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Abstract—This paper provides an explicit expression for the ca-
pacity region of the two-user broadcast Z channel and proves that
the optimal boundary can be achieved by independent encoding
of each user. Specifically, the information messages corresponding
to each user are encoded independently and the OR of these two
encoded streams is transmitted. Nonlinear turbo codes that pro-
vide a controlled distribution of ones and zeros are used to demon-
strate a low-complexity scheme that operates close to the optimal
boundary.

Index Terms—Broadcast channel, broadcast Z channel, capacity
region, nonlinear turbo codes, turbo codes.

I. INTRODUCTION

D EGRADED broadcast channels were first studied by
Cover in [1] and a formulation of the capacity region

was established in [2], [3], and [4]. Superposition encoding is
the key idea to achieve the optimal boundary of the capacity
region for degraded broadcast channels [5]. With superposition
encoding for degraded broadcast channels, the data sent to the
user with the most degraded channel is encoded first. Given
the encoded bits for that user, an appropriate codebook for the
second most degraded channel user is selected, and so forth.
Hence, superposition encoding is, in general, a joint encoding
scheme. However, combining independently encoded streams,
one for each user, is an optimal scheme for some broadcast
channels including broadcast Gaussian channels [1] and broad-
cast binary-symmetric channels [1], [2].

Successive decoding is a natural decoding scheme for super-
position encoding [1], [2], [5]. With successive decoding for de-
graded broadcast channels, each receiver first decodes the data
sent to the user with the most degraded channel. Conditioning
on the decoded data for that user, each receiver determines the
codebook for the user with the second most degraded channel
and decodes that data, and so forth until the desired user’s data
is decoded. The performance of successive decoding for de-
graded broadcast channels is very close to optimal decoding
under normal operating conditions.
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Fig. 1. (a) Z channel. (b) Broadcast Z channel.

Turbo codes [6] and low-density parity-check (LDPC) codes
[7] perform close to the Shannon limit. LDPC and turbo coding
approach for broadcast channels were studied in [8] and [9], re-
spectively. In [8], LDPC codes provided reliable transmission
over two-user broadcast channels with additive white Gaussian
noise (AWGN) and fading known at the receiver only. In [9],
a superposition turbo coding scheme performs within 1 dB of
the capacity region boundary for broadcast Gaussian channels.
Both of these approaches are designed specifically for broad-
cast Gaussian channels and used linear codes. For multi-user
binary adder channels, nonlinear trellis codes were studied and
designed in [10].

The Z channel is the binary-asymmetric channel shown in
Fig. 1(a). The capacity of the Z channel was studied in [11].
Nonlinear trellis codes were designed to maintain a low ones
density for the Z channel in [12] and [14] and parallel concate-
nated nonlinear turbo codes were designed for the Z channel in
[13]. This paper focuses on the study of the two-user broadcast
Z channel shown in Fig. 1(b). This paper provides
an explicit expression of the capacity region for the two-user
broadcast Z channel and shows that independent encoding with
successive decoding can achieve the boundary of this capacity
region.

This paper is organized as follows. Section II introduces
definitions and notation for broadcast channels. Section III
provides the explicit expression of the capacity region for the
two-user broadcast Z channel and proves that independent
encoding can achieve the optimal boundary of the capacity
region. Section IV presents nonlinear-turbo codes designed
to achieve the optimal boundary, and Section V provides the
simulation results. Section VI delivers the conclusions.

II. DEFINITIONS AND PRELIMINARIES

A. Degraded Broadcast Channels

The general representation of a discrete memoryless broad-
cast channel is given in Fig. 2. A single signal is broadcast
to users through different channels . If

, then channel is
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Fig. 2. Broadcast channel.

Fig. 3. Physically degraded broadcast channel.

a physically degraded version of channel (and thus the
broadcast channel is physically degraded) [5].
A physically degraded broadcast channel with users is
shown in Fig. 3. Since each user decodes its received signal
without collaboration, only the marginal transition probabilities

of the component channels
affect receiver performance. Hence, the

stochastically degraded broadcast channel is defined in [2] and
[5] as follows.

Let be a channel with input alphabet , output alphabet
, and transition probability . Let be another

channel with the same input alphabet , output alphabet ,
and transition probability . is a stochastically
degraded version of if there exists a transition probability

such that

(1)

A broadcast channel with receivers is a
stochastically degraded broadcast channel if every component
channel is a stochastically degraded version of for
all [2]. Since the marginal transition proba-
bilities completely determine
a stochastically degraded broadcast channel, we can model
any stochastically degraded broadcast channel as a physically
degraded broadcast channel with the same marginal transition
probabilities.

Theorem 1 ([2] and [4]): The capacity region for the two-
user stochastically degraded broadcast channel
is the convex hull of the closure of all satisfying

(2)

for some joint distribution , where
the auxiliary random variable 1 has cardinality bounded by

.

B. The Broadcast Z Channel

The Z channel, shown in Fig. 1(a), is a binary-asymmetric
channel with the transition probability matrix

1U was used as the auxiliary random variable in [2], [4]. In this paper, we
use X instead of U because the auxiliary random variable corresponds to the
second user’s encoded stream.

Fig. 4. OR operation view of Z channel.

Fig. 5. Physically degraded broadcast Z channel.

Fig. 6. Information theoretic diagram of the system.

where . If symbol is transmitted, symbol is re-
ceived with probability . If symbol is transmitted, symbol is
received with probability and symbol is received with prob-
ability . We can model the Z channel as the OR operation
of the channel input and Bernoulli noise with parameter

as shown in Fig. 4. In an OR multiple-access channel (MAC),
each user appears to transmit over a Z channel when the other
users are treated as noise [13]. Thus, in an OR network with mul-
tiple transmitters and multiple receivers, each transmitter trans-
mitting to more than one receiver sees a broadcast Z channel if
other transmitters transmitting to those receivers are treated as
noise. The two-user broadcast Z channel with the marginal tran-
sition probability matrices

is shown in Fig. 1, where . Because broadcast
Z channels are stochastically degraded, we can model any
broadcast Z channel as a physically degraded broadcast Z
channel as shown in Fig. 5, where

(3)

III. OPTIMAL TRANSMISSION STRATEGY FOR THE TWO-USER

BROADCAST Z CHANNEL

Since the broadcast Z channel is stochastically degraded, its
capacity region can be obtained directly from Theorem 1. The
capacity region for the broadcast Z channel as
shown in Fig. 6 is the convex hull of the closure of all
satisfying

(4)

(5)
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Fig. 7. (a) The capacity region and two upper bounds. (b) Point Z cannot be on the boundary of the capacity region.

for some probabilities , , , where
, , , is the

binary entropy function, , and

(6)

Each particular choice of in Fig. 6 specifies a par-
ticular transmission strategy and a rate pair . The optimal
boundary of a capacity region is the set of all Pareto optimal
points , for which it is impossible to increase rate
without decreasing rate or vice versa. A transmission strategy
is optimal if and only if it achieves a rate pair point on the op-
timal boundary. We call a set of transmission strategies suffi-
cient if all rate pairs on the optimal boundary can be achieved
by using these strategies and time sharing. Furthermore, a set
of transmission strategies is strongly sufficient if these strategies
can achieve all rate pairs on the optimal boundary without using
time sharing. Equations (4) and (5) give a set of pentagons that
yield the capacity region through their convex hull, but do not
explicitly show the optimal transmission strategies or derive the
boundary of the capacity region.

A. Optimal Transmission Strategies

The following theorem identifies a set of optimal transmission
strategies and provides an explicit expression of the boundary of
the capacity region.

Theorem 2: For a broadcast Z channel with ,
the set of the optimal transmission strategies , which
satisfy

(7)

(8)

and

(9)

are strongly sufficient. In other words, all rate pairs on the op-
timal boundary of the capacity region can be achieved by using
exactly the transmission strategies described in (7)–(9) without

the need of time sharing. Furthermore, applying (7)–(9) to (4)
and (5) yields an explicit expression of the optimal boundary of
the capacity region.

Before proving Theorem 2, we present and prove some pre-
liminary results. From (4) and (5), we can see that the trans-
mission strategies and have the same
transmission rate pairs. Therefore, we assume in the rest
of the section without loss of generality.

Theorem 3: For a broadcast Z channel with
, any transmission strategy with ,

is not optimal.
The proof is given in Appendix A.

Corollary 1: The set of all the transmission strategies with
is sufficient for any broadcast Z channel with
.

Proof: From Theorem 3, we know that the transmission
strategy is optimal only if at least one of these four
equations , , , is true. Hence
the set of all the transmission strategies with , ,

or is sufficient. When , or ,
the transmission rate for the second user, in (4), is zero. This
optimal rate pair is the point in Fig. 7(a). Since this point
can also be achieved by the transmission strategy with ,

and , all
the optimal rate pairs on the optimal boundary of the capacity
region can be achieved by using the transmission strategies with

and time sharing. Thus, the set of all the transmission
strategies with is sufficient. Q.E.D.

From Corollary 1, we can set in Fig. 6 without losing
any part of the capacity region and so the designed virtual
channel is a Z channel. Since we can consider the
output of a Z channel as the OR operation of two Bernoulli
random variables, an independent encoding scheme that works
well for the broadcast Z channel will be introduced later in this
paper.

Applying to (4) and (5) yields

(10)

(11)

By Corollary 1, the capacity region is the convex hull of the
closure of all rate pairs satisfying (10) and (11) for
some probability , . However, not all transmission strate-
gies of achieve the optimal boundary of the
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capacity region. Since any optimal transmission strategy maxi-
mizes for some nonnegative , we solve the optimiza-
tion problem of maximizing for any fixed in
order to find the constraints on and for optimal transmis-
sion strategies. Theorem 4 provides the solution to this maxi-
mization problem.

Theorem 4: The optimal solution to the maximization
problem

maximize

subject to

(12)

is unique and it is given below for any fixed .
Define

(13)

and

(14)

Case 1: If , then the optimal solution
is , , which satisfies (8) and (9), and the
corresponding rate pair is ,

.

Case 2: If , then the optimal solution is
, , which also satisfies (8) and (9), and the

corresponding rate pair is ,
.

Case 3: If , then the optimal
solution given below also satisfies (8) and (9)

(15)

and

(16)

The proof is given in Appendix B. Combining Case 1,2 and
3, we conclude that is a maximizer of (12) if and only if
the pair satisfies (8) and (9). In other words, if
doesn’t satisfy (8) or (9), cannot be a maximizer of
(12), and thus the transmission strategy is not
optimal. Since the set of the transmission strategies with

is sufficient by Corollary 1, the set of all the transmission
strategies satisfying (7)–(9) is also sufficient. Therefore the ca-
pacity region is the convex hull of the closure of all rate pairs

satisfying (10) and (11) for some , which satisfy
(8) and (9).

A sketch of the capacity region is shown with two upper
bounds in Fig. 7(a). From Case 1 in Theorem 4, the point cor-
responds to the largest transmission rate for the first user. The
first upper bound is the tangent of the capacity region at the point

, and its slope is . From Case 2, the point
provides the largest transmission rate for the second user. The
second upper bound is the tangent of the capacity region at the
point , and its slope is . Case 3 gives us the optimal
boundary of the capacity region except the points and .

Given and , which completely describe a two-user de-
graded broadcast Z channel, the optimal boundary of the ca-
pacity region can be explicitly described by (8)–(11). For any

in the range of (8), the value of the unique associated fol-
lows from (9). The curve of the optimal boundary of the capacity
region is then the set of pairs satisfying (10) and (11)
for these and associated . For example, for and

, the range of optimal values is , the
range of optimal values implied by (9) is ,
and the associated capacity region boundary is plotted in Fig. 13.

Now we prove Theorem 2. Since we have proved that the
set of all the transmission strategies satisfying (7)–(9) is suf-
ficient, we only need to show that any rate pair on the optimal
boundary of the capacity region can be achieved without using
time sharing.

Proof by Contradiction: Suppose the point in Fig. 7(b) is
on the optimal boundary of the capacity region for the broadcast
Z channel and this point can only be achieved by time sharing
of the points and , which can be directly achieved by using
transmission strategies satisfying (7)–(9). Clearly, the slope of
the line segment is neither zero nor minus infinity. Denote

as the slope of . The points and
provide the same value of . By Theorem 4, the op-
timal solution to the maximization problem of
is unique, and so neither nor maximizes . Thus,
there exists an achievable point such that this point is on the
right upper side of the line . Since and the triangle
is in the capacity region, the point must not be on the optimal
boundary of the capacity region (contradiction). Q.E.D.

B. Independent Encoding Scheme

The communication system for the two-user broadcast Z
channel is shown in Fig. 8. In a general scheme, the transmitter
jointly encodes the independent messages and , which
is potentially too complex to implement. Theorem 2 demon-
strates that there exists an independent encoding scheme which
achieves the optimal boundary of the capacity region. Since

is strongly sufficient, the designed channel is
a Z channel. Thus, the broadcast signal can be constructed
as the OR of two Bernoulli random variables and . This
construction of is an independent encoding scheme. The
system diagram of the independent encoding scheme is shown
in Fig. 9. First the messages and are encoded separately
and independently. and are two binary random variables
with and , where
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Fig. 8. Communication system for two-user broadcast Z channels.

Fig. 9. Optimal transmission strategy for broadcast Z channels.

Fig. 10. 16-state nonlinear turbo code structure, with k = 2 input bits per trellis section.

for . The transmitter broadcasts , which
is the OR of and . From Theorem 2, this independent
encoding scheme with any choice of satisfying (8) and
(9) achieves a rate pair arbitrarily close to the optimal
boundary of the capacity region if the codes for and are
properly chosen and have sufficiently large block lengths.

IV. NONLINEAR-TURBO CODES FOR THE TWO-USER

BROADCAST Z CHANNEL

In this section we show a practical implementation of the
transmission strategy for the two-user broadcast Z channel. As
proved in Section III, the optimal boundary is achieved by trans-
mitting the OR of the encoded data of each user, provided that the
density of ones of each of these encoded streams is chosen prop-
erly. Hence, a family of codes that provides a controlled density
of ones is required. We use the nonlinear turbo codes, introduced
in [13], to provide the needed controlled density of ones. Non-
linear turbo codes are parallel concatenated trellis codes with

input bits and output bits per trellis section. A look-up
table assigns the output label for each branch of the trellis so
that the required ones density is achieved. Each constituent en-
coder for the turbo code in this paper is a 16-state trellis code
with and the trellis structure shown in Fig. 10. The output
labels are assigned via a constrained search that provides the re-
quired ones density for each case, using the tools presented in
[13] for the Z Channel. The output labels for the codes with rate
pair , which is simulated on a broadcast
Z channel with , , are listed in Table I.

TABLE I
LABELING FOR CONSTITUENT TRELLIS CODES. RATES R = 1=6, R = 1=6.

ROWS REPRESENT THE STATE s s s s , COLUMNS REPRESENT THE INPUT

u u . LABELING IN OCTAL NOTATION

Fig. 11. Decoder structure for user 1.

Receiver 1 uses successive decoding as shown in Fig. 11. De-
note as the decoded stream corresponding to user 2. Since
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Fig. 12. Perceived channel by each decoder.

the transmitted data is , whenever a bit ,
there is no information about , and can be considered an
erasure. Hence, the input stream to Decoder 1 is

if
if

(17)

Therefore, Decoder 2 sees a Z Channel with erasures as
shown in Fig. 12. The tools presented in [13] were general
enough to be applied to the Z Channel with erasures. Note that
if is much smaller than we can use hard decoding in
Decoder 2 instead of soft decoding without any loss in perfor-
mance. Since the code for user 2 is designed for a Z Channel
with 0-to-1 crossover probability , and the
channel perceived by Decoder 2 in user 1 is a Z-Channel with
crossover probability , the
bit error rate of is negligible compared to the bit error rate
of Decoder 1. In fact, in all the simulations shown in Section V,
which include 100 frame errors of user 1, none of the errors
were produced by Decoder 2.

V. RESULTS

We simulate the transmission strategy for the two-user broad-
cast Z channel with crossover probabilities and

, using nonlinear turbo codes, with the structure shown
in Fig. 10. Fig. 13 shows the capacity region for the broadcast Z
channel and identifies the simulated rate pairs. It also shows the
optimal rate pairs, which are used to compute the ones densities
of each code. The output labels for the codes with each simu-
lated rate pair are listed at [15]. For each of these four simulated
rate pairs, the loss in mutual information from the associated
optimal rate is only bits or less in and only bits or
less in . Table II shows bit error rates for each rate pair, the
ones densities and , and the interleaver lengths and
used for each code. For simplicity, we chose and so that
the codeword length would be the same for user 1 and user
2, except for rate pairs and , where one
codeword length of user 2 is twice the length of user 1.

VI. CONCLUSION

This paper presented an optimal transmission strategy for the
broadcast Z channel with independent encoding and successive
decoding. We proved that any point on the optimal boundary
of the capacity region can be achieved by independently en-
coding the messages corresponding to different users and trans-
mitting the OR of the encoded signals. Also, the distributions of
the outputs of each encoder that achieve the optimal boundary
were provided. Nonlinear-turbo codes that provide a controlled
distribution of ones and zeros in their codewords were used to

demonstrate a low-complexity scheme that works close to the
optimal boundary.

APPENDIX A

Here we prove Theorem 3, which states that for a broadcast
Z channel with , any transmission strategy

with , is not optimal.
In (4) and (5), denote

(18)

(19)

(20)

The transmission strategy achieves the rate pair
. The theorem is true if we can increase both

and when , .
First compare the strategies and

for a small positive number

(21)

and

(22)

The small change of the rate pair is shown
Fig. 14. Point is the rate pair of the transmission strategy

, