
Improving LDPC Decoders via Informed Dynamic
Scheduling

Andres I. Vila Casado, Miguel Griot and Richard D. Wesel
Department of Electrical Engineering, University of California, Los Angeles, CA 90095-1594

Email: avila@ee.ucla.edu, mgriot@ee.ucla.edu, wesel@ee.ucla.edu

Abstract— Low-Density Parity-Check (LDPC) codes are
usually decoded by running an iterative belief-propagation
(BP), or message-passing, algorithm over the factor graph of
the code. The message-passing schedule of the BP algorithm
significantly affects the performance of the LDPC decoder.
The authors recently presented a novel message-passing
schedule, called Informed Dynamic Scheduling (IDS), that
selects the message-passing schedule according to the ob-
served rate of change of the messages. IDS yields a lower
error-rate performance than traditional message-passing
schedules (such as flooding and LBP) because it solves tra-
ditional trapping-set errors. However, for short-blocklength
LDPC codes, IDS algorithms present non-trapping-set er-
rors in the error floor region. This paper presents a care-
ful analysis of those errors and proposes mixed scheduling
strategies, combining LBP with IDS, that solve these non-
trapping-set errors. Also, we will show that some lower-
complexity techniques, such as mixed scheduling, perform
close to the best IDS strategies for larger-blocklength codes.

Index Terms— Belief propagation, message-passing sched-
ule, error-control codes, low-density parity-check codes.

I. Introduction

LDPC codes are usually decoded using a message-
passing algorithm, called Belief Propagation (BP), over a
factor-graph representation of the code, as shown in [1]
and [2]. Traditionally, the message-passing schedule up-
dates of all the messages in the graph in every iteration.
This update is either simultaneous (flooding scheduling) or
sequential (layered belief propagation (LBP) [3] and [4]). A
novel message-passing schedule was introduced in [5] where
the current state of the messages in the graph is used to
dynamically update the schedule, producing an Informed
Dynamic Schedule (IDS).

Among the strategies presented in [5], Node-Wise
Approximate-Residual Belief Propagation was shown to
perform better than flooding and LBP even after a large
number of iterations in the waterfall region of several
blocklength-1944 LDPC codes. We will refer to this strat-
egy as Approximate Node-wise Scheduling (ANS) in this
paper. ANS outperforms traditional scheduling because it
solves trapping sets that other scheduling strategies don’t,
which can greatly impact the error-floor performance of a
code.

Trapping sets, or near-codewords, as defined in [6] and
[7], are small variable-node sets such that the induced sub-
graph has a small number of odd-degree neighbors. In
[7], Richardson also mentions that the most troublesome

This work was supported by the state of California and ST Micro-
electronics through UC discovery grant COM 03-10142.

trapping-set errors are those where the odd-degree neigh-
bors have degree 1 (in the induced sub-graph), and the
even-degree neighbors have degree 2 (in the induced sub-
graph).

However, the error-floor region of short-blocklength
LDPC codes decoded by ANS includes non-trapping-set
errors that don’t occur in flooding or LBP. The error-
floor region of short-blocklength codes isn’t dominated by
trapping-set errors given that their minimum distance is so
low that Maximum-Likelihood (ML) errors are in the order
of the error floor. A careful study of the noise realizations
that ANS cannot solve and flooding and LBP can solve,
reveals that they are caused by the greedy nature of the
algorithm. Furthermore, these decoding errors can be sep-
arated into two categories: non-ML undetected errors and
myopic errors. Non-ML undetected errors happen when
ANS forces the decoder to converge to a codeword that is
farther away (in terms of squared Euclidian distance) from
the received sequence than the codeword sent by the trans-
mitter. Myopic errors occur when there are several bits in
error and ANS updates only a few number of check nodes
in a periodic fashion. Myopic errors only occur when the
factor graph has several length-4 cycles.

We combine traditional scheduling strategies, such as
LBP, with IDS strategies, such as ANS, to obtain de-
coders that can handle trapping-sets without incurring in
the greedy errors of ANS. The proposed decoder uses LBP
in the first iterations to avoid the greedy ANS errors and
switches to ANS to solve trapping sets. The switch occurs
after a pre-determined number of iterations, which we call
fixed LBP/ANS, or after the number of unsatisfied check
nodes is low, which we call adaptive LBP/ANS.

Since an ANS iteration is more complex than an LBP it-
eration, these mixed-scheduling strategies have the further
benefit of having a lower complexity than using only ANS.
Hence, mixed-scheduling strategies are also interesting for
larger-blocklength codes. In order to lower the complex-
ity, we also propose a simpler IDS named Low-Complexity
ANS (LC-ANS). These lower-complexity strategies per-
form close to ANS.

This paper is organized as follows. Section II explains
ANS and its relation with trapping sets. Section II-C ana-
lyzes the greedy ANS errors that occur in the error-floor re-
gion of short-blocklength LDPC codes. New IDS strategies,
mixed scheduling and LC-ANS, are introduced in III. Sim-
ulation results of all the different message-passing sched-
ules are compared and discussed in Section IV. Section V



delivers the conclusions.

II. ANS scheduling for LDPC decoding

A. LDPC decoding

The LDPC code graph is a bi-partite graph composed
by N variable nodes vj for j ∈ {1, . . . , N} that represent
the codeword bits and M check nodes ci for i ∈ {1, . . . ,M}
that represent the parity-check equations. The exchanged
messages correspond to the Log-Likelihood Ratio (LLR)
of the probabilities of the bits. The sign of the LLR in-
dicates the most likely value of the bit and the absolute
value of the LLR gives the reliability of the message. In
this fashion, the channel information LLR of the variable
node vj is Cvj = log

(
p(yj |vj=0)
p(yj |vj=1)

)
, where yj is the received

signal. Then, for any ci and vj that are connected, the two
message generating functions, are:

mvj→ci =
∑

ca∈N (vj)\ci

mca→vj + Cvj , (1)

mci→vj = 2× atanh


 ∏

vb∈N (ci)\vj

tanh
(mvb→ci

2

)

 , (2)

where N (vj) \ci denotes the neighbors of vj excluding ci,
and N (ci) \vj denotes the neighbors of ci excluding vj .

B. Approximate Node-wise Scheduling (ANS)

The Residual Belief Propagation (RBP) algorithm was
presented by Elidan et al. in [8]. RBP was proposed for
general sequential message passing, not specifically for BP
decoding. Several IDS strategies inspired by RBP were
presented in [5] and Approximate Node-wise Scheduling
(ANS), named Node-Wise ARBP in [5], was found to per-
form better than LBP across all iterations in the waterfall
region of several LDPC codes.

In ANS scheduling, as well as in LBP, check nodes are up-
dated sequentially using the most recent information avail-
able. LBP updates check nodes sequentially according to a
predetermined schedule. ANS selects the next check node
to be updated based on the current state of the messages in
the graph. Specifically ANS selects the check node based
on a metric αc that measures how useful that check node
update is to the decoding process.

For each check node, the metric αc is the largest approx-
imate residual of the check-to-variable messages that are
generated in the check node. A residual is the norm (de-
fined over the message space) of the difference between the
values of the message before and after an update. When a
residual is computed using the or min-sum check-node up-
date equation, introduced in [9] and explained in [10], it is
called an approximate residual. The performance degrada-
tion of using min-sum to compute the residuals is negligible
as shown in [5]. ANS is formally described in Algorithm 1.

Fig. 1 shows an example of how ANS overcomes trap-
ping sets. Updating the check node with the largest metric
allows the decoding algorithm to focus on a part of the

Algorithm 1 ANS decoding for LDPC codes
1: Initialize all mc→v = 0
2: Initialize all mvj→ci

= Cj

3: Compute all αc

4: Find i = arg max
u={1...N}

αcu

5: for every vk ∈ N (ci) do
6: Generate and propagate mci→vk

7: Set αci = 0
8: for every ca ∈ N (vk) \ci do
9: Generate and propagate mvk→ca

10: Compute αca

11: end for
12: end for
13: if Stopping rule is not satisfied then
14: Position=4;
15: end if

Fig. 1. Check-node update sequence that solves a trapping set. Dark
nodes represent the check node that is updated and the variable
node that is corrected.

graph that hasn’t converged yet. Thus, it is likely that
ANS solves the variable nodes in error by sequentially up-
dating the degree-1 check nodes connected to them. When
a variable node in a trapping set is corrected, the induced
sub-graph of the variable-nodes-in-error will change as fol-
lows. At least one check node that was degree-2 becomes
degree-1 (in the induced sub-graph of variable-nodes in er-
ror) after the variable node correction. This check node is
likely to be picked as the next check node to be updated by
ANS because its messages will have large residuals. This
update will probably correct another variable node in the
trapping set.

We corroborated this analysis by Monte Carlo simula-
tions. As an example, Fig. 2 shows the performance of
the blocklength-2640 Margulis code, proposed in [11], us-
ing flooding, LBP and ANS. The FER of the blocklength-
2640 Margulis code at high SNRs has been shown to be
dominated by trapping-set errors in [6] and [7]. The ANS
performance improvement with respect to both flooding
and LBP shows that ANS can correct trapping sets that
traditional scheduling strategies cannot.



1.6 1.8 2 2.2 2.4 2.6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

E
b
/N

o

F
E

R

Flooding
LBP
ANS

Fig. 2. AWGN performance of the blocklength-2640 Margulis code
decoded by 3 different scheduling strategies: flooding, LBP and
ANS. A maximum of 50 iterations was used.

C. Shortcomings of ANS decoding

ANS decoding, while better than traditional scheduling
because it solves trapping sets, presents other types of er-
rors that don’t occur with LBP and flooding. They can
be categorized into two classes: non-ML undetected errors
and myopic errors.

We define non-ML undetected errors as undetected er-
rors where the squared Euclidian distance between the de-
coded codeword and the received signal is larger than the
squared Euclidian distance between the transmitted code-
word and the received signal. This means that an ML
decoder wouldn’t make this mistake. Given its greedy na-
ture, ANS makes more non-ML undetected errors than tra-
ditional scheduling strategies.

If there is a received signal that is near the border be-
tween two decoding regions (Voronoi regions), the initial
BP iterations can take the decoder in any direction. ANS is
more likely to make non-ML undetected errors than flood-
ing or LBP because it can update only a part of the graph.
This locally optimum approach is more likely to go in the
wrong direction than the more global approach of LBP and
flooding. The probability that ANS makes a non-ML un-
detected error decreases as the received signal is farther
from the border. Thus, the negative effect of this behav-
ior is more noticeable in the decoding of short-blocklength
LDPC codes. Short-blocklength codes have a minimum
Hamming distance small enough that the probability of re-
ceiving a signal near the border of two decoding regions is
comparable to the probability of loopy-BP errors in high
SNR regimes.

There is another type of error that results from the greed-

Fig. 3. Graph of a structure that can cause myopic errors

iness of ANS. Myopic decoding errors happen when the de-
coder focuses on a small number of check nodes while there
are many other bits in error to solve in a different part of
the graph. These errors become significant when the graph
has many length-4 cycles. If ANS updates one of the check
nodes in a length-4 cycle sub-graph, it is likely that the
next check node to be chosen is the other one in the cycle
given that it receives two updated messages. Thus, if the
code has graph structures that contain many length-4 cy-
cles, such as the one shown in Fig. 3, it is likely for ANS to
become stuck repeatedly updating the same small number
of check nodes even if there are errors on other parts of the
code. Simulations show that myopic errors are only signif-
icant for codes that present densely connected sub-graphs
such as randomly constructed short-blocklength codes that
allow length-4 cycles.

III. New IDS strategies

A. IDS strategies for short-blocklength LDPC codes

We propose mixed strategies that combine LBP and ANS
iterations in order to correct trapping-set errors and avoid
the greedy ANS errors. The decoder starts by perform-
ing LBP iterations and switches to ANS iterations. Fixed
LBP/ANS (F-LBP/ANS) first does a pre-determined num-
ber of LBP iterations ξ and then switches to ANS.

Given that one of the main advantages of ANS is the
fact that it solves trapping sets, we propose another mixed
strategy that we call Adaptive LBP/ANS (A-LBP/ANS).
In A-LBP/ANS the decoder switches from LBP to ANS
when the number of unsatisfied check nodes is below a cer-
tain value ζ. This makes sense given that the dominant
trapping sets are those that have a small number of unsat-
isfied check nodes [7]. Thus, LBP will decode until it hits
a trapping set with a small number of unsatisfied check
nodes where ANS, better equipped to solve trapping sets,
takes over. Since an ANS iteration is more complex than an
LBP iteration, these lower-complexity mixed strategies are
also attractive for larger-blocklength codes because of their
close error-rate performance to ANS. The optimal values



of ξ and ζ can be found trough Monte-Carlo simulations.

B. Lower-Complexity ANS (LC-ANS)

As mentioned in Section II, ANS selects the check node
to be updated based on a metric αc, which is the largest
approximate residual of the check-to-variable messages that
are generated in the check node. Thus, in order to generate
αci

we must compute the approximate residuals of all the
check-to-variable messages of check node ci and find the
largest one.

In order to reduce these computations we propose to infer
which edges are more likely to have the larger residuals of
each check node based on the following considerations. The
largest αci metric corresponds to the largest residual of all
the check-to-variable messages in the graph. It is likely that
the largest residual in the graph corresponds to a check-
to-variable message that has a different sign before and
after the update. It is also likely that among the check-to-
variable messages that change their sign after the update,
the largest residual corresponds to the message that has
the largest reliability after the update.

Lower-Complexity ANS (LC-ANS) selects the check
node to be updated based on a simplified check-node metric
αLC

c that focuses on the messages with the largest reliabil-
ity after the update. The check-to-variable messages, gen-
erated in the same check node, with larger reliability corre-
spond to the edges that have the variable-to-check messages
with the smaller reliability. We define αLC

c as the sum of
the two residuals that correspond to the edges that have the
two variable-to-check messages with the smallest reliabil-
ity. Given that we use min-sum to compute the residuals,
the two variable-to-check messages with the smallest reli-
ability are known. Thus, in order to generate αLC

ci
, only

two residuals are computed and then summed which is sig-
nificantly less complex than generating αci . Monte Carlo
simulations, shown in Section IV, show that LC-ANS very
close to ANS.

IV. Results

Table I shows the FER and Undetected FER (UFER) of
5 different rate-1/2 LDPC codes decoded using 5 different
scheduling strategies. All the codes have blocklength 648
and have the same variable-node degree distribution. The
UFER is defined as the total number of frames with unde-
tected errors divided by the total number of frames simu-
lated. The simulations correspond to an AWGN channel
with Eb/No = 3 dB and a maximum number of 50 itera-
tions was used.

Code A is a random code constructed using the ACE
and SCC graph constraint algorithms proposed in [12] and
[13] respectively. These algorithms were designed to avoid
the presence of small stopping sets. However, this code al-
lows the presence of length-4 cycles. Code B was randomly
constructed while avoiding length-4 cycles. The ACE and
the SCC algorithms were used to construct code C and
length-4 cycles were avoided. Code D was also randomly
constructed using the PEG algorithms first presented in
and [14]. The PEG algorithm is design to locally maximize

the girth of the graph as the matrix generation process
goes on. This code has a girth of 6 thus it doesn’t have
any length-4 cycles either. Finally, code E is an LDPC
code selected for the IEEE 802.11n standard [15].

Let us analyze the performance of the traditional
scheduling strategies: flooding and LBP. We corroborated
experimentally that the detected errors, which are the dif-
ference between their FER and UFER values, are mostly
trapping-set errors. Also, as expected, LBP performs bet-
ter than flooding.

ANS outperforms LBP for all the codes except for code
A. This is the only code in the group that has length-4
cycles and we experimentally corroborated that myopic er-
rors described in Section II-C dominate the performance
of this code at this SNR. As further proof, code C was de-
signed to keep the same ACE and SCC graph constraints
as code A while avoiding length-4 cycles. Code C doesn’t
incur in any ANS myopic errors. This shows that myopic
errors dominate the error performance when the graph has
several length-4 cycles. Furthermore, we see that the val-
ues of UFER are larger than their corresponding UFER for
flooding and LBP. This is due to an increase in the number
of Non-ML undetected errors as explained in Section II-C.
Table I clearly shows that the ANS FER performance of
the last four codes is clearly dominated by the undetected
errors given that the FER and UFER values are very close
to each other.

Table I also shows the results of the mixed scheduling
strategies. The fourth column shows the FER and UFER
of F-LBP/ANS with ξ = 35. Hence, the decoder starts
by performing 35 LBP iterations and finishes with 15 ANS
iterations. The fifth column shows the FER and UFER
of A-LBP/ANS with ζ = 5. Hence, the decoder starts by
performing LBP iterations until the number of unsatisfied
check nodes is less than or equal to 5. The values of ξ and ζ
were not optimized and a careful study of this optimization
will be presented in the camera ready copy of this paper.
Both mixed strategies correct the ANS myopic errors of
code A and also have lower UFERs than ANS for all the
codes.

Fig. 4 shows the performance of code A as the number
of iterations increases. In the first iterations ANS presents
good performance. However, it presents an error floor at
6× 10−5. As mentioned before, a careful analysis of these
errors showed that they were myopic errors due to to the
large number of length-4 cycles. No ANS myopic errors
were observed for codes that don’t have length-4 cycles.
Furthermore, Fig. 4 shows that both mixed strategies per-
form very well when compared to LBP and flooding.

Fig. 5 shows the FER and UFER of code C for a
maximum number of iterations equal to 50. The FER of
the three IDS strategies closely approach their respective
UFER for a high SNR. Also, while ANS presents a larger
UFER than LBP and flooding at 3 dB, the mixed strate-
gies’ UFERs are as low as with LBP and flooding. This
shows that the mixed strategies provide a good combina-
tion of harvesting the trapping-set correction capability of
ANS while avoiding the errors generated by ANS’s greed-



TABLE I

FER and UFER of 5 different LDPC codes decoded by 5 different scheduling strategies: flooding, LBP, ANS, F-LBP/ANS

with ξ = 35 and A-LBP/ANS with ζ = 5. The channel used is AWGN with Eb/No = 3 dB.

Flooding LBP ANS F-LBP/ANS A-LBP/ANS
Code FER UFER FER UFER FER UFER FER UFER FER UFER

A 4.2e-5 1.1e-6 1.7e-5 1.0e-6 5.8e-5 3.5e-6 3.9e-6 1.3e-6 3.9e-6 2.0e-6
B 1.6e-4 3.2e-6 1.1e-4 2.2e-6 3.4e-5 2.9e-5 2.0e-5 4.7e-6 1.5e-5 1.0e-5
C 3.4e-5 1.1e-6 1.6e-5 1.1e-6 5.1e-6 4.6e-6 3.0e-6 1.2e-6 2.6e-6 1.6e-6
D 4.4e-5 4.4e-6 3.0e-5 5.3e-6 1.9e-5 1.8e-5 1.2e-5 7.5e-6 1.1e-5 9.2e-6
E 2.2e-5 8.9e-7 6.5e-6 2.0e-6 5.8e-6 5.3e-6 3.3e-6 2.4e-6 4.2e-6 3.4e-6

0 10 20 30 40 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

F
E

R

Flooding
LBP
ANS
F−LBP/ANS
A−LBP/ANS

Fig. 4. AWGN Performance of code A vs. number of iterations for a
fixed Eb/No = 3 dB. Results of 5 different scheduling strategies
are presented: flooding, LBP, ANS, F-LBP/ANS with ξ = 35
and A-LBP/ANS with ζ = 5.

iness. Mixed strategies are also less computationally de-
manding than pure ANS.

Fig. 6 shows the FER of a blocklength-1944 LDPC code
decoded using 5 different scheduling strategies: flooding,
LBP, ANS, LC-ANS and A-LBP/ANS with ζ = 5. The
code was designed to have no length-4 cycles and the maxi-
mum number of iterations was set to 50. Both A-LBP/ANS
and LC-ANS perform closely to ANS while requiring a
lower complexity. Furthermore, Fig. 7 shows that per-
formance of LC-ANS is close to the performance of ANS
for all iterations.

Also, Fig. 6 shows that the performance improvement of
IDS strategies increases as the SNR increases. This is ex-
plained by the fact that as the SNR increases, trapping-set
errors become dominant. This suggest that IDS strategies
can significantly improve the error-floor of LDPC codes.

1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

o

Flooding
LBP
ANS
F−LBP/ANS
A−LBP/ANS
FER
UFER

Fig. 5. AWGN performance of code C decoded by 5 different schedul-
ing strategies: flooding, LBP, ANS, F-LBP/ANS with ξ = 35 and
A-LBP/ANS with ζ = 5.

V. Conclusions

IDS strategies such as ANS have a better performance
than traditional scheduling strategies such as flooding and
LBP because they can solve trapping-set errors.

However, for short-blocklength codes there is an increase
in the number of non-ML undetected errors that signifi-
cantly affect the performance of ANS in high-SNR regimes.
Also, for codes that have a large number of length-4 cycles
ANS makes myopic errors that dominate the performance
of the codes.

Mixing LBP and ANS iterations can solve trapping-set
errors without incurring in the previously mentioned ANS
greedy errors. We show experimentally that these strate-
gies perform very well for 5 different short-blocklength
codes.

Furthermore, mixed-scheduling strategies have a lower
complexity than ANS since an LBP iteration is simpler
than an ANS iteration. Thus, mixed strategies are a



1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o

F
E

R

Flooding
LBP
ANS
A−LBP/ANS
LC−ANS

Fig. 6. AWGN performance of a blocklength-1944 LDPC code de-
coded by 5 different scheduling strategies: flooding, LBP, ANS,
A-LBP/ANS with ζ = 5 and LC-ANS.

lower-complexity alternative to ANS given their similar
performance. Also, we propose LC-ANS as another lower-
complexity IDS strategy that also performs as well as ANS.

References

[1] R.J. McEliece, D.J.C. MacKay, and Jung-Fu Cheng. Turbo de-
coding as an instance of Pearl’s “belief propagation” algorithm.
IEEE Journal on Selected Areas in Communications, 16:140–
152, February 1998.

[2] F. Kschischang, B. J. R. Frey, and H.-A. Loeliger. Factor graphs
and the sum-product algorithm. IEEE Trans. on Info. Th.,
47(2):498–519, March 2001.

[3] M.M. Mansour and N.R. Shanbhag. High-throughput LDPC
decoders. IEEE Trans. Very Large Scale Integration (VLSI)
Systems, 11:976–996, December 2003.

[4] D. Hocevar. A reduced complexity decoder architechture via
layered decoding of LDPC codes. In Proc. Signal Processing
Systems SIPS 2004, pages 107–112, October 2004.

[5] A. I. Vila Casado, M. Griot, and R. Wesel. Informed Dynamic
Scheduling for Belief-Propagation Decoding of LDPC Codes. In
Proc. IEEE ICC 2007, Glasgow, Scotland, June 2007.

[6] D. MacKay and M. Postol. Weaknesses of margulis and
ramanujan-margulis low-density parity-check codes. Electronic
Notes in Theoretical Computer Science, 74, 2003.

[7] T. Richardson. Error floors of LDPC codes. In Proc. 41st Annual
Allerton Conf. on Comm., Monticello, IL, 2003.

[8] G. Elidan, I. McGraw, and D. Koller. Residual belief propaga-
tion: informed scheduling for asynchronous message passing. In
Proc. 22nd Conference on Uncertainty in Artificial Intelligence,
MIT, Cambridge, MA, July 2006.

[9] N. Wiberg. Codes and decoding on general graphs. Ph.D. Dis-
sertation, Department of Electrical Engineering, Linkoping Uni-
versity, Linkoping, Sweden. 1996.

[10] M. Fossorier, M. Mihaljevic, and H. Imai. Reduced complexity
iterative decoding of low density parity check codes based on
belief propagation. IEEE Trans. on Comm., 47:673–680, May
1999.

[11] G. A. Margulis. Explicit constructions of graphs without short
cycles and low-density codes. Combinatorica 2, 1:71–78, 1982.

[12] T. Tian, C. Jones, J. Villasenor, and R. Wesel. Avoidance of

0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations
F

E
R

Flooding
LBP
ANS
A−LBP/ANS
LC−ANS

Fig. 7. AWGN Performance of a blocklength-1944 LDPC code vs.
number of iterations for a fixed Eb/No = 2 dB. Results of 5
different scheduling strategies: flooding, LBP, ANS, A-LBP/ANS
with ζ = 5 and LC-ANS.

Cycles in Irregular LDPCC Construction. In IEEE Transactions
on Communications, August 2004.

[13] A. Ramamoorthy and R. D. Wesel. Construction of Short Block
Length Irregular LDPCCs. In Proc. IEEE ICC 2004, Paris,
France, June 2004.

[14] Xiao Yu Hu, Evangelos Eleftherioua, and Dieter Michael Arnold.
Progressive edge-growth tanner graphs. In GLOBECOM, The
Evolving Global Communications Network, pages 995–1001, San
Antonio, Texas, November 2001.

[15] IEEE P802.11n/D1.05 October 2006, Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) specifications -
Enhancements for Higher Throughput (Draft).


