constellation.
The theoretical range for α is from 0 to

√
2−1

2
√

2−1
(i.e. 0.2265),

under the assumption that both transmitted signal and the noise
have Gaussian distributions. Including the performance-loss
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due to an 8-point circular signaling constellation, the practical
range of α is around 0 to 0.25. For the various α’s from
0.0794 to 0.25 that we simulated, the SNR is within 0.7 dB of
constrained capacity at BER of 10−5. The symbol interleaver
has design parameters (S = 54, T = 6,X = 1) and length
8,192.

C. Three-rate Superposition with 64-QAM

Figure 8 shows BER vs. SNR for three SNR ranges with
R1 = R2 = R3 = 1, using 64-QAM (α1 = 1/21, α2 =
4/21), where α1 and α2 are the power allocation parameters
in (7-8). The constrained capacities are 3.1 dB, 8.7 dB and
13.4 dB for low, middle and high SNR ranges respectively.
The interleavers with length of 8,192, 4,096 and 2,048 have
constraint parameters (S = 54, T = 6,X = 1), (S = 37, T =
5,X = 1), and (S = 26, T = 4,X = 0) respectively. For
64-QAM at BER of 10−5, the performance is within 0.6, 0.8
and 0.9 dB of constrained capacity at high, middle and low
SNR respectively.

In general, for our simulations, the performance at high
SNR is closest to the theoretical limit, and the performance at
middle SNR is closer than that at low SNR.

V. CONCLUSION

This paper illustrates that, with turbo codes, superposition
coding with multi-stage decoding performs quite well, always
within 1 dB of the achievable region boundary. In the context
of the work of Cover and Bergmans [2], [4], and the well-
known power of turbo codes, this is not that surprising.

Multilevel coding is a special case of multi-rate superposi-
tion coding with α selected so that all rates are decoded at
the same SNR. The proposed superposition schemes offer the
same complexity and performance as that of the typical turbo
TCM for this power allocation parameter α, but provide the
flexibility of controlling unequal error protection through the
choice of α.
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