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ABSTRACT 
Roof and Variaya pmved the existence of codes that can 

communicate reliably over any linear Gaussian channel for 
which rhe mutual information exceeds the infomation rare 
of the code. In this paper we demonstrate rhar pmperly 
designed Low-Densip Parip-Check (LDPC) codes are such 
codes and that their performance lies in close pmximity ro 
rhe Root and Variaya capacity for rhe linear Gaussian vecror 
channels (a.k.a. space-time channels). We also demonstrate rhe 
robustness of the codes on the panial-band jamming channel 
and in fasr Rayleigh fading. 

However, these codes were too short for the sphere packing 
bound to approach Shannon capacity, and the computational 
resources for longer random codes were decades away from 
being broadly accessible. 

Following the groundbreakmg demonstration by Berrou et 
al. [8] of the impressive capacity-approaching capability of 
long random linear (turbo) codes, MacKay [9] re-established 
interest in LDPC codes during the mid to late 1990s. Luhy 
et al. [IO] formally showed that properly constructed irregular 
LDPC codes can approach capacity more closely than regular 
ones. Richardson, Shokrollahi and Urhanke [ I l l  created a 
svstematic method called densitv evolution to analvze and svn- -, I 

thesize the degree dislriburion in asymptotically large random 1 TNTROnlICTlON .. ~ ._... 
bipartite graphs under a wide range of channel realizations. 

A channel Occurs when the actual channel is 
unknown to both transmitter and receiver but belongs to a 
set of possible channels known to both. and VaraiYa's 
compound channel theorem 111 applied to the linear Gaussian 

In this paper we demonstrate that LDPC codes are universal 
of matrix channels by showing that hit-multiplexed 

con- 
dimension e~~~~~ mutual infomation Derformance 

a 
LDPC coding on the M ~ M O  channel yields 
stant 

vector channel, 

Yk = H k X k  + nk nk - N(o,  Nor"), (1) 

indicates that for a given rate R and input distribution there 
exists a single code that can achieve reliable information 
transmission at rate R o n  every channel H for which the input 
distribution induces a mutual information (MI) higher than R. 
The immemate implication of this result is that good error per- 
formance on one particular channel does not have to come at 
the expense of significant performance degradation on others. 
Codes that have consistently good proximity to capacity (to 
the extent their blocklength and decoding complexity permit) 
over a class of channels will he referred to as universal codes 
in this paper. Since the linear Gaussian vector channels are 
commonly called space-time channels today, we refer to such 
codes as universal space-time codes. 

The capacity promise of multiple-input multiple-output 
(MIMO) systems in.rich scattering environments [2] makes the 
existence and use of universal codes of practical interest. In 
[3] Wesel et. al constructed universal trellis codes for periodic 
erasure channels. The universal property of LDPC codes in the 
context of periodic fading channels was described by Jones et. 
al in [4]. In [5][6] Kase and Wesel found by exhaustive search 
universal space-time trellis codes for the 2x2  linear Gaussian 
vector channel. 

Low-density parity-check (LDPC) codes were proposed by 
Gallager in the early 1960s [7]. The stmcture of Gallager's 
codes (uniform column and mw weight) led them to be called 
regular LDPC codes. Gallager provided simulation results for 
codes with block lengths on the order of hundreds of bits. 
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(around 0.1 bits per real dimension) for all the channels 
that we examine. For a matrix channel, the excess mutual 
information per dimension is defined as the capacity margin 
between the operational channel MI per lransmit antenna and 
the information transmission rate per transmit antenna. 

The rest of the paper is organized as follows. Section II 
describes the partial-hand jamming channel and demonstrates 
the performance of LDPC in this channel environment. Typical 
p. EsIN, measures are provided, but an additional technique 
will he introduced specifically for the purpose of comparison 
to mutual information. Section 111 presents LDPC performance 
results across a uniform sampling of 2 x 2  MlMO channels to 
illustrate the universal property of the codes. The performance 
of the codes on any specific 2x2  quasi-static distribution (for 
instance Rayleigh) can he inferred from the provided results. 
Though fast Rayleigh fading does not fit in the R w t  and 
Varaiya framework, we provide LDPC results for 1 x 1 through 
4 x 4  MlMO systems with fast Rayleigh fading in Section IV. 
Section V summarizes our conclusions. 

