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Abstract— This paper presents trellis codes for the Z channel
designed to maintain a relatively low ones density. These codes
have applications in pulse-position modulation systems and as
a solution for uncoordinated communication on the binary OR
multiple-access channel (MAC). In this paper we consider the
latter application to demonstrate the performance of the codes.

The OR channel provides an unusual opportunity where
single-user decoding permits operation at about 70% of the full
multiple-access channel sum capacity. The interleaver-division
multiple access technique applied in this paper should approach
that performance with turbo solutions. However, the current
paper focuses on very low latency codes with simple decoding,
intended for very high speed (gigabits per second) applications.
Namely, it focuses on nonlinear trellis codes that provide about
30% of the full multiple-access sum capacity at high speeds and
with very low latency. These trellis codes are designed specifically
for the Z-Channel that arises in a multiple-user OR channel,
when the other users are treated as noise. In order to optimize
the sum-capacity of the OR-MAC, the trellis code transmits
codewords with a ones density much less than 50%. Also, a
union bound technique that predicts the performance of these
codes is presented. Results from simulations and a working FPGA
implementation are shown.

I. INTRODUCTION

Completely uncoordinated transmission on the OR-MAC is
theoretically possible with the same efficiency as TDMA if
joint decoding is employed. Joint decoding can be simplified
to sequential decoding if the ones densities of each transmitter
are carefully controlled [1], but this level of coordination is
not qualitatively different from assigning time slots.

These schemes are fully efficient in that each received bit
conveys one useful bit of information. However, completely
uncoordinated transmissions using interleaver-division multi-
ple access (IDMA)[2][3] and simple decoding that treats other
users as noise is an attractive alternative. Surprisingly, in the
multiple-user OR channel, this relatively low-complexity ap-
proach can theoretically achieve about 70% of full efficiency.

This paper presents an uncoordinated multiple access sys-
tem employing IDMA in which the other users are treated
as noise. To allow decoding at very high speeds in the near
future, this paper investigates trellis codes which operate in a
range of 30% of full efficiency. In other work [13], we are
also designing turbo solutions, which approach the 70% limit
with higher complexity and latency.

This work was supported by the Defence Advanced Research Project
Agency under SPAWAR Systems Center San Diego Grant N66001-02-1-8938.

Section II reviews uncoordinated multiple access in the OR
channel. Section III presents the design of nonlinear trellis
coded modulation (NL-TCM) for this application. Section IV
presents a transfer-function bound for NL-TCMs operating on
the Z-Channel. Section V presents performance results, and
Section VI concludes the paper.

II. UNCOORDINATED MULTIPLE ACCESS IN THE OR
CHANNEL

In the multiple access OR channel, if all users transmit
a zero, then the channel output is a zero. However, if even
one user transmits a one, then the channel output is a one.
The information-theoretic capacity region of this channel is
the union of all rate pairs with a sum-rate (the sum of all
the rates of the system) less than 1. As discussed above, this
capacity may be achieved with time-division multiple access,
joint decoding of all the transmitted sequences, or sequential
decoding if transmitted ones densities are carefully controlled.
All of these solutions require either coordination of all users or
a very complex decoder, neither of which is currently feasible
at gigabit per second sum rates.

In high-rate applications where complete coordination is not
possible and joint or successive decoding is unavailable for
complexity reasons, the other users must be treated as noise.
This transforms the OR channel into the Z-Channel shown in
Fig. 1. If we assume that all users have the same transmitted
ones density, the transition probability is a function of the
same transmitted ones density employed by the desired user.
Though not required, we maintain this assumption throughout
the paper for simplicity.

The maximum theoretical sum-rate when treating the other
users as noise (assuming each user employs the same ones den-
sity) decreases as the number of users increases. However, it
is always lower bounded by ln 2 � 0.6931. This is a relatively
small loss in rate for the substantial reduction in complexity. In
order to be able to achieve this maximum theoretical sum-rate,
the optimal ones density of each individual user decreases as
the number of users increase. For example, the optimal density
of ones is p1 � 0.2864 for 2 equal-rate users, p1 � 0.1080 for
6 equal-rate users, and p1 � 0.0558 for 12 equal-rate users.

On the other hand, when maintaining equally likely ones and
zeros (p1 = 0.5) the maximum theoretical sum-rate rapidly
decreases to zero with the number of users. For example, the
maximum achievable sum-rate is less than 10% for 6 users and
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Fig. 1. Z-channel resulting from the OR-MAC channel when other users are
treated as noise.

less than 1% for 10 users. Poor performance of the p1 = 0.5
case demonstrates that codes with low ones densities are a
requirement for this application.

One successful approach for uncoordinated multiple-access
is Interleaver-Division Multiple-Access (IDMA) [2][3]. With
IDMA, every user has the same channel code, but each user’s
code bits are permuted using a randomly drawn interleaver,
unique with extremely high probability. The receiver is as-
sumed to know the interleaver of the desired user. With IDMA
in the OR-MAC, a receiver sees the desired signal corrupted
by a memoryless Z-channel. We performed simulations com-
paring an NL-TCM code under two channels: 1) a 6-user OR-
MAC channel using IDMA and 2) the equivalent Z-channel
that the receiver would see if the errors were not generated
by codewords but by random errors. The performance was the
same. Thus, in the context of IDMA, the remaining challenge
is the design of a good code with the desired ones density.

III. NL-TCM WITH CONTROLLED ONES DENSITY

Papers appearing since the 1950’s have addressed the prob-
lem of designing codes with p1 = 0.5 for the Z-channel. See
[4] for a unified account on such codes and [5] for the most
recent advances in this field. Only recently there has been work
on LDPC codes with an arbitrary density of ones, see [6] and
[7]. This manuscript is the first to our knowledge to address
the design of trellis codes with an arbitrary density of ones
for the Z-Channel.

In this section, we present a design technique for trellis
codes for the Z-channel with an arbitrary ones density p1.
Our goal is to maximize the minimum directional Hamming
distance (a metric we’ll define below) between codewords,
and the rates considered will be of the form 1/N . We use
a conventional feed-forward encoder in order to determine
the branches of the trellis, but instead of using generator
polynomials to compute the output of each branch, a non-
linear table-lookup will directly assign the output values.

A. Directional Hamming Distance

In the Z-Channel, a transmitted 1 will always induce a
received 1. Thus, to make a decoding error, the decoder must
see ones in all the bit positions where the incorrect codeword
has ones. Let us define the directional Hamming distance
dD(c1, c2) between two codewords c1 and c2 as the number
of positions at which c1 has a 0 and c2 a 1.

Consider the Z-Channel with a probability of 0-to-1 transi-
tion less than 0.5. If two codewords c1 and c2 have different

Hamming weights, the codeword with the smaller Hamming
weight (denote it c2) will never be incorrectly decoded by
a maximum likelihood (ML) decoder when the code with
the larger Hamming weight (c1) is transmitted. Then, when
considering the pairwise behavior of these two codewords,
the only distance that matters is dD(c2, c1). On the other
hand, if both codewords have the same Hamming weight, the
directional Hamming distances are equal and errors can be
made in either direction. Note that in any case, the directional
distance that matters is the larger of the two.

Thus a proper definition for the pairwise design metric
should be the maximum pairwise directional Hamming dis-
tance:

d(ci, cj) = d(cj , ci) = max[dD(ci, cj), dD(cj , ci)] (1)

This metric for the Z-Channel is well known, appearing in
[4] and [5] among other papers.

B. Pessimistic definition of distance

Due to its non-linearity, this definition of distance cannot
be applied branch-wise, since it is impossible to tell from an
individual branch which codeword will end up having more
Hamming weight. For that reason, we will use a pessimistic
definition of distance for our trellis code design, considering
both directional distances. Namely, the safest definition of
branch-wise distance between any two branches bi and bj

would be

dp = min[dD(bi, bj), dD(bj , bi)] , (2)

which is the pessimistic branch-wise metric that will be
maximized in our design.

With this branch-wise metric, codewords with equal Ham-
ming weights produce larger values of dp than codewords with
different Hamming weights, so we will assign output values
to the trellis branches with as similar Hamming weight as
possible, preferably equal.

C. NL-TCM Code Design

As we mentioned before, the code design consists of as-
signing output values to the branches of the trellis. Those
outputs have to maintain the desired average density of ones
p1. We will present an extension to the Ungerboeck’s rules [8]
intended to maximize the minimum pessimistic distance dmin

using the pessimistic branch-wise metric introduced in section
(III-B).

