
Linearity-Enhanced Serial List Decoding of Linearly
Expurgated Tail-Biting Convolutional Codes

Wenhui Sui *, Brendan Towell *, Zihan Qu, Eugene Min, and Richard D. Wesel
Department of Electrical and Computer Engineering

University of California, Los Angeles
Email: {wenhui.sui, brendan.towell, brucequ, eugenemin, wesel}@ucla.edu

Abstract—With a sufficiently large list size, the serial list
Viterbi algorithm (S-LVA) provides maximum likelihood (ML)
decoding of a concatenated convolutional code (CC) and an
expurgating linear function (ELF), which is similar in function
to a cyclic redundancy check (CRC), but doesn’t enforce that
the code be cyclic. However, S-LVA with a large list size requires
considerable complexity. This paper exploits linearity to reduce
decoding complexity for tail-biting CCs (TBCCs) concatenated
with ELFs.

I. INTRODUCTION

A. Background
For a feedforward encoder with ν memory elements imple-

menting a tail-biting convolutional code (TBCC) [1], the tail-
biting condition can be enforced by setting the initial encoder
state with the final ν message bits. By avoiding the ν overhead
zero-termination (ZT) bits, TBCCs can achieve higher coding
rates and show improvement in frame error rate (FER) vs.
Eb/N0 performance compared to the corresponding ZTCCs.
Designing efficient decoders for TBCCs has been a popular
research topic [2]–[6] and the construction of minimal trellises
for TBCCs has also been extensively researched [7]–[10].

In addition to tail-biting, the paradigm of concatenating a
convolutional code with a cyclic redundancy check (CRC)
code further improves the decoding performance and has been
applied widely since its proposal in 1994 [11]. Classically,
the CRC code functions as an outer error-detecting code and
verifies if a codeword has been correctly received. However,
when used in conjunction with list decoding [12], the CRC
acts as an outer code that expurgates low-weight codewords
of the inner code [5], [13]. These expurgating linear functions
(ELFs) need not be cyclic, and we will follow [14] and refer
to them as ELFs. Recent works using the perspective of a CC
concatenated with an ELF include [15], [16], [17], and [18].

Compared to zero-terminated codes, TBCCs require a
higher decoding complexity to find the maximum likelihood
(ML) trellis path that also satisfies the tail-biting condition.
The exhaustive approach of performing a separate Viterbi
decoding for each possible beginning/ending state finds the
maximum-likelihood TB codeword but requires high com-
plexity. A preferred ML decoder is proposed in Shankar et

This research is supported by National Science Foundation (NSF) grant
CCF-2008918. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect views of NSF.
* The first two authors contributed equally to this work.

al., where the ML codeword is found through a Viterbi step
followed by an A* search [3]. In contrast, the wrap-around
Viterbi algorithm (WAVA) [4] has a complexity that is only
three to five times that of standard Viterbi decoding and is
often only slightly suboptimal. Parallel and serial list decoding
are two additional approaches [5], [6], [12] that provide ML
decoding of a TBCC with less complexity than the exhaustive
approach or the A* search, but more complexity than WAVA.
When decoding a TBCC that is concatenated with an ELF,
the serial list Viterbi decoding algorithm (S-LVA) is a natural
approach [5], [14], [16], where the terminating conditions
require that the trellis path under consideration is both a TB
codeword and a codeword of the expurgated code produced
by the ELF.

B. Contributions

This paper exploits the linear nature of convolutional codes
[19] to reduce the complexity required to decode a TBCC
concatenated with an ELF. For linear codes, the relative
position of all neighboring codewords to a reference codeword
is the same regardless of the reference codeword. Once a
single trellis path has been found through Viterbi search, the
neighborhood around that codeword can be easily accessed by
simple XOR operations using a pre-computed list of offsets.
This paper presents two low-complexity decoders that utilize
pre-computed lists to quickly explore nearby TB codewords
of a codeword found by either the Viterbi algorithm or S-LVA.

