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LDPC Decoders with
Informed Dynamic Scheduling

Andres I. Vila Casado, Miguel Griot, and Richard D. Wesel, Senior Member, IEEE

Abstract—Low-Density Parity-Check (LDPC) codes are usu-
ally decoded by running an iterative belief-propagation (BP), or
message-passing, algorithm over the factor graph of the code. The
traditional message-passing scheduling, called flooding, consists
of updating all the variable nodes in the graph, using the same
pre-update information, followed by updating all the check nodes
of the graph, again, using the same pre-update information.
Recently, several studies show that sequential scheduling, in
which messages are generated using the latest available infor-
mation, significantly improves the convergence speed in terms
of number of iterations. Sequential scheduling introduces the
problem of finding the best sequence of message updates. We
propose Informed Dynamic Scheduling (IDS) strategies that
select the message-passing schedule according to the observed
rate of change of the messages. In general, IDS strategies require
computation to select the message to update but converge in fewer
message updates because they focus on the part of the graph
that has not converged. Moreover, IDS yields a lower error-
rate performance than either flooding or sequential scheduling
because IDS strategies overcome traditional trapping-set errors.
This paper presents IDS strategies that address several issues
including performance for short-blocklength codes, complexity,
and implementability.

Index Terms—Belief propagation, message-passing schedule,
error-control codes, low-density parity-check codes.

I. INTRODUCTION

BELIEF Propagation (BP) provides Maximum-Likelihood
(ML) decoding over a cycle-free factor-graph represen-

tation of a code as shown in [1] and [2]. In some cases, BP
over loopy factor graphs of channel codes has been shown to
have near-ML performance. BP performs well on the (loopy)
bi-partite factor graphs composed of variable nodes and check
nodes that describe LDPC codes.

Loopy BP is an iterative algorithm and therefore requires a
message-passing schedule. Flooding, or simultaneous schedul-
ing, is the most popular scheduling strategy. In every iteration,
flooding simultaneously updates all the variable nodes (with
each update using the same set of pre-update data) and then,
updates all the check nodes (again, with each update using the
same pre-update information).
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Recently, several papers have investigated different types of
sequential, or non-simultaneous, scheduling strategies in BP
LDPC decoding. With sequential scheduling, the messages are
generated sequentially using the latest available information.
Sequential scheduling was introduced as a sequence of check-
node updates in [3] and [4] and as a sequence of variable-node
updates in [5] and [6]. It is also presented in [7] under the
name of Layered BP (LBP), in [8] and [9] as serial schedule,
in [10] as row message passing, column message passing and
row-column message passing, among others.

Monte-Carlo simulations and theoretical analysis in [3]-
[10] show that sequential scheduling converges twice as fast
as flooding when used in LDPC decoding. It has also been
shown that sequential updating doesn’t increase the decoding
complexity per iteration, thus allowing the convergence speed
increase at no cost [10], [11]. Although the literature listed
above presents a variety of sequential schedules, they have
very similar performance results [10]. In this paper, the
sequential-scheduling strategy used for comparison is LBP, a
sequence of check-node updates, as presented in [4] and [7].

Sequential updating introduces the problem of finding the
ordering of message updates that results in the best conver-
gence speed and/or code performance. The current state of the
messages in the graph can be used to dynamically update the
schedule, producing what we call Informed Dynamic Schedul-
ing (IDS). We presented IDS in [12] and first published it in
[13]. To our knowledge, these and the simultaneous work in
[14] are the first works on the subject of dynamic scheduling
for LDPC decoding. The author of [14] orders the updates
in each iteration of a min-sum decoder using the concept
of neighborhood reliabilities. We focus on a BP decoder and
algorithms that select a specific message or group of messages
to update based on metrics that indicate the importance of
the messages. In other words, our algorithms update some
messages multiple times before other messages are updated
once, but in [14] every message is updated in every iteration.

Prior to these works, the only published well-defined IDS
strategy is the Residual Belief Propagation (RBP) algorithm
proposed in [15], which inspired our investigation. RBP was
introduced for general sequential message passing, not specif-
ically for LDPC decoding. RBP is a greedy algorithm that
organizes the message updates according to the magnitude of
the difference between the message generated in the current
update and the message generated in the previous update.
The intuition is that the larger this difference, the further this
part of the graph is from convergence. Therefore, propagating
messages with large differences first will make BP converge
with fewer message updates.
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Simulations show that RBP LDPC decoding has a better
error-rate performance than LBP after a small number of
message updates, but its error-rate performance for a large
number of message updates is worse. This behavior is com-
monly found in greedy algorithms, which tend to arrive at a
solution faster, but arrive at the correct solution less often. We
propose a less-greedy IDS strategy in which all the outgoing
messages of a check-node are generated simultaneously. We
call this strategy Node-wise Scheduling (NS), and it delivers
better frame and bit error rate than LBP across all possible
numbers of message updates.

Both RBP and NS require precomputation of potential mes-
sage updates in order to pick which message to update. This
means that numerous messages are provisionally computed
but not actually used in a message update which increases the
complexity of the decoding. We propose using the min-sum
check-node update, introduced in [16] and explained in [17],
to simplify the computation of these provisional messages and
significantly decrease the complexity of both strategies while
maintaining the same performance. In our implementation,
once a message is selected for an update, the provisional min-
sum update value is replaced by the more precise sum-product
value.

We study the behavior of IDS for different types of codes
and applications such as short-blocklength LDPC codes, par-
allel decoders and lower-complexity decoders. We propose ap-
propriate IDS strategies that work well for these applications.

This paper is organized as follows. Section II reviews LDPC
decoding and the flooding and LBP schedules. Section III
introduces RBP and NS for LDPC decoding as well as the
min-sum IDS strategies. It also explains their performance by
giving intuitive explanations and analyzing their behavior in
the presence of traditional trapping-sets. Section IV analyzes
the behavior of IDS on short-blocklength LDPC codes and in-
troduces strategies that improve performance in this scenario.
Section V introduces schedules more suitable for hardware
implementation including a lower-complexity IDS strategy and
a parallel IDS strategy. Section VI delivers the conclusions.
Simulation results of the various message-passing schedules
are presented along the way.

II. BP DECODING FOR LDPC CODES

In general, BP consists of the exchange of messages
between the nodes of a graph. Each node generates and
propagates messages to its neighbors based on its current
incoming messages.

The LDPC code graph is a bi-partite graph composed by
𝑁 variable nodes 𝑣𝑗 for 𝑗 ∈ {1, . . . , 𝑁} that represent the
codeword bits and 𝑀 check nodes 𝑐𝑖 for 𝑖 ∈ {1, . . . ,𝑀} that
represent the parity-check equations. The exchanged messages
correspond to the Log-Likelihood Ratio (LLR) of the probabil-
ities of the bits. The sign of the LLR indicates the most likely
value of the bit and the absolute value of the LLR gives the
reliability of the message. Let the channel information LLR of
the variable node 𝑣𝑗 be denoted by 𝐶𝑣𝑗 . Then, for any 𝑐𝑖 and
𝑣𝑗 that are connected, the two message generating functions
are:

𝑚𝑣𝑗→𝑐𝑖 =
∑

𝑐𝑎∈𝒩 (𝑣𝑗)∖𝑐𝑖
𝑚𝑐𝑎→𝑣𝑗 + 𝐶𝑣𝑗 , (1)

𝑚𝑐𝑖→𝑣𝑗 = 2× atanh

⎛
⎝ ∏

𝑣𝑏∈𝒩 (𝑐𝑖)∖𝑣𝑗
tanh

(𝑚𝑣𝑏→𝑐𝑖

2

)⎞⎠ , (2)

where 𝑚𝑣𝑗→𝑐𝑖 denotes the variable-to-check message from 𝑣𝑗
to 𝑐𝑖 and 𝒩 (𝑣𝑗) ∖𝑐𝑖 denotes the neighbors of 𝑣𝑗 excluding 𝑐𝑖.

BP decoding consists of the iterative update of the messages
until a stopping rule is satisfied. In flooding scheduling,
an iteration consists of the simultaneous update of all the
messages 𝑚𝑣→𝑐 according to Eq. (1) followed by the si-
multaneous update of all the messages 𝑚𝑐→𝑣 according to
Eq. (2). In sequential scheduling, an iteration consists of
the sequential update of all the messages 𝑚𝑣→𝑐 as well as
all the messages 𝑚𝑐→𝑣 in a specific pre-defined order. This
pre-defined order is usually designed to allow the parallel
processing of the messages. As an example, a possible LBP
schedule is described in Algorithm 1. The algorithm stops if
the decoded bits satisfy all the parity-check equations or a
maximum number of iterations is reached.

Algorithm 1 LBP decoding for LDPC codes
1: Initialize all 𝑚𝑐→𝑣 = 0
2: for every 𝑖 ∈ {1, . . . ,𝑀} do
3: for every 𝑣𝑘 ∈ 𝒩 (𝑐𝑖) do
4: Generate and propagate 𝑚𝑣𝑘→𝑐𝑖

5: end for
6: for every 𝑣𝑘 ∈ 𝒩 (𝑐𝑖) do
7: Generate and propagate 𝑚𝑐𝑖→𝑣𝑘

8: end for
9: end for

10: if Stopping rule is not satisfied then
11: Position=2;
12: end if

III. INFORMED DYNAMIC SCHEDULING (IDS)

A. Residual Belief Propagation (RBP)

RBP, as introduced in [15], is an IDS strategy that updates
messages according to an ordering metric called the residual.
The message with the largest residual is updated first. A
residual is the norm (defined over the message space) of the
difference between the values of a message before and after
an update. For a message 𝑚𝑛𝑖→𝑛𝑗 that goes from node 𝑛𝑖 to
node 𝑛𝑗 , the residual is defined as:

𝑟
(
𝑚𝑛𝑖→𝑛𝑗

)
=

∥∥∥𝑚𝑛𝑒𝑤
𝑛𝑖→𝑛𝑗

−𝑚𝑜𝑙𝑑
𝑛𝑖→𝑛𝑗

∥∥∥ , (3)

where the superscript 𝑛𝑒𝑤 denotes the message to be propa-
gated now and 𝑜𝑙𝑑 denotes the message that was propagated
the last time 𝑚𝑛𝑖→𝑛𝑗 was updated.

The intuitive justification of this approach is that as loopy
BP converges, the differences between the messages before
and after an update diminish. Therefore, if a message has a
large residual, it means that it’s located in a part of the graph
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that hasn’t converged yet. Therefore, propagating that message
first should speed up convergence.

In LLR BP decoding, all the message spaces are one-
dimensional (i.e. on the real line). Hence, the residuals are
the absolute values of the difference of the LLRs.

Let us analyze the behavior of RBP decoding for LDPC
codes in order to simplify the decoding algorithm. Initially, all
the messages 𝑚𝑣→𝑐 are set to the value of their corresponding
channel message 𝐶𝑣 . The residuals of all the variable-to-
check messages 𝑟(𝑚𝑣→𝑐) are initially equal to 0. Then,
without loss of generality, we assume that the message 𝑚𝑐𝑖→𝑣𝑗

has residual 𝑟∗, which is the largest of the graph. After
𝑚𝑐𝑖→𝑣𝑗 is propagated, only residuals 𝑟(𝑚𝑣𝑗→𝑐𝑎) change, with
𝑐𝑎 ∈ 𝒩 (𝑣𝑗) ∖𝑐𝑖.

The new residuals 𝑟(𝑚𝑣𝑗→𝑐𝑎) are equal to 𝑟∗ because 𝑟∗

was the change in the message 𝑚𝑐𝑖→𝑣𝑗 and Eq. (1) shows that
the message-update operation of a variable node is the sum
of incoming messages. Therefore, the just-updated messages
𝑚𝑣𝑗→𝑐𝑎 now have the largest residuals in the graph.

Assuming that propagating the messages 𝑚𝑣𝑗→𝑐𝑎 won’t
generate any new residuals larger than 𝑟∗, RBP can be
simplified. Every time a message 𝑚𝑐→𝑣 is propagated, the
outgoing messages from the variable node 𝑣 will be updated
and propagated. After propagation of the messages from the
variable node 𝑣, all residuals for messages from variable
nodes are again zero. This facilitates the scheduling since
we need only to search for the largest 𝑟(𝑚𝑐→𝑣) in order
to find out the next message to be propagated. RBP LDPC
decoding is formally described in Algorithm 2. Another way
to implement RBP, presented in [15], is to create a priority
queue of messages, ordered by the value of their residuals, so
at each step the first message in the queue is updated and then
the queue is reordered using the new information.

Algorithm 2 RBP decoding for LDPC codes
1: Initialize all 𝑚𝑐→𝑣 = 0
2: Initialize all 𝑚𝑣𝑗→𝑐𝑖 = 𝐶𝑗

3: Compute all 𝑟(𝑚𝑐→𝑣)
4: Find 𝑟(𝑚𝑐𝑖→𝑣𝑗 ) = max 𝑟(𝑚𝑐→𝑣)
5: Generate and propagate 𝑚𝑐𝑖→𝑣𝑗

6: Set 𝑟(𝑚𝑐𝑖→𝑣𝑗 ) = 0
7: for every 𝑐𝑎 ∈ 𝒩 (𝑣𝑗) ∖𝑐𝑖 do
8: Generate and propagate 𝑚𝑣𝑗→𝑐𝑎

9: for every 𝑣𝑏 ∈ 𝒩 (𝑐𝑎) ∖𝑣𝑗 do
10: Compute 𝑟(𝑚𝑐𝑎→𝑣𝑏)
11: end for
12: end for
13: if Stopping rule is not satisfied then
14: Position=4;
15: end if

There is an intuitive way to see how RBP decoding works
for LDPC codes. Let us assume that at a certain moment in the
decoding, there is a check node 𝑐𝑖 with residuals 𝑟(𝑚𝑐𝑖→𝑣𝑏) =
0 for every 𝑣𝑏 ∈ 𝒩 (𝑐𝑖). Now let us assume that there is
a change in the value of the message 𝑚𝑣𝑗→𝑐𝑖 . The largest
change in a check-to-variable message out of 𝑐𝑖 (therefore the
largest residual) will occur in the edge that corresponds to the
incoming variable-to-check message with the lowest reliability

(excluding the message 𝑚𝑣𝑗→𝑐𝑖). Let us denote by 𝑣𝑘 the
variable node that is the destination of the message that has
the largest residual 𝑟(𝑚𝑐𝑖→𝑣𝑘). Then, the message 𝑚𝑣𝑘→𝑐𝑖

has the smallest reliability out of all messages 𝑚𝑣𝑏→𝑐𝑖 , with
𝑣𝑏 ∈ 𝒩 (𝑐𝑖) ∖𝑣𝑗 .

This implies that, for this particular scenario, once there’s
a change in a variable-to-check message, RBP will propagate
first the message to the variable node with the lowest reliabil-
ity. This makes sense intuitively because the lowest-reliability
variable node is more likely to be in error than the higher-
reliability ones.

The negative effects of the greediness of RBP are apparent
in the case of an unsatisfied check node connected to only
one variable node in error. RBP will propagate first the
message that will “correct" the variable node with the lowest
reliability. Again, this is the most likely variable node to be in
error. However, if that variable node was actually correct, the
variable node in error will not be corrected and there will be
one more error. The information from this new error will likely
be propagated next because the largest changes in incoming
messages tend to induce the largest residuals. This analysis
helps us see why RBP corrects the most likely errors with
fewer message updates, but has trouble correcting “difficult"
errors as will be seen in the performance plots. We define
“difficult" errors as the errors that need a large number of
message updates to be corrected.