1) Choosing the Hamming weight of the branches: The first
step in the design is to assign Hamming weights (Wh) to each
of the branches. For a rate of 1/N , using a 2ν-state encoder
(B = 2ν+1 branches), and an optimal ones density of p1, there
should be Bs branches with Hamming weight s = floor(p1·N)
and Bs+1 = B − Bs branches with Hamming weight s + 1,
where Bs should be chosen to minimize the deviation from
the desired ones density:

deviation = |p1 · N − (Bs+1 · (s + 1) + Bs · s)/B|.
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Fig. 2. (a) Four paths emanating from the same state in two trellis sections.
(b) Four paths merging into the same state in two trellis sections. Branches
are labeled with the input bits that induce traversal of the branch.

2) Choosing all branches to have distance of at least 1
between each other: If possible, it would be desirable to have
all branches have a pessimistic distance (dp) of at least 1
between each other.

When all branches have the same weight WH = s, there
are

(
N
s

)
branch labels with dp ≥ 1 between each other.

For example, for N = 17 and p1 = 1/8, and choosing all
branches to have WH = 2, we can have

(
17
2

)
= 134 different

branches, so if we wanted to have all branch labels to be
different so that dp ≥ 1 always, we could use a trellis with 64
states (represented by 6 bits) and 128 branches. The minimum
number of branches that two paths can differ in a 2ν-state
encoder is ν + 1. Thus, if each section adds at least 1 to the
pessimistic distance, then dmin ≥ ν + 1.

If repeated output values are necessary, often some branches
can be strategically chosen to be equal while still maintaining
dmin ≥ ν + 1.

3) Ungerboeck’s rule: Once we choose the weights of the
branches, and the possible output values that will make all
branches different (or almost all, allowing some to be equal
as explained in the previous section), we have to assign output
values to branches. Our main approach for this assignment is to
apply Ungerboeck’s idea of maximizing the distance between
splits and merges [8]. The Hamming weights of the branches
are at least s. In the application considered in this work, where
low rate codes with low ones densities are required, all splits
and merges can be chosen to have a pessimistic distance of at
least s between each other. Thus, applying Ungerboeck’s rule
a dmin ≥ 2s + ν − 1 can be achieved.

4) Extending Ungerboeck’s rule into the trellis: One can
extend Ungerboeck’s rule more deeply into the trellis, and
maximize not only the distance between splits, and the dis-
tance between merges, but the distance between the 4 branches
emanating from a split in the previous trellis section, or the 8
branches emanating from a split two sections before, and so
on. One can do the same with the merges moving backwards
in the trellis. Notice that by maximizing the distance between
the 8 branches emanating from a split two sections before,
we are also maximizing the distance between all 4 branches
emanating from a split a trellis section before, and all splits.
The same idea applies to the merges. If we consider h sections
after a split, and g sections before a merge, the new bound for
the minimum distance is dmin ≥ s · (h + g) + ν + 1− (h + g).
Fig. 2 shows the trellis branches involved with h=2 and g=2.

The largest possible values of h and g are given by the

maximum number of output values that can have maximum
distance between each other. Let us explain this in more detail.

First, compute the number of branches that need to have
maximum distance between each other to cover h sections
after a split and g sections before a merge. From the splitting
point of view, there will be groups of 2h branches that need to
have maximum distance between each other. From the merging
point of view, there will be groups of 2g . Each branch belongs
to one group of 2h and one group of 2g , so each branch has
to have maximum pessimistic distance with 2h + 2g − 2 other
branches.

Second, compute the maximum possible number of
branches of maximum pessimistic distance between each other.
Using the example where N = 17 and all the branches have
Hamming weight s = 2, it is possible to have floor(N

s ) = 8
branches with maximum distance between each other. Let us
denote this number as T .

Then, the constraints are (1) 2h ≤ T , (2) 2g ≤ T and (3)
each branch has to belong to one group of 2h and one group
of 2g . If one chooses h and g such that 2h + 2g − 2 ≤ T , all
3 constraints can be satisfied.

5) Designing for a very low target ones density: If the
optimal ones density p1 ≤ 1/2ν+1, all the branches can be
chosen to have maximum distance between each other (we
can choose the branch labels so that for any particular position
of the output, there is at most 1 branch that has a 1 in that
position).

For such low densities of ones, the design becomes straight-
forward. Compute the Hamming weight of each branch as
explained in section III-C.1, and for each branch, add ones in
positions that aren’t used in previous branches.

IV. TRANSFER FUNCTION BOUND FOR NL-TCM CODES

Ellingsen [9] provided a combinatorial expression for an up-
per bound on the BER of linear block codes over the Z-channel
under ML decoding. For convolutional codes assuming binary
PAM or QPSK, Viterbi [10] introduced an analytical technique
using generating functions to provide a union bound on the
BER of convolutional codes. The technique is based on a 2ν-
state diagram for the convolutional encoder. In the case of
general trellis codes where high level constellations introduce
nonlinearity, Biglieri [11][12] generalized Viterbi’s algorithm
by using the product state diagram with 22ν-states. Biglieri’s
algorithm can be applied to non-linear trellis codes over the
Z-channel with modifications on the pairwise error probability
measure.

Let α be the probability of a zero-to-one transition in the
Z channel. Consider the whole binary transmitted sequence,
Xn, and any other valid codeword, X̂n. The pairwise error
probability of decoding Xn into X̂n under ML decoding is

Pe(Xn → X̂n) =⎧⎪⎨
⎪⎩

1
2 · αdD(Xn,X̂n) ,WH(Xn) = WH(X̂n)

αdD(Xn,X̂n) ,WH(Xn) < WH(X̂n)
0 ,WH(Xn) > WH(X̂n)
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where dD(·, ·) denotes the directional distance. If we consider
the sequence pair (Xn, X̂n), the error probability of transmit-
ting one sequence and decoding the other is

Pe(Xn → X̂n) + Pe(X̂n → Xn)
= αmax(dD(Xn,X̂n),dD(X̂n,Xn))

≤ 1
2 [αdD(Xn,X̂n) + αdD(X̂n,Xn)]

(3)

Therefore, if Pe(Xn → X̂n) is replaced (not always upper-
bounded) by 1

2αdD(Xn,X̂n) for all the codewords Xn and X̂n,
the transfer function bound technique can be readily applied
to the NL-TCM to yield a valid upper bound because of the
additive property of the directional distance.

As in [11], the product state diagram consists of state pairs,
(se, sr), where se is the encoder state and sr the receiver state.
Following Biglieri’s notation, the product states can be divided
into two sets, the good states denoted by SG and the bad states
denoted by SB defined as

SG = {(se, sr) | se = sr}, SB = {(se, sr) | se �= sr} (4)

By suitably renumbering the product states, we get the
transition matrix

S(W, I) =
[

SGG(W, I) SGB(W, I)
SBG(W, I) SBB(W, I)

]
(5)

Where the N × N matrix SGG(W, I) accounts for the
transitions between good product states, the N × (N2 − N)
matrix SGB(W, I) accounts for the transition from good
product states to bad product states, and so forth. N is the
number of encoder states 2ν . For each transition in the product
state diagram, S1 → S2, the branch is labeled by

p(S1 → S2)W dD(xe,xr)IdH(ue,ur) (6)

where ue and xe denote the input and output word for the
encoder states respectively. Similar for the received states.
dH(·, ·) denotes the Hamming distance. Then the transfer
function T (W, I) becomes

T (W, I) = ps{SGG + SGB(I − SBB)−1SBG}1 (7)

where ps = [ 1
N

1
N · · · 1

N ] is the probability distribution of
the encoder states and 1 = [11 · · · 1]T . The BER bound is
computed as

BER ≤ 1
2
· 1
k
· ∂T (W, I)

∂I

∣∣∣∣∣
W=α,I=1

(8)

V. PERFORMANCE RESULTS

We have tested the NL-TCM performance in an uncoordi-
nated OR multiple access channel, where every user treats the
others as noise, and all users transmit with the same density
of ones p1, as explained in Section II.
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A. NL-TCM for 6-user OR-MAC

Fig. 3 shows the BER of various 64-state NL-TCM codes
designed to work in a 6-user OR-MAC channel, along with
their theoretical transfer function bounds. The densities of ones
are close to 0.108, the density needed to achieve capacity
for a 6-users OR-MAC when treating other users as noise.
Simulations have been programmed in C for rate-1/17 NL-
TCM code with p1 = 2/17, rate-1/18 NL-TCM code with
p1 = 1/8 and rate-1/20 NL-TCM code with p1 = 1/8.

It can be observed that the transfer function bounds are tight
in all three cases. The transfer function bound is an upper
bound on the expectation assuming an infinite decoder depth,
and it is not unexpected for these simulations to be slightly
above the bound, since the margin is within the usual variation
of a simulation around the expectation.

Also, in order to prove that NL-TCM codes are feasible
today for very high speeds (optical speeds), a hardware simu-
lation engine was built on the Xilinx Virtex2-Pro 2V20 FPGA.
The simulator implemented on this device had equivalent gate
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TABLE I

BER OF NL-TCM FOR 100-USER OR-MAC

Rate Sum-rate p1 α BER
1/334 0.2994 0.006736 0.48787 1.10 · 10−5

1/360 0.2778 0.006944 0.49837 4.54 · 10−6

1/400 0.25 0.006875 0.49489 9.45 · 10−7

count of 360K gates and is able to simulate the rate 1/20
code at 70Mbps. This implementation received first prize at
the 2006 student design contest sponsored by the ACM Design
Automation Conference and the IEEE International Solid State
Circuits Conference.

Results for rate-1/20 NL-TCM code obtained in the FPGA
testbed are also shown in Fig.3. Due to design constraints, the
hardware Viterbi decoder has implementation differences com-
paring to the software simulation. The two main differences
are the traceback depth and the maximum path metric. Both
of these values are set to infinity for software simulation. The
hardware implementation has a traceback depth of 35 and a
maximum path distance metric of 20. These differences cause
the deviation from the theoretical bound at low bit error rates.

Finally, Fig. 4 shows the BER of these codes in terms of
the number of users present in an OR-MAC.

B. NL-TCM for 100-user OR-MAC

As explained in section III-C.5, the design of NL-TCM
codes becomes straight-forward for low enough density of
ones. As an example, we have designed NL-TCM codes
for the 100-user OR-MAC case. In that case, the optimal
p1 � 0.00691. We designed codes for rates 1/400 and 1/360.
Results are shown in Table I.

C. Concatenation of NL-TCM code with a Block Code

In applications where a very low BER is required, the rate
of the NL-TCM channel code would have to be very low. A
better solution is to include a high-rate block code that can
correct a small number of symbol errors as an outer code,
dramatically lowering the BER.

A concatenation of the rate-1/20 NL-TCM code with a
(255-bytes, 247-bytes) Reed-Solomon code has been tested
for the 6-user OR-MAC scenario. The rate of this code is
(247/255) · (1/20) � 0.0484. Results are shown in Table II.
In this example, we are achieving almost 30% of full capacity,
with a BER on the order of 10−10. As an example, the OR
channel can be used as a simple communications model that
describes the multiple-user local area network optical channel
with non-coherent combining. With the concatenation of NL-
TCM codes with a Reed Solomon Code we are achieving a
good part of the capacity (taking into account the very low
latency of the code), with a suitable BER for optics, and a
feasible complexity for today’s technology at optical speeds.

VI. CONCLUSIONS

This paper addressed the problem of designing codes for
the Z-channel along with an IDMA-based architecture that
allows uncoordinated multiple access in the OR-MAC. In this

TABLE II

BER OF RS+NL-TCM FOR 6-USER OR-MAC

Rate Sum-rate p1 α BER
0.0484 0.29 0.125 0.4652 2.48 · 10−10

architecture, the same code is used by every user, each of
which randomly picks an interleaver to permute its coded
bits. For each user, every other user is treated as noise, in
which case it’s receiver ‘sees’ a Z-channel. We have addressed
the problem of designing codes for this channel. These codes
are required to have a relatively low ones density, requiring
non-linear codes. In this work, we also required low decoder
complexity to be computationally feasible at very high speeds
today.

Non-linear trellis codes satisfy both requirements. A design
criteria for NL-TCM codes was introduced, and tight analytical
bounds on their performance over the Z-Channel, were com-
puted. Furthermore, by concatenating these codes with high-
rate block codes we can achieve a good part of the capacity
of the channel with a very low BER and a very fast decoder.
An important feature of this solution is that the achieved
sum-rate remains basically unchanged as the number of users
increases as shown in section V for the 6-user and 100-user
case. This result makes this solution especially attractive for a
large number of users, where coordination becomes an issue.
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