The first decoder is the offset sphere decoder, which
considers a large sphere of tail-biting codewords centered
around the trellis path nearest to the received word. For this
decoder, once the standard Viterbi algorithm finds the nearest
(probably non-tail-biting) trellis path, the list of tail-biting
codewords nearest to that trellis path is enumerated using a
list of pre-computed offsets associated with the ending state
difference (ESD) of the trellis path, which is the difference
between the initial and final states of the trellis path. While
the complexity is similar to standard Viterbi decoding, the
FER benefits significantly from the TB and ELF constraints.
However, for the sphere sizes we considered, the performance
falls short of what can be achieved by S-LVA.

Our second decoder is the list-of-spheres decoder, which
can achieve a near-ML total failure rate (TFR) while main-
taining a low average list rank E[L] for ELF-TBCCs. TFR
includes erasures as well as undetected errors. However, with

1770979-8-3503-8284-6/24/$31.00 ©2024 IEEE

a sufficiently large list size, the erasure probability approaches
zero and TFR becomes the same as the undetected error rate.
This decoder performs S-LVA and searches a small sphere
of tail-biting codewords around each trellis path found by
the S-LVA. For decoding to terminate, the squared Euclidean
metric of the codeword of the expurgated TB code must
be within a threshold value. It is shown that the proposed
decoder performs within 0.125 dB of the standard S-LVA
decoder while maintaining a significantly smaller list size. At
low Eb/N0, the list-of-spheres decoder achieves the random
coding union (RCU) bound developed by Polyanskiy et al.
[20], which is an upper bound on the error probability of the
best code given the blocklength and codeword length.

We follow [19, Chapter 11] to describe the generator
matrix G(D) = [g(0)(D), g(1)(D), . . . g(n−1)(D)], where each
g(i)(D) is a polynomial of degree up to ν in delay element D
associated with the i-th code stream, i.e.,

g(i)(D) = g(i)v Dv + g
(i)
v−1D

v−1 + · · ·+ g
(i)
0 , (1)

where g
(i)
j ∈ {0, 1}. Each g(i)(D) is represented in octal form.

For instance, G(D) = [D3 +D + 1, D3 +D2 +D + 1] can
be concisely written as G = (13, 17). The ELF polynomial is
represented in hexadecimal, where its binary coefficients are
written from the highest to lowest order. For instance, 0xD
represents the polynomial x3 + x2 + 1. As an example in
this paper, we use the ELF-TBCC where a rate-1/2 TBCC
with generator matrix G = (561, 753) is concatenated with
the degree-7 optimal ELF of 0xFF. The information length for
this code is K = 64 bits and the codeword length is N = 142
bits. The codewords are BPSK modulated. The SNR is defined
as γs ≜ 10 log10(A

2) (dB), where A represents the BPSK
amplitude and the noise is distributed as a standard normal.

C. Organization

Sec. II describes the offset sphere decoding algorithm and
the construction of pre-computed neighboring codeword lists.
The performance of the offset sphere decoder for various
sphere sizes is explored for an example rate-1/2 ELF-TBCC.
Sec. III introduces the list-of-spheres decoding algorithm for
ELF-TBCCs. This section explores how varying termination
requirements and the size of the spheres of TB codewords
around each trellis path can affect the decoder’s performance.
We show simulation and complexity results comparing TFR
performance and expected list rank E[L] for the proposed near-
ML decoder and the standard S-LVA decoder for our example
rate-1/2 ELF-TBCC. Finally, Sec. IV concludes the paper.

II. OFFSET SPHERE DECODING

This section considers an offset sphere decoder where the
decoder examines a single large sphere of TB codewords
centered on the trellis path found by the Viterbi decoder.
Section II-A explains the process of generating lists of pre-
computed offsets associated with the ESD of the trellis path.
Section II-B shows how these pre-computed offset lists are
used to find nearby TB codewords in the offset sphere decod-
ing algorithm. Section II-C shows simulation results for offset

sphere decoding on the rate-1/2 (561, 753) ELF-TBCC with
blocklength of N = 142 bits, and compares performance to a
Viterbi decoder as well as a standard S-LVA decoder.

A. Generating Lists of Neighboring Tail-Biting Codewords

Throughout this paper, we use “trellis codewords” to refer
to trellis paths identified by the Viterbi algorithm. A TB
codeword is a trellis codeword that also satisfies the tail-biting
constraint. An “ELF-TB codeword” is a TB codeword that is
also a codeword of the expurgated code, i.e. it satisfies the
ELF or CRC constraint. This subsection explains how we can
identify the sphere of nearby TB codewords for any trellis
codeword. We can then search that sphere of TB codewords
to find the ELF-TB codeword closest to the received word.

Consider our example ELF-TBCC with rate-1/2 TBCC
generator polynomials (561, 753) and ELF 0xFF. Using the list
decoding sieve described in [14], we can perform S-LVA on
the rate-1/2 trellis allowing any starting state and any ending
state and using the noiseless all-zeroes ELF-TB codeword
as the received word. The list decoder will enumerate trellis
codewords in order of increasing Hamming distance from the
all-zeros codeword. For each trellis codeword identified by the
list decoder, we compute the ESD of that trellis codeword and
append it to the list of neighboring trellis codewords associated
with that ESD. The list decoding sieve continues until each
list associated with an ESD has LN neighbors.

Since the all-zeros codeword is used as the received word,
the list of neighboring codewords with a particular ESD also
represent the list of offsets that can be added to any trellis
codeword with the same ESD to find the list of LN closest TB
codewords. As a result, the list of neighboring TB codewords
can be quickly found with bit-wise XOR operations. The
multi-trellis approach described in [16] to perform S-LVA
would be preferred when the desired LN is large.

B. Searching the TB Sphere for the Closest ELF-TB Codeword

The offset sphere decoder first uses the standard Viterbi
algorithm to find the closest trellis codeword and calculates
its ESD. Then, each codeword on the associated ESD list
is individually combined with the trellis codeword using the
bit-wise XOR operation to produce one of the neighboring
TB codewords. The sphere of neighboring TB codewords
is searched to identify any ELF-TB codewords. If none
are found, an erasure is declared. If one or more ELF-
TB codewords are found, the ELF-TB codeword with the
smallest squared Euclidean distance to the received codeword
is returned as the selected codeword.

C. Simulation Results and Discussion

Fig. 1 shows simulation results comparing a standard Viterbi
decoder, the proposed offset sphere decoder with varying
sizes of LN , and an S-LVA decoder with a maximum list
size of Lmax = 2048 for our example rate-1/2 ELF-TBCC.
Compared to the standard Viterbi decoder, the offset sphere
decoder has a significant improvement on the TFR. The
decoding performance of the offset sphere decoder improves

1771

Fig. 1. TFR vs. Eb/N0 simulation results for a Viterbi decoder, an offset
sphere decoder with a varying number of neighboring codewords LN = 128,
512 and 2048, as well as an S-LVA decoder with a restricted maximum list
size (Lmax = 2048) so we can compare across the two approaches. The
RCU bound for the K = 64, N = 142 code is shown as a dashed green
line. The rate-1/2 ELF-TBCC used for simulation has generator polynomials
(561, 753) in octal and a degree-7 ELF of 0xFF, which adds seven ELF bits
to the message.

as LN increases. For a sufficiently large LN , performance
should approach ML and therefore approach that of S-LVA
with a large list size. However, the memory required to support
extremely large values of LN may make the offset sphere
decoder unattractive for some applications. Fig. 1 shows that
TFR for the offset sphere decoder is not comparable to S-
LVA even when LN is as large as the maximum list size of
the S-LVA.

III. LIST-OF-SPHERES DECODER

To avoid the large LN required for the offset sphere decoder
to have comparable performance to S-LVA, this section pro-
poses a second decoder, called the list-of-spheres decoder. This
decoder searches a sequence of small spheres of neighboring
TB codewords centered around the corresponding sequence of
trellis codewords identified by S-LVA. Section III-A reviews
S-LVA and introduces the list-of-spheres decoding algorithm.
In Section III-B, we define the parameter that controls the
size of offset lists used in the list-of-spheres decoder. Section
III-C presents termination conditions to reduce the likelihood
of selecting a non-ML choice of ELF-TB codeword. Section
III-D explores how different sphere sizes and thresholds affect
the decoder’s performance. TFR vs. Eb/N0 simulation results
of list-of-spheres decoders on the rate-1/2 (561, 753) ELF-
TBCC with varying termination conditions and sphere sizes
are presented in Section III-D. Section III-E demonstrates the
improvement on the average list rank E[L] using a list-of-
spheres decoder and discusses the decoding complexity, which
is closely related to E[L] for list decoders.

R

C

Ĉ(2) Ĉ(1)

D

D̂

DT

1

Fig. 2. Illustration of the relationship between the received word R, a
trellis codeword C identified by S-LVA, and two TB codewords Ĉ(1) and Ĉ(2)

equidistant from C found through a pre-computed list of offsets corresponding
to the ESD of C. The squared Euclidean distances D and D̂ are labeled, as
well as the threshold DT . Note that Ĉ(2) satisfies DT but the distance from
Ĉ(1) to R is larger than DT .

A. Widening the Aperture of S-LVA with a List of Spheres

This section explains how the list-of-spheres decoder de-
creases complexity by widening the search aperture of S-LVA.
Fig. 2 illustrates notation that will be useful in our discussion.
The noisy received word is denoted by R and the trellis
codeword most recently found by S-LVA is C. As described in
Sec. II-A, a list of offsets is pre-computed for each possible
ESD. For each trellis codeword identified by S-LVA, the list
of offsets corresponding to its ESD is used to find neighboring
TB codewords.

Define the i-th offset in the list of offsets for ESD e to be
N (i)

e , where e ∈ {0, 1, . . . , 2v − 1} is the ESD index of that
list of neighboring offsets, and the union of all N (i)

e for the
pre-computed list for a given e to be Ne. Let Ĉ denote the
list of neighboring TB codewords computed using the list of
offsets. Then, a list of neighboring TB codewords (in binary
representation) can be obtained by the equation

Ĉ(i) = C ⊗ N (i)
e , (2)

where Ĉ(i) represents the i-th neighboring TB codeword in the
sphere centered on trellis codeword C, which has an ESD of
e. The operator ⊗ represents the bit-wise XOR operation.

The binary codewords are transmitted using BPSK; for
each codeword bit b the level (−Eb)

b is transmitted. Fig. 2
illustrates (in Euclidean space of BPSK transmission) the two
TB codewords Ĉ(1) and Ĉ(2) closest to C, which happen to be
equidistant from C.

Define D ≜ ||R−C||2 to be the Euclidean distance between
the received word R and the BPSK representation of the trellis
codeword C found by S-LVA. Similarly, define D̂ ≜ ||R −
Ĉ||2 to be the Euclidean distance between R and the BPSK
representation of TB codeword Ĉ ∈ Ĉ.

In [12], Seshadri and Sundberg proposed the S-LVA, where
at most Lmax most likely codewords are found in order of
increasing distance from R. As each codeword on the list is
found, it is checked to see if it meets the terminating condition,
which in [12] was passing a CRC.

When S-LVA is applied to an ELF-TBCC, many of the
trellis codewords on the list are not even TB codewords. The

1772

Algorithm 1 List-of-Spheres Decoding Algorithm
Input: R, Nneighbor, A, Lmax

Output: Decoded codeword C∗

while L < Lmax do
Identify C by S-LVA
if C is an ELF-TB codeword then

Return C∗ = C
else

Calculate ESD e of C
Compute Ĉ using Ne

if ∃ Ĉ(i) ∈ Ĉ that is an ELF-TB codeword then
Compute D̂(i) ≜ ||R − Ĉ(i)||2
if D̂(i) ≤ DT and D̂(i) < D̂(j)∀j ̸= i then

Return C∗ = Ĉ(i)

end if
end if

end if
end while

list-of-spheres decoder presented in Algorithm 1 implements
S-LVA but expands the aperture of consideration at each step
to include the TB codewords closest to the trellis codeword
identified by S-LVA. If the trellis codeword C found by S-
LVA is an ELF-TB codeword, it is selected as the decoding
result. If not, the decoder computes the list of neighboring TB
codewords Ĉ for the corresponding ESD and searches that list
of Ĉ for ELF-TB codewords.

B. The Size of the Spheres

The size of the spheres of nearby TB codewords is con-
trolled by the parameter Nneighbor, which specifies the number
of distances of TB codewords permitted in the sphere. If
Nneighbor = 1, only the nearest neighbors, the TB codewords
with the smallest distance from the trellis codeword C, are
included in the sphere. If Nneighbor = 2, then the nearest
neighbors and the next-nearest neighbors are included. Unlike
the offset sphere decoder, where lists corresponding to differ-
ent ESDs all include the same number of TB codewords, the
number of TB codewords in the sphere can be different for
different ESD values that induce different numbers of nearest
neighbors.

C. A Threshold to Avoid Decoding Errors

Just as with the offset sphere decoder, there is a danger that
the list-of-spheres decoder can find an ELF-TB codeword that
is not the ML choice. To reduce the probability of terminating
with the selection of a non-ML ELF-TB codeword, a threshold
DT is placed on ELF-TB codewords that are found when
searching the sphere. Fig. 2 illustrates how this threshold is
applied. When the search of the sphere identifies an ELF-
TB codeword, we compute D̂ ≜ ||R − Ĉ||2. We define a
threshold distance DT which can be a function of both the
distance D ≜ ||R − C||2 and an “aperture” parameter A that
controls how much further from R than C an identified ELF-
TB codeword can be and still be admissible. The relationship

Fig. 3. TFR vs. Eb/N0 simulation results for the same ELF-TBCC as
Fig. 1 using the list-of-spheres decoder for aperture parameters A = 10 with
Nneighbor = 1 and A = 5 with Nneighbor ∈ {1, 2, 3}. The performance
of a list-of-spheres decoder without any threshold and an S-LVA decoder with
a large maximum list size (Lmax = 105) are also presented. The RCU bound
for the code is shown as a dashed green line.

between A and DT is defined as DT =
√
D2 +A. Equiv-

alently, A is the difference between the squared Euclidean
distances D2 and D̂2. If the ELF-TB codeword Ĉ satisfies
the condition D̂ ≤ DT , it is admissible as a decoder result,
and the algorithm terminates. If multiple admissible ELF-TB
codewords are found while searching a sphere, the decoder
returns the one closest to R.

D. Selecting the Sphere Size Nneighbor and the Threshold DT

This section explores how the choices of the sphere size
Nneighbor and the threshold DT affect the list-of-spheres
decoder’s performance. To explore performance empirically,
simulations were performed using this example rate-1/2 ELF-
TBCC, which has generator polynomials (561, 753) in octal
and a degree-7 ELF of 0xFF.

The aperture parameter A prevents the decoder from select-
ing neighboring TB codewords that are too far away from the
received word R. This restriction reduces the probability of
selecting a non-ML decoding result. When A = 0, the list-
of-spheres decoder is equivalent to a regular S-LVA decoder.
As A is increased and the “aperture” of our decoder opens,
more TB codewords in the sphere become admissible. Thus,
the expected list rank and decoding complexity are reduced
because decoding terminates sooner, but non-ML codewords
are more likely to be selected.

Fig. 3 shows simulated TFR vs. Eb/N0 result for a list-
of-spheres decoder without a threshold requirement, which
is far off the RCU bound. The TFR performance improves
considerably when the threshold requirement is added with an
aperture parameter of A = 10. Even better TFR performance,
within 0.125 dB of S-LVA, is achieved with an aperture

1773

Fig. 4. E[L] vs. Eb/N0 simulation results for the same ELF-TBCC as Fig. 1
using the list-of-spheres decoder for aperture parameters A = 10 and A = 5
and Nneighbor ∈ {1, 2, 3}. The E[L] of a list-of-spheres decoder without
any threshold and an S-LVA decoder with a sufficiently large maximum list
size (Lmax = 105) that ensures ML decoding are shown in solid yellow and
orange, respectively.

parameter of A = 5 at a target TFR of 10−5. At low Eb/N0,
the performance of a list-of-spheres decoder with A = 5
achieves the RCU bound.