11. LDPC PERFORMANCE ON THE PARTIAL-BAND 
JAMMING CHANNEL 

A special case of ( I )  is the panial-band jamming channel. 
The channel model used in the results that follow is that same 
as the one previously described in [I21 and [131. We limit our 
discussion to the case of coherently detected BPSK modulation 
under a frequency hopped scenario in which a fraction p of the 
available channels are jammed. All of the channels experience 
additive thermal noise due to the receiver front end. The SNR 
of this noise is fixed to EaIN, = 20 dB so as to be consistent 
with results in [IZ]. Channels that aiIe jammed, however, also 
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Fig. 1. P d o m c e  of Rate 113 LDPC codes with length 4096 and 
15000 on the panid-band jamming channel compared lo Nrbo pmduct code 
p e t f o m c e  [lZl. Gaussian signaling capacity (MI) and BPSK constrained 
capacity (cMI) al 113 of a bit are also displayed. FER = lW3 

incur the addition of band-limited white Gaussian noise with 
power spectral density ~ - ‘ N I .  Scaling by p ensures that the 
total jamming noise power p(p-’N~) + (1 - p)O is equal to 
NI ,  but is independent of p .  Bit energy to interference ratio, 
EaINI is the most common measure of performance on this 
channel. Perfect channel state information has been assumed 
for the LDPC results that will be presented. This implies that 
very low values of E ~ I N I  tend to make jammed channels 
look like erasures as the log-likelihwd ratios computed from 
channel observations are inversely scaled by the noise vahnce  
in a given subchannel. On the other hand. as p is increased 
to unity (all subchannels are jammed), the channel begins to 
appear much like a standard AWGN channel. 

Fig. 1 provides simulation results for two rate 113 LDPC 
codes. Both are realized from the degree sequence of the 
(1,O) optimized code desnbed in Section 111. The first code 
has length 4096 and the second length 15000. For sake of 
comparison with another coding technique, the performance of 
a length 4096 turbo product code with comparable rate [I21 is 
also provided An important parameter for code performance 
on the partial-band jamming channel is the so-called dwell 
interval. This quantity describes the number of successive code 
symbols that will be transmitted on a given sub-channel before 
the modulation is hopped to another sub-channel. For sake 
of comparison with results in [I21 we have fixed the dwell 
interval to 32 for the length 4096 code and to 30 for the 
length 15000 code. We have also made the assumption that 
channels are ‘framed’ around single code words. This implies 
that for the length 4096 code there are 128 subchannels and 
rp1281 of these will be jammed. There are 500 subchannels 
per frame for the length 15000 code. The distribution of 
jammed subchannels is realized uniformly and independently 
from one codeword transmission to the next. This technique 
is meant to yield an ’ergodic’ jamming result for a given code 

across a parameterization of p and EbJN.. 
Mutual information (MI) computations for the partial-band 

jamming channel are also included in Fig. 1. To compute these 
measures consider the MI level in panial band jamming, 

M I  = P f  ( S N R J )  + (1 - P ) f  ( S N R N J ) ,  (2) 

where S N R J  defines the symbol signal to noise ratio in 
the jammed subchannels and S N R N J  defines the symbol 
signal to noise ratios in the non-jammed subchannels. In 
the case of Gaussian signaling, f(.) = log,(.), and for 
the BPSK constrained case f(.) is evaulated via numeri- 
cal integration. In the partial-band jamming simulations per- 
formed for this paper, S N R N ~  is held fixed at a level 
which corresponds to EkIN,, = ZOdB. In the unconstrained 
case the tern log, (1 + S N R N J )  is therefore a constant 
(7) which can be determined via solution to the equation 
q = log, (1 + qEk/N,), e.g. = 9.96 bits. In the BPSK 
constrained case M I B ~ ~ K  ( S N R N J )  saturates to q = 1 bit 
at this high SNR. 