B. Node-wise Scheduling decoding for LDPC codes

In order to obtain a better performance, a less greedy
scheduling strategy can be used. As noted earlier, some of
the greediness of RBP comes from the fact that it tends to
propagate first the message to the least reliable variable node.
We propose to update and propagate simultaneously all the
check-to-variable messages that correspond to the same check
node 𝑐𝑖, instead of only updating and propagating the message
with the largest residual 𝑟(𝑚𝑐𝑖→𝑣𝑗 ). It can be seen, using the
analysis presented earlier, that this algorithm is less likely to
propagate the information from new errors in the next update.
This is because there are many variable nodes that change as
opposed to RBP where only one variable node changes. We
call this less-greedy strategy Node-wise Scheduling (NS).

NS is similar to LBP; it is a sequence of check-node up-
dates. However, unlike LBP, which follows a pre-determined
order, the check node to be updated next is chosen dynamically
according to a metric 𝛼𝑐. Each check node 𝑐𝑖 has a metric
𝛼𝑐𝑖 that corresponds to the largest 𝑟(𝑚𝑐𝑖→𝑣𝑏) for every
𝑣𝑏 ∈ 𝒩 (𝑐𝑖). NS is formally described in Algorithm 3.

NS converges in fewer message updates and yields a lower
error-rate for a large number of message updates than LBP.
NS does not converge quite as rapidly as RBP, but it does
converge to the right answer far more often.

C. Min-sum IDS strategies

Both RBP and NS are more complex than traditional
scheduling strategies because they incur two extra processes:
residual computation and either a search for the largest resid-
ual, or a continuous ordering of the residuals. The residual
computation requires the value of the message that would be
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Algorithm 3 NS decoding for LDPC codes
1: Initialize all 𝑚𝑐→𝑣 = 0
2: Initialize all 𝑚𝑣𝑗→𝑐𝑖 = 𝐶𝑗

3: Compute all 𝛼𝑐

4: Find 𝑖 = arg max
𝑢={1...𝑀}

𝛼𝑐𝑢

5: for every 𝑣𝑘 ∈ 𝒩 (𝑐𝑖) do
6: Generate and propagate 𝑚𝑐𝑖→𝑣𝑘

7: Set 𝛼𝑐𝑖 = 0
8: for every 𝑐𝑎 ∈ 𝒩 (𝑣𝑘) ∖𝑐𝑖 do
9: Generate and propagate 𝑚𝑣𝑘→𝑐𝑎

10: Compute 𝛼𝑐𝑎

11: end for
12: end for
13: if Stopping rule is not satisfied then
14: Position=4;
15: end if

propagated. This requires additional complexity since there
will be numerous message computations that will only be used
to calculate residuals. We propose to use the lower-complexity
min-sum check-node update approximation, [16] and [17], to
compute the approximate residuals as follows,

𝑟𝑛𝑖→𝑛𝑗 (𝑚𝑘) =
∥∥∥�̃�𝑛𝑒𝑤

𝑛𝑖→𝑛𝑗
− �̃�𝑜𝑙𝑑

𝑛𝑖→𝑛𝑗

∥∥∥ , (4)

where the tilde indicates the min-sum approximation. The
min-sum update of all check-to-variable messages emanating
from a particular check node begins by identifying the two
variable-to-check messages with the two smallest reliabilities.
The smallest reliability is assigned as the check-to-variable
message reliability for all the edges except the edge that
corresponds to the smallest variable-to-check reliability. The
second smallest reliability is assigned to that remaining edge.
The correct sign is computed for all the check-to-variable mes-
sages. Using the min-sum approximate residual function Eq.
(4) in Algorithms 2 and 3, defines Approximate RBP (ARBP)
decoding and Approximate NS (ANS) decoding respectively.
These significantly less complex algorithms perform as well
as the ones presented in Section III. Note that we only propose
to use min-sum for the residual computation. For the actual
propagation of messages we use the full update equations (1)
and (2).

We compare the performance of traditional scheduling
strategies and IDS strategies vs. the number of check-to-
variable messages propagated. This comparison gives a clear
idea of how BP decoding performance changes with different
scheduling strategies. In traditional schedules like flooding
and LBP, the algorithm checks if the decoded bits satisfy the
parity-check equations after each iteration. In order to maintain
the same stopping rule check complexity, our IDS algorithms
check the stopping rule after the number of check-to-variable
messages passed is a multiple of the total number of edges in
the LDPC graph.

This approach compares the algorithms for the same number
of messages passed (and thus, same message-generation com-
plexity). However, for the same number of message updates,
an IDS strategy has more overall complexity than traditional
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Fig. 1. FER vs. number of check-to-variable message updates of a
blocklength-1944 rate-1/2 code using flooding, LBP, RBP, ARBP, NS and
ANS for a fixed 𝐸𝑏/𝑁𝑜 = 1.75 dB.

schedules because of the computation and sorting of residuals
required for selecting the next update to be performed.

Figure 1 shows the AWGN performance of the scheduling
strategies discussed above, flooding, LBP, RBP, ARBP, NS,
and ANS, vs. the number of check-to-variable message up-
dates. The code simulated is a rate-1/2 LDPC code with block-
length 1944. The figure shows that RBP has a significantly
better performance than LBP for a small number of message
updates, but a sub-par performance for a larger number of
message updates. This suggests that RBP has trouble with
“difficult" errors as discussed earlier.

NS decoding, while not as good as RBP for a small
number of message updates, performs much better than RBP
after a number of message updates that would be typical in
many common applications. NS also shows consistently better
performance than LBP for any number of message updates.
The results for flooding are shown for comparison purposes,
and replicate the theoretical and empirical results of [4]-[10]
that claim that flooding needs twice the number of iterations
as sequential scheduling strategies such as LBP.

Figure 1 also shows the performance of the approximate
residual algorithms and compares them with the algorithms
that use the exact residuals. It can be seen that both ARBP
and ANS perform almost indistinguishably from RBP and NS
respectively. We reiterate that the approximate residual di-
minishes the complexity of residual computation significantly,
thus, making ARBP and ANS more attractive than their exact
counterparts.

Figure 2 and Fig. 3 show the performance of flooding, LBP,
ARBP, and ANS for the blocklength 1944 rate-1/2 and rate
5/6 LDPC codes selected for the IEEE 802.11n standard [18].
These simulations were run for a high number of message
updates (the equivalent of 200 LBP iterations) and show that
ANS still achieves a better FER performance than LBP. Figure
3 also shows that even for high-rate codes, ANS converges in
fewer message updates, and to a lower error-rate than LBP.
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Fig. 2. FER vs. number of check-to-variable message updates of the 802.11n
blocklength-1944 rate-1/2 code using flooding, LBP, ARBP and ANS for a
fixed 𝐸𝑏/𝑁𝑜 = 1.75 dB. The dashed line extrapolates the performance of
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In the rest of the paper we focus on studying the behavior of
ANS under different conditions. We focus on ANS decoding
because both ANS and NS achieve very similar performance
and ANS is less complex.

D. NS and ANS can overcome Trapping-set errors

Using residuals as the ordering metric for IDS was proposed
to allow convergence in fewer message updates than LBP, the
updates concentrate on the part of the graph that has not
converged and thus it accelerates the convergence process.
However, the previously presented performance results of both
NS and ANS show that the algorithms also perform better than
LBP for a large number of message updates. Figure 2 and
Fig. 3 show that for a large number of message updates (the
equivalent of 200 LBP iterations), ANS reaches an FER that
neither flooding nor LBP can reach even after many iterations.

Simulation results show that the lower error rates are
achieved because NS and ANS allow the LDPC decoder
to overcome many trapping sets. Trapping sets, or near-
codewords, as defined in [19] and [20], are small variable-
node sets such that the induced sub-graph has a small number
of odd-degree neighbors. In [20], Richardson also mentions
that the most troublesome trapping set errors are those where
the odd-degree neighbors have degree 1 (in the induced sub-
graph), and the even-degree neighbors have degree 2 (in the
induced sub-graph).

Figure 4 shows an example of how NS overcomes trapping
sets. Updating the check node with the largest metric allows
the decoding algorithm to focus on a part of the graph that
hasn’t converged yet. Thus, it is likely that NS solves the
variable nodes in error by sequentially updating the degree-1
check nodes connected to them. If a variable node in a trapping
set is corrected, the induced sub-graph of the variable-nodes-
in-error will change as follows. At least one check node that
was degree-2 becomes degree-1 (in the induced sub-graph of
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Fig. 4. Check-node update sequence that solves a trapping set. Shaded
nodes represent the check node that is updated and the variable node that is
corrected.

variable-node errors) after the variable-node correction. This
check node is likely to be picked as the next check node to be
updated by ANS because its messages will have large residuals
produced when the check-to-variable messages changed signs.
This update will probably correct another variable node in the
trapping set.

ANS is more effective than LBP when solving trapping
sets because it can sequentially update the degree-1 (in the
induced sub-graph) check nodes that solve the errors. Since
LBP is forced to update check nodes in a specific order, it is
likely that degree-2 (in the induced sub-graph) check nodes,
are updated first, which reinforces the errors.

We corroborated this analysis by studying the behavior of
the decoders for the noise realizations that could not be solved
by the LBP decoder of the 802.11n rate-1/2 code even after
200 iterations and that ANS solved in a very small number
of message updates (less than the equivalent of 10 LBP
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iterations). We found that a large majority of the LBP errors in
these cases are caused by trapping sets that ANS solved in the
manner mentioned above. Also, Fig. 5 shows the performance
of the blocklength-2640 Margulis code, proposed in [21],
using flooding, LBP and ANS. The errors of the blocklength-
2640 Margulis code at high SNRs have been shown to be
dominated by trapping-set errors in [19] and [20]. The ANS
performance improvement with respect to both flooding and
LBP confirms that ANS can correct trapping-set errors that
traditional scheduling strategies cannot.

IV. ANS FOR SHORT-BLOCKLENGTH LDPC CODES

A. Shortcomings of ANS decoding

ANS decoding, while better than traditional scheduling be-
cause it solves trapping sets, presents other types of errors that
don’t occur with LBP and flooding. They can be categorized
into two classes: non-ML undetected errors and myopic errors.

We define non-ML undetected errors as undetected errors
where the squared Euclidian distance between the decoded
codeword and the received signal is larger than the squared
Euclidian distance between the transmitted codeword and the
received signal. This means that an ML decoder wouldn’t
make this mistake. Given its greedy nature, ANS makes more
non-ML undetected errors than traditional LDPC decoders.

If there is a received signal that is near the border between
two decoding regions (Voronoi regions), the initial BP message
updates can take the decoder in any direction. ANS is more
likely to make non-ML undetected errors than flooding or
LBP because it has the ability to update only a part of the
graph. This locally optimum approach is more likely to go in
the wrong direction than the more global approach of LBP
and flooding. The probability that ANS makes a non-ML
undetected error decreases as the received signal is farther
from the border. Thus, the negative effect of this behavior is
more noticeable in the decoding of short-blocklength LDPC
codes. Short-blocklength codes have a minimum Hamming
distance small enough that the probability of receiving a signal
near the border of two decoding regions is comparable to the
probability of loopy-BP errors in high-SNR regimes.

Myopic decoding errors (the second type of errors cause
by ANS) occur when the decoder focuses on a small number
of check nodes despite the fact that many other bits in error
need to be solved in a different part of the graph. Myopic
errors become significant when the graph has many length-4
cycles. If ANS updates one of the check nodes in a length-
4 cycle sub-graph, it is likely that the next check node to
be chosen is the other one in the cycle because it receives
two updated messages from the updated variable nodes. Thus,
if the code has graph structures that contain many length-4
cycles, ANS can become stuck repeatedly updating the same
small number of check nodes even if there are errors on other
parts of the code. Simulations show that myopic errors are
only significant for codes that present densely connected sub-
graphs such as randomly constructed short-blocklength codes
that allow length-4 cycles.

B. IDS strategies for short-blocklength LDPC codes

We propose mixed strategies that combine LBP and ANS
message updates in order to correct trapping-set errors and
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Fig. 5. AWGN performance of the blocklength-2640 Margulis code decoded
by 3 different scheduling strategies: flooding, LBP and ANS. A maximum of
the number of message updates in 50 LBP iterations was used.

avoid the greedy ANS errors. The decoder starts by performing
LBP iterations and then switches to ANS. Fixed LBP/ANS
(F-LBP/ANS) first does a pre-determined number of LBP
iterations 𝜉 and then switches to ANS.

Given that one of the main advantages of ANS is the
fact that it solves trapping sets, we propose another mixed
strategy that we call Adaptive LBP/ANS (A-LBP/ANS). In
A-LBP/ANS the decoder switches from LBP to ANS when
the number of unsatisfied check nodes is below a certain value
𝜁. This makes sense given that the dominant trapping sets are
those that have a small number of unsatisfied check nodes
[20]. Thus, LBP will decode until it hits a trapping set with a
small number of unsatisfied check nodes where ANS, better
equipped to solve trapping sets, takes over. Since an ANS is
more complex than LBP, these lower-complexity mixed strate-
gies are also attractive for larger-blocklength codes because
of their error-rate performance, which is similar to ANS. The
optimal values of 𝜉 and 𝜁 can be found through Monte-Carlo
simulations.

Table I shows the FER and Undetected FER (UFER) of
5 different rate-1/2 LDPC codes decoded using 5 different
scheduling strategies. All the codes have blocklength 648, have
the same variable-node degree distribution and the same con-
centrated check-node degree distribution. The UFER is defined
as the total number of frames with undetected errors divided
by the total number of frames simulated. The simulations
correspond to an AWGN channel with 𝐸𝑏/𝑁𝑜 = 3 dB and a
maximum number of message updates equivalent to 50 LBP
iterations was used.

Code A is a random code constructed using the Ap-
proximate Cycle EMD (ACE) and the Stopping-Set Check
(SSC) graph constraint algorithms proposed in [22] and [23]
respectively. These algorithms were designed to avoid the
presence of small stopping sets. However, this code allows the
presence of length-4 cycles. Code B was constructed to avoid
only length-4 cycles. The ACE and the SSC algorithms were
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TABLE I
FER AND UFER OF 5 DIFFERENT LDPC CODES DECODED BY 5 DIFFERENT SCHEDULING STRATEGIES: FLOODING, LBP, ANS, F-LBP/ANS WITH

𝜉 = 35 AND A-LBP/ANS WITH 𝜁 = 5. THE CHANNEL USED IS AWGN WITH 𝐸𝑏/𝑁𝑜 = 3 𝑑𝐵.

Flooding LBP ANS F-LBP/ANS A-LBP/ANS
Code FER UFER FER UFER FER UFER FER UFER FER UFER

A 4.2e-5 1.1e-6 1.7e-5 1.0e-6 5.8e-5 3.5e-6 3.9e-6 1.3e-6 3.9e-6 2.0e-6
B 1.6e-4 3.2e-6 1.1e-4 2.2e-6 3.4e-5 2.9e-5 2.0e-5 4.7e-6 1.5e-5 1.0e-5
C 3.4e-5 1.1e-6 1.6e-5 1.1e-6 5.1e-6 4.6e-6 3.0e-6 1.2e-6 2.6e-6 1.6e-6
D 4.4e-5 4.4e-6 3.0e-5 5.3e-6 1.9e-5 1.8e-5 1.2e-5 7.5e-6 1.1e-5 9.2e-6
E 2.2e-5 8.9e-7 6.5e-6 2.0e-6 5.8e-6 5.3e-6 3.3e-6 2.4e-6 4.2e-6 3.4e-6

used to construct code C and length-4 cycles were avoided.
Code D was constructed using the PEG algorithm presented in
and [24]. The PEG algorithm is designed to locally maximize
the girth of the graph as the matrix generation process goes
on. This code has a girth of 6 so it doesn’t have any length-4
cycles either. Finally, code E is an LDPC code selected for
the IEEE 802.11n standard [18].

Let us analyze the performance of the traditional scheduling
strategies: flooding and LBP. We corroborated experimentally
that the detected errors, which are the difference between their
FER and UFER values, are mostly trapping-set errors. Also,
as expected, LBP performs better than flooding.

ANS outperforms LBP for all the codes except for code A.
This is the only code in the group that has length-4 cycles and
we experimentally corroborated that myopic errors described
in Section IV dominate the performance of ANS decoding of
this code at this SNR. As further proof, code C was designed
to keep the same ACE and SSC graph constraints as code
A while avoiding length-4 cycles. Code C doesn’t incur in
any ANS myopic errors. This demonstrates empirically that
myopic errors dominate the error performance when the graph
has several length-4 cycles. Furthermore, we see that the ANS
UFERs are larger than their corresponding UFERs for flooding
and LBP. This is due to an increase in the number of non-ML
undetected errors as explained in Section IV. Table I shows
that the ANS FER for the last four codes is dominated by
the undetected errors; the percentages of frame errors that are
undetected by ANS for codes B, C, D, and E are 85%, 90%,
95%, and 91% respectively.

Table I also shows the results of the mixed scheduling
strategies. The fourth column shows the FER and UFER
of F-LBP/ANS with 𝜉 = 35. Hence, the decoder starts by
performing 35 LBP iterations and switches to ANS. The fifth
column shows the FER and UFER of A-LBP/ANS with 𝜁 = 5.
Hence, the decoder starts by performing LBP iterations until
the number of unsatisfied check nodes is less than or equal
to 5. The values of 𝜉 and 𝜁 were not optimized. Both mixed
strategies correct the ANS myopic errors of code A and also
have a lower UFER than ANS in all the codes.

Figure 6 shows the FER of code A vs. the number of
message updates. For a small number of message updates,
ANS performs well. However, it presents an error floor at
6 × 10−5. As mentioned before, a careful analysis of these
errors showed that they were myopic errors due to the large
number of length-4 cycles. No ANS myopic errors were ob-
served for codes that don’t have length-4 cycles. Furthermore,
Fig. 6 shows that both mixed strategies perform very well
when compared to LBP and flooding.
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Fig. 6. AWGN Performance of code A vs. number of check-to-variable
message updates for a fixed 𝐸𝑏/𝑁𝑜 = 3 dB. Results of 5 different scheduling
strategies are presented: flooding, LBP, ANS, F-LBP/ANS with 𝜉 = 35 and
A-LBP/ANS with 𝜁 = 5.

Figure 7 shows the FER and UFER of code C for a
maximum number of message updates equivalent to 50 LBP
iterations. The FER of the three IDS strategies closely ap-
proach their respective UFER for a high SNR. Also, while
ANS presents a larger UFER than LBP and flooding at 3
dB, the mixed strategies’ UFERs are similar to those of LBP
and flooding. This shows that the mixed strategies provide
a good combination of harvesting the trapping-set correction
capability of ANS while avoiding the errors generated by
ANS’s greediness. Mixed strategies are also less computation-
ally demanding than pure ANS.

V. IMPLEMENTATION STRATEGIES FOR IDS

A. Lower-Complexity ANS (LC-ANS)

As mentioned in Section III, ANS selects the check node
to be updated based on a metric 𝛼𝑐, which is the largest
approximate residual of the check-to-variable messages that
are generated in the check node. Thus, in order to generate 𝛼𝑐𝑖

we must compute the approximate residuals of all the check-
to-variable messages of check node 𝑐𝑖 and find the largest
one.

In order to reduce these computations we propose to infer
which edges are more likely to have the larger residuals of
each check node based on the following considerations. The
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Fig. 7. AWGN FER and UFER vs 𝐸𝑏/𝑁𝑜 for for code C decoded by 5
different scheduling strategies: flooding, LBP, ANS, F-LBP/ANS with 𝜉 = 35
and A-LBP/ANS with 𝜁 = 5.

largest 𝛼𝑐𝑖 metric corresponds to the largest residual of all the
check-to-variable messages in the graph. It is likely that the
largest residual in the graph corresponds to a check-to-variable
message that has a different sign before and after the update.
It is also likely that among the check-to-variable messages
that change their sign after the update, the largest residual
corresponds to the message that has the largest reliability after
the update.

Lower-Complexity ANS (LC-ANS) selects the check node
to be updated based on a simplified check-node metric 𝛼𝐿𝐶

𝑐

that focuses on the messages with the largest reliability after
the update. Within the same check node, the check-to-variable
messages with larger reliability correspond to the edges that
have the variable-to-check messages with the smaller reli-
ability. We define 𝛼𝐿𝐶

𝑐 as the sum of the two residuals
that correspond to the edges that have the two variable-to-
check messages with the smallest reliability. Given that we
use min-sum to compute the residuals, the two variable-to-
check messages with the smallest reliability are known. Thus,
in order to generate 𝛼𝐿𝐶

𝑐𝑖 , only two residuals are computed
and then summed which is significantly less complex than
generating 𝛼𝑐𝑖 .

B. Parallel Decoding

The possibility of having several processors computing
messages at the same time during the LDPC decoding has
become an intense area of research and an important reason
why LDPC codes are so successful. Furthermore, codes with
a specific structure have been shown to allow LBP decoding
while maintaining the same parallelism degree obtained for
flooding decoding [4]. In principle, the idea of having an
ordered sequence of updates that uses the most recent infor-
mation as much as possible isn’t compatible with the idea
of simultaneously computing messages. However, it is likely
that one of the incoming variable-to-check messages to the
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Fig. 8. AWGN performance of a rate-1/2 blocklength-1944 LDPC code de-
coded by 6 different scheduling strategies: flooding, LBP, ANS, A-LBP/ANS
with 𝜁 = 5, LC-ANS and P-ANS.

check-nodes with the largest residuals changes in the previous
update. Hence, it is possible that several parallel processors
can work on different parts of the graph that haven’t converged
yet while still using the most recent information.

We propose Parallel-ANS (P-ANS) as an IDS strategy that
is very similar to ANS where instead of updating only one
check-node, the one with the largest 𝛼𝑐𝑖 metric, the 𝑝 nodes
that have the largest 𝛼𝑐𝑖 metrics are updated simultaneously.
These 𝑝 check nodes are not designed to work in parallel,
unlike the 𝑝 check-nodes of a 𝑝× 𝑝 sub-matrix as defined in
[4].

However, parallel processing may be implemented extend-
ing the hardware solutions presented in [25]. For instance, if
one or more check-nodes have one or more variable nodes
in common, they will all use the same previous information
and compute the incremental variations that are afterwards
combined in the variable-node update. There are hardware
issues, such as memory clashes, that still need to be carefully
addressed when implementing P-ANS.

Figure 8 shows the FER and BER of another rate-1/2
blocklength-1944 LDPC code decoded using 6 different
scheduling strategies: flooding, LBP, ANS, P-ANS with 𝑝 =
81, LC-ANS and A-LBP/ANS with 𝜁 = 5. The code was
designed to have no length-4 cycles and the maximum number
of message updates was set to the equivalent of 50 LBP
iterations. Both LC-ANS and A-LBP/ANS perform closely to
ANS while requiring a lower complexity. Figure 8 also shows
that P-ANS performs very close to ANS across all SNRs.

Similar conclusions can be obtained from the error rate re-
sults of several IDS strategies for decoding the IEEE 802.11n
rate-1/2 blocklength-1944 LDPC presented on Fig. 9. Figs.
8 and 9 also show that the performance improvement of IDS
strategies increases as the SNR increases. This is explained by
the fact that as the SNR increases, trapping-set errors become
dominant. This suggests that IDS strategies can significantly
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improve the error-floor of LDPC codes. Finally, Figs. 8 and
9 show that the performance improvement of IDS strategies
are larger in the FER curves than in the BER curves. This
is explained by the fact that the advantages of IDS strategies
reside mostly on the fact that they can correct trapping set
errors. Since trapping set errors induce a frame error with a
small number bit errors, overcoming trapping sets can reduce
the FER significantly while providing a smaller reduction
in BER (which is dominated by frames that fail with many
errors).

VI. CONCLUSIONS

While maintaining the same message-generation functions
as well as maintaining or reducing the total number of
messages propagated in the graph, IDS can improve the
performance of BP LDPC decoding at the cost of an increase
in complexity to select the messages to be propagated.

Except for poorly constructed codes with many length four
cycles, NS and its simplification ANS perform better than
LBP for any target error-rate and any number of message up-
dates. Both strategies achieve lower error-rates by overcoming
trapping-set errors that LBP cannot solve.

However, for short-blocklength codes there is an increase
in the number of non-ML undetected errors that significantly
affect the performance of ANS in high-SNR regimes. Also,
for codes that have a large number of length-4 cycles ANS
makes myopic errors that dominate the performance of the
codes.

Mixing LBP and ANS can solve trapping set errors without
incurring the previously mentioned ANS greedy errors. We
show experimentally that these strategies perform very well
for 5 different short-blocklength codes. Furthermore, mixed
strategies have a lower complexity than ANS since LBP is
simpler than ANS. Also, we propose LC-ANS as another IDS
strategy that performs as well as ANS while having a lower
complexity.

Finally, a parallel implementation of ANS (P-ANS) was
shown to perform nearly as well as ANS, making this IDS
attractive for practical implementations, but it is not expected
that IDS will be lower in implementation complexity than
LBP. The main benefit of IDS ultimately is that it provides
better ultimate BER and FER performance.

The improvement in performance of IDS strategies was
shown for a variety of codes with different blocklengths and
rates. However, these improvements come at the cost of a
significant increase in complexity due to the computations
needed to select the messages for propagation. The extent of
the complexity cost requires further investigation in the context
of specific implementations.

The ideas presented in this work may be extended to other
communication solutions that use loopy BP, such as turbo
codes, turbo-equalization, iterative demodulation and decoding
of high-order constellations, among others. The extensions of
the IDS strategies may also prove beneficial for loopy-BP
solutions to problems outside the communications field.
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