To consider possible choices for Nneighbor, Fig. 3 shows
simulation results for a list-of-spheres decoder with a fixed
aperture parameter A = 5 and varying Nneighbor values of 1,
2, and 3, as well as an S-LVA decoder with a sufficiently
large list size (Lmax = 105) that ensures ML decoding.
With the aperture parameter preventing most selections of
non-ML codewords, increasing Nneighbor does not degrade
TFR performance. However, as shown in Fig. 4, increasing
Nneighbor significantly reduces the expected list rank. For
A = 5, increasing to Nneighbor = 3 reduces the expected list
rank to become close to that of A = 10 with Nneighbor = 1.

E. Expected List Rank and Complexity

In [5], the authors provided the complexity expression for
S-LVA of rate-1/ω ELF-TBCCs, where the overall average
complexity of S-LVA can be decomposed into three compo-
nents:

CSLVA = CSSV + Ctrace + Clist. (3)

CSSV denotes the complexity of a standard soft Viterbi (SSV),
Ctrace denotes the complexity of the additional traceback
operations required by S-LVA, and Clist denotes the average
complexity of inserting new elements to maintain an ordered
list of path metric differences.

For ELF-TBCCs, these metrics are evaluated by Eq. 4
through Eq. 7, where E[I] is the expected number of insertions
to maintain the sorted list of path metric differences.

CSSV = 1.5(K +m)2v+1 + 2v + 3.5(K +m) (4)

Ctrace = 3.5(E[L]− 1)(K +m) (5)

Clist = E[I] log(E[I]) (6)

E[I] ≤ (K +m)E[L] + 2v − 1 (7)

Since forming the neighbor lists can be done exclusively
through XOR operations, and the list-of-spheres decoder uses
relatively small neighbor lists, it has low complexity compared
to the traceback and insertion components of S-LVA. Thus,
CSLVA of the list-of-spheres decoder is approximately the same
as that of a regular S-LVA decoder, and lowering E[L] will
result in a lower overall complexity.

In Fig. 4, the expected list ranks of a list-of-spheres decoder
with varying Nneighbor and aperture values are compared to
that of a standard S-LVA decoder that achieves ML decoding.
At low Eb/N0, as the threshold increases, E[L] of the list-of-
spheres decoder decreases substantially. The expected list rank
of a list-of-spheres decoder without a threshold is around 1

10
of those with thresholds, but this complexity reduction comes
at the price of poor decoding performance. While A = 10
achieves the second lowest E[L], the list-of-spheres decoder
with A = 5 still shows a much lower complexity than the S-
LVA decoder, providing a considerable reduction in decoding
complexity.

Fig. 4 also compares the expected list rank of list-of-spheres
decoders with varying Nneighbor and a fixed aperture A = 5.
Despite their similar TFR performance, the decoders show
how E[L] decreases with increasing values of Nneighbor, espe-
cially at low Eb/N0. Including more neighboring codewords
reduces E[L] because the decoder is able to find an ELF-TB
codeword earlier by searching a larger sphere around a trellis
codeword.

IV. CONCLUSION

This paper proposes two decoders based on the linearity of
convolutional codes: an offset sphere decoder and a list-of-
spheres decoder. The offset sphere decoder improves perfor-
mance over the standard Viterbi decoder by around 1.5 dB,
while maintaining a similar level of decoding complexity. The
list-of-spheres decoder can closely approach ML performance
while substantially reducing the expected list rank of the S-
LVA. The list-of-spheres decoder with a smaller aperture of
A = 5 and larger sphere size Nneighbor = 3 achieves the
best tradeoff of decoding complexity and TFR performance.
Future research directions include further exploration of how
the distribution of codewords can be applied to determine
optimal termination conditions and sphere sizing. Additionally,
it may be possible to design a truly ML decoder with reduced
complexity compared to S-LVA based on the linearity property
of ELF-TBCCs. There are many aspects of the linearity
approach that can be applied to enhance decoders of ELF-
TBCCs.

1774

REFERENCES

[1] H. Ma and J. Wolf, “On tail biting convolutional codes,” IEEE Trans.
Commun., vol. 34, no. 2, pp. 104–111, Feb. 1986.

[2] R. Shao, S. Lin, and M. Fossorier, “Two decoding algorithms for
tailbiting codes,” IEEE Transactions on Communications, vol. 51, no. 10,
pp. 1658–1665, 2003.

[3] P. Shankar, P. Kumar, K. Sasidharan, B. S. Rajan, and A. Madhu, “Effi-
cient convergent maximum likelihood decoding on tail-biting trellises,”
CoRR, vol. abs/cs/0601023, 01 2006.

[4] L. Gaudio, T. Ninacs, T. Jerkovits, and G. Liva, “On the performance of
short tail-biting convolutional codes for ultra-reliable communications,”
in SCC 2017; 11th Int. ITG Conf. Syst., Commun., and Coding, Feb.
2017, pp. 1–6.

[5] H. Yang, E. Liang, M. Pan, and R. D. Wesel, “CRC-aided list
decoding of convolutional codes in the short blocklength regime,”
IEEE Trans. Inf. Theory, Feb. 2022, early access. [Online]. Available:
https://doi.org/10.1109/TIT.2022.3150717

[6] J. King, W. Ryan, C. Hulse, and R. D. Wesel, “Efficient maximum-
likelihood decoding for TBCC and CRC-TBCC codes via parallel list
viterbi,” pp. 141–145, 2023.

[7] A. Calderbank, G. Forney, and A. Vardy, “Minimal tail-biting trellises:
the golay code and more,” IEEE Transactions on Information Theory,
vol. 45, no. 5, pp. 1435–1455, 1999.

[8] R. Koetter and A. Vardy, “The structure of tail-biting trellises: minimal-
ity and basic principles,” IEEE Trans. Inf. Theory, vol. 49, no. 9, pp.
2081–2105, Sep. 2003.

[9] S. Lin and R. Shao, “General structure and construction of tail biting
trellises for linear block codes,” in 2000 IEEE International Symposium
on Information Theory (Cat. No.00CH37060), 2000, p. 117.

[10] D. Conti and N. Boston, “On the algebraic structure of linear tail-biting
trellises,” IEEE Transactions on Information Theory, vol. 61, no. 5, pp.
2283–2299, 2015.

[11] M. Rice, “Comparative analysis of two realizations for hybrid-ARQ error
control,” in 1994 IEEE Global Commun. Conf., 1994, pp. 115–119.

[12] N. Seshadri and C. E. W. Sundberg, “List Viterbi decoding algorithms
with applications,” IEEE Trans. Commun., vol. 42, no. 234, pp. 313–323,
Feb. 1994.

[13] C. Y. Lou, B. Daneshrad, and R. D. Wesel, “Convolutional-code-specific
CRC code design,” IEEE Trans. Commun., vol. 63, no. 10, pp. 3459–
3470, Oct. 2015.

[14] R. D. Wesel, A. Antonini, L. Wang, W. Sui, B. Towell, and H. Grissett,
“ELF codes: Concatenated codes with an expurgating linear function as
the outer code,” pp. 287–291, 2023.

[15] A. Antonini, W. Sui, B. Towell, D. Divsalar, J. Hamkins, and R. D.
Wesel, “Suppressing error floors in SCPPM via an efficient CRC-aided
list viterbi decoding algorithm,” pp. 221–225, 2023.

[16] W. Sui, B. Towell, A. Asmani, H. Yang, H. Grissett, and R. D. Wesel,
“CRC-aided high-rate convolutional codes with short blocklengths for
list decoding,” IEEE Transactions on Communications, vol. 72, no. 1,
pp. 63–74, 2024.

[17] B. Feng, Y. Yang, J. Jiao, and Q. Zhang, “On tail-biting polarization-
adjusted convolutional (TB-PAC) codes and small-sizes list decoding,”
IEEE Communications Letters, vol. 27, no. 2, pp. 433–437, 2023.

[18] R. Schiavone, R. Garello, and G. Liva, “Performance improvement of
space missions using convolutional codes by CRC-aided list viterbi
algorithms,” IEEE Access, vol. 11, pp. 55 925–55 937, 2023.

[19] S. Lin and D. J. Costello, Error Control Coding: fundamentals and
applications. New Jersey, USA: Pearson Prentice Hall, 2004.

[20] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, May 2010.

1775