We are interested in values of (p .  S N R J )  that yield constant 
levels of mutual information. We therefore fix the MI to some 
constant level, say 113 of a bit. If we also fix p ,  it is possible to 
uniquely determine S N R J  (analytically for unconstrained and 
via table lookup for the BPSK constrained case). The resulting 
SNRJ  can then be converted to E ~ / N I  via the following 
relations, 

A large descrepancy can be observed between the BPSK 
constrained and Gaussian signaling mutual information curves 
in Fig. I .  This is due primarily to the fact that the non-jammed 
subchannels provide far more mutual information (9.96 bits) 
than can be provided by BPSK modulation, which in turn 
implies that with Gaussian signalling just a small fraction 
of the subchannels need to be non-jammed for the expected 
mutual information in the channel to reach 113 of a bit. We 
note that a system that achieves an average spectral efficiency 
of 113 bits, and that approaches the unconstrained Gaussian 
capacity, can be achieved by simultaneously increasing modu- 
lation cardinality and decreasing code rate. For instance a rate 
116 code driving QPSK can be expected to perform better than 
the rate 1/3 BPSK system. 

All of the curves’in Fig. I represent systems with rate 
that is close to 113 of a bit of mutual information. In order 
to demonstrate the consistency of the mutual information 
performance of the two LDPC codes across SNR and p we plot 
the abscissa in Fig. 2 in terms of SNRJ  rather than in terms of 
E ~ I N I .  This avoids comparing E ~ I N I  t e r n  that differ only 
because of different rate (since II S N R j  - IOlog,, (pR)) .  
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Fig. 2. S N R , ~  performance of length 4096 and 15wO LDPC coder earnpared 
to SNR. p levels required Lo aduevc 0.42. 0.4. and 113 of a bit of mutual 
idomtion. FER = 

When the partial-hand jamming channel achieves 0.4 hits 
of mutual information. the length 15000 LDPC code operates 
with an FER = at all but the lowest values of p. The 
same can be stated for the length 4096 code when the channel 
supports 0.42 hits of muNd information. The length 15000 
results are-consistent with the results that will be given in 
Section 111, i.e. the code provides reliable communication 
when the excess MI in the channel is AMI  = 0.4 - 113, 
or  roughly 0.065 hits. Furthermore, the performance on a 
parameterization of the channel that corresponds to an ’erased’ 
case is slightly inferior to the performance on an AWGN 
( p  = 1) parameterization. 

Ill. MUTUAL INFORMATION PERFORMANCE OF LDPC 
CODES ON LINEAR GAUSSIAN VECTOR CHANNELS 

In this section we consider the full Gaussain vector chan- 
nel of (I). We note that mutual information identifies the 
fundamental information-cartying potential of a channel for 
a specific input distribution. Thus a universal code should 
provide performance that is consistent in terms of required 
excess mutual information. The common way lo plot BER 
performance is versus channel signal-to-noise ratio (SNR). 
Since MI on the additive white Gaussian noise (AWGN) 
channel is a monotonic (and almost linear) function of SNR in 
dB, MI,,,, = log,(l+SNR), this representation is essentially 
equivalent to plotting BER against MI. For a fixed transmission 
rate R, SNR gap is defined as the difference between the 
S N R  required to achieve the  desired BER and the S N R  
at which the channel capacity in (4) is equal to R bits per 
channel use. However, when assessing the performance of a 
code over a variety of linear Gaussian channels, considering 
SNR performance or SNR gap is pmhlematic because the 
monotonic relationship between SNR in dB and MI is different 
for different channel eigenvalue skews. 

. . . . . . . . . . . . . . .  

0 1 2 3 5 
SNR gap, dB 

Fig. 3. Excess MI per real dunmsion YS. SNR gap for 2x2 mauix channels, 
R = 413 biwchannel use. XI = 1. for eigenvalue skews (top Io bottom) 
K = 1,0.75,0.5,0.25,0.125,0. . .  

To better understand the previous statement, consider a 
2x2  linear Gaussian vector channel H and its MI under the 
assumption of uniform power distribution across antennas, 

Where XI and Az are the eigenvalues of HH’, K = X z / A i  
is the eigenvalue skew and p is the average SNR per receive 
antenna. 

Fig. 3 illustrates the excess MI per real dimension as a 
function of the SNR gap in dB for R = 413 bitdchannel 
use and different eigenvalue skews K .  Note that the excess 
MI curves are approximately linear functions of the SNR gap 
in dB, however the slope depends on the eigenvalue spread 
(eigenskew) of the channel. In other words, a constant level 
of excess MI is achieved by differing excess SNR levels 
(depending on the eigenskew of the channel). The MI available 
in the channel is the absolute measure for performance, while 
an excess SNR measure depends both on the MI level and the 
specific channel realization (eigenskew). 

In the remainder of this section the performance of two 
different length- 15,000 bit-multiplexed LDPC codes on pa- 
rameterized 2 x 2  MlMO channels will be described. The first 
set of channels is described via an explicit sampling of the set 
of all 2x2  channels. Each of these channels is characterized 
by several parameters, but of greatest importance (as it directly 
affects capacity) is eigenskew. The point of such an assessment 
is that ‘worst’ and ‘best’ case channels. are easily found due 
to the absence of channel matrix averaging that occurs in 
both fast and quasi-static Rayleigh fading experiments. Fur- 
thermore, ‘flatness’ of the excess mutual information measure 
versus channel skew becomes a design criteria for creating 
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LDPC codes that exhibit the highest possible level of robust- 
ness. Again, in our terminology, a code is universal if reliable 
communication (for instance BER = l o r 5 )  occurs at the same 
small excess mutual information level across all channels. Of 
course, the absolute SNR required to achieve a given mutual 
information level on an eigenskew = 0 channel will be different 
than on an eigenskew = I channel. 

Consider a sampling of the continuum of 2 x 2  channels. A 
simple description of the channel sampling problem is given 
as follows, 

0 Rste1/3(1.1)OptC0de 
0 Rate 113 (1 ,O) Opt Code 

0.25 

0.2 . . . . . .  .:. . . . . . .  .:. . . . . . . .  ~ . . . . . . . . . . . . . .  

E 
B 
Tao,15 . . . . . . . .  i . . . . . . .  :. . . . . .  i . . . . . . . .  
e" 
3 [I 

2 0 I8 

. 
. .  : . . . . . .  .: . . . . . . . . . . . . . . . . . .  

' 

0 

W : o  j I i '  < 
I 

0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 

where K = Xz/X1 is the eigenvalue skew of the Hermi- 
tian matrix HHf, Q E [0,n/2], and 9 E [0,211]. In this 
paper we sample the above matrix via the parameters K = 
{0,0.125,0.25,0.5,0.75,1}, Q = { 0 , ~ / 4 , n / 2 }  and 8 = 
(7~/4,37r/4}. Performance on each channel in this sampling 
is measured by the mutual information in excess of the 
transmission rate of 413 bitdchannel-use required by a rate 
113 code (modulating QPSK onto 2 antennas) to achieve a 

Before discussing the performance across these channels we 
draw an analogy to periodic fading SISO channels. Note that 
a period-2 SlSO fading channel, yh = a(* mod 2)zh + nk, with 
fading vector a = (&,A) is equivalent to a diagonal 
6 = 0 2 x 2  matrix fading channel (but requires two channel 
uses to relay the same information). Expanding the work in [4], 
we are able to optimize LDPC degree distributions for period- 
p fading via an adaptation of the Gaussian approximation to 
density evolution. In specific, at iteration 1, degree i variable 
nodes have their mean values updated in correspondence to 
the periodic initial means given by mOi = $ (where aj are 
known fading gains) and the means of messages arriving from 
check nodes (mu), 

BER of 10-5. 

lo? 

Randomly selected edges emanating from variable nodes ad- 
here to the following Gaussian mixture density, 

PPI dt 

j=o i-2 
j i ') = CC $N (mfj(j),Zm!j(i)) (7) 

Using this kernel, codes optimized for (1 , l )  and ( I ,O)  
period-2 fading channels were designed and tested across the 
parameterization of 2 x 2  channels. Both codes have (n. k) = 
(15000,5000). The code optimized for (1.1) has variable node 
degree distribution X l,l)(z) = 0.276032 + 0 . 1 1 1 9 5 ~ ~  + 
gree distribution P ( ~ , ~ ) ( Z )  = 2'. The second code (optimized 
for (1,O)) has degree distributions X(l,o)(z) = 0.33172 + 
0 . 1 2 4 7 ~ ~  +0.0417z3 + 0 . 1 7 8 0 ~ ~  +0.3239d4 and p(l ,o)(z)  = 
0 . 5 ~ ~  + 0.56' 

Points plotted as circles in Fig. 4 illustrate the excess MI 
per real dimension for the ( I , ] )  optimized code. Note that the 
results across Q and 8 at each plotted K are tightly clustered. 

0.17229s3+0.017122 i +0.42261d4 and constrained node de- 

For this code, the best case performance is on the unitary ( K  = 
1) channel where the excess MI per real dimension required 
to achieved BER = low5 is 0.07 bits (which corresponds to 
1.05 dB excess SNR on the eigenskew = 1 channel). The worst 
performance is attained on the singular channels ( K  = 0) where 
the excess MI per real dimension is 0.14 bits (2.5 dB excess 
SNR on the eigenskew = 0 channel). 

Significant improvement in the overall robustness is found 
in the (1.0) optimized code, results for which are plotted as 
squares in Fig. 4 (for Q = n/4 and 8 = n/4). The performance 
on the unitary channel with this code, 0.06 bits excess MI (0.91 
dB excess SNR), is comparable to the performance with the 
(1.1) code. However, the performanceon the singular channels 
improves and the excess MI requirement is reduced to 0. I 1  bits 
(2.0 dB excess SNR). Code design work to further flatten the 
profile of excess MI versus skew is underway. 

In Fig. 5 XI  and Xz are related through MI = log,(l + 
X1)(l + XZ). Contours of MI corresponding to 1.33 and 1.61 
total bits per channel use (or 4 times the number per real 
dimension) are shown. The difference between these two level 
curves corresponds to an excess mutual information of 0.28 
bits (or 0.07 bits per real dimension). The adherence of the 
(1.1) optimized (circles) and (1,O) optimized (squares) codes 
to the 1.61 bit curve is tightest near eigenskew = 1.0 (the 
X1 = line in the plot) and is looser at eigenskew = 0. 

IV. MI PERFORMANCE IN FAST RAYLEIGH FADING 
Fast Rayleigh fading, where the channel matrix is realized 

independently from one transmission time to the next, does 
not fit in the Root and Vmiya paradigm where performance 
is measured across a set of static channels. Nevertheless, this 
measure is frequently of interest to the community. Therefore, 
we examine the performance of the previous rate 113 ( I , I )  
optimized code and a rate 1/2 (1.1) optimized code each 
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Fig. 5. Slmulatian relulls sharing (A,, Xz) opera@ points a! BER = 
for length 15,ooO coder optimized for (1.1) and (1.0) pek&2 SISO channels. 
Also shown are A2 VI. AI level arm for MI = 1.33 and 1.61 bildchmnel 
use. 

-5 -2.5 0 2.5 5 7.5 10 12.5 15 
EdN,, ( d W  

Fig. 6.  Modulation constmined and unconrmined ergcdic N x N Rayleigh 
capacilier. Top to balltom 4 x 4 QPSU 3 x 3 QPSK. 2 x 2 QPSK, t Y 1 
QPSK. I x 1 BPSK. Rate 1/3 LDPC performance (quare). Rate IR LDPC 
performance (circle). both a1 BER = I O @  The S N R  Gap for each m e  is 
less than 1.568. the MI gap is !CIS than 0.11 bildrwl-dim (sec Fig. 7.) 

I 

bit-multiplexed onto 1x1. 2x2, 3x3, and 4x4 symbol-by- 
symbol (fast) fading Rayleigh channels. Fig. 6 describes 
code performance at BER=10-5 against constrained ergodic 

N = 1,2,3,4).  Code robustness in terms of excess mutual 
information per real dimension required to achieve BER=10W5 
is provided in Fig. 7. QPSK 1 x 1 Rayleigh faded performance 
is the same as the BPSK 1 x I performance on a per dimension 
basis. Since OPSK i s  an orthoeonal extension of BPSK (when 

.E 

3 
U 

I 

$ 

Rayleigh capacity for ( I x  I )  BPSK and ( N  x N )  QPSK (for . . . . . . . . . . . .  

o,o 
W 

. I 

the real and imaginary additive noise components are indepen- 
dent) this result is expected. The excess mutual information 
performance per real dimension for increasing dimensionality 
(2x2,3x3,4x4. etc.) remains essentially constant, aroundO.l 
bits, indicating the robust and scalable operation of the codes. 

V. CONCLUSION 

This paper has taken a mutual information, rather than a 
signal-to-noise ratio, approach to measuring code performance 
over linear Gaussian and partial-band jamming channels. Root 
and Varaiya showed that 'universal' codes must exist that can 
communicate reliably on all of the channels in a given set 
provided that the rate of the code is greater than the smallest 
mutual information of all channels in the set. Our results show 
that properly designed LDPCs can be thought of as universnl 
codes for partial-band jamming, quasi-static fading, and fast 
Rayleigh fading channels. 

0 05 
BPSK l x t  QPSK 1 x 1  QPSK 2x2 QPSK 3x3 OPSK 4x4 

Modulation and N. x N. 

Fig. 7. Shulationr mul l s  show that excess mumnl information pr real 
dimension in far Rayleigh fading remains essentially con~tant across N x N 
channels for N = I to 4. 

where x(0 is the eth transmit hypothesis (of Z N t M *  total 
possible hypotheses). Since likelihood ratios are ultimately 
computed, the quantity p(y) is normalized away and the 
quantities of interest are p (yIx(') ,H) and p ( ~ ( ' 1 ) .  The latter 
is initialized as a uniform distribution, but will be updated via 
the recursions of the message passing decoder. This leaves the 
key measure to be extracted from the channel, 

1 
APPENDIX - MAXIMUM A-POSTERIORI DETECTION FOR 

THE LINEAR GAUSSIAN VECTOR CHANNEL 

We are interested in finding the probability of each transmit 
hypothesis given the channel and the received observation (we 
drop time index k to simplify notation), 

The joint in (8) must he marginalized before it can be u&d 
to express variable node reliabilities in the message passing 
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decoder. We express this marginalization in terms of log- 
likelihood ratios as follows [l4], 

. . .  , 

C P (~lx('), H) P (x(')) 
f ~ ( ~ ~ x l ~ l ( b j ) = l )  

where x(')(bj) specifies the j th  bit of transmit hypothesis e. 
There are 2N'Mc-1 terms in each summation and a total 

of QM, log-likelihwd-ratios (LLRs) must be calculated for 
each received vector y. Reliability updates from the decoder 
are incorporated in the detector via the approximation, 

N,M.-l 

P(X) '5 n P(x(bj)), (11) 
j=0 

where x = [ b o b l . .  . bN,M.-l]. This product can be used in its 
entirety to update (IO) and then the intrinsic reliability 

should be backed out to form updated observation values for 
the next decoder iteration [IS], 

LEi, (X(bj)) = Lat(x(bj)) - LGraph ( X ( b j ) ) .  (13) 

Iterative processing in the above manner approximates an 
optimal joint detectionldecoding algorithm. If the feedback 
path to the detector is removed then the operational capacity 
of the system is given by the sum of the independent bit plane 
capacities. Ths result is stated in the following theorem. 

Theorem I :  The mutual information available to an iterative 
decoder for the c u e  of a generalized Gaussian channel without 
feedback between the detector and decoder is given by 

N,M,-I 

i (X;Y(H) = I(X(bj);YIH), (14) 

where X(b,) calls out the j th bit in the transmit vector X 
which carries a total of NtM, hits, and X,Y are RVs and H 
is the given channel matrix. 

Pmof Consider the decoding scenario where the instan- 
taneous mutual information ent!ring the decoder due to each 
received vector Yk is given by I, (here we re-introduce time 
index k), 

j=0 

NtM.-1 

f, = f'>, where 
i=0 

fb i  =hb(xk(bj)))  -hb(xk(bj)lYr,Hk)). 

Observe that f k  is the sum of the instantaneous marginalized 
bit reliability mutual informations. The marginalization step 
reduces the information entering the decoder at each receive 
time k from the instantaneous vector-wise joint murual infor- 
mation, I (xk; yklHk), to the sum of the instantaneous bitwisi 

mutual informations. or f k .  Explicitly, f, is defined as (for 
uniform p(xt(bj)). 

To complete the proof, observe that the expectation of the 
instantaneous mutual information converges to the ergodic 
mutual information of the sum of the individual bit planes 
in the limit of infinite sample size n, 

N.M.-l 1 n-l -ciks I(X(bj);YIH). (17) 
j-0 

An exchange in the order of the two outermost summations in 
(17) left-hand-side and (16) respectively yields this asymptotic 
result. Hence the average given by (14) is the information 
available to the closed iterative decoder. 

The results generated in this paper for MIMO systems with 
dimension greater than 1 x 1 have each full graph iteration 
(messages propagate from variable to constraint nodes and 
back) followed by a detector update. 

n k=O 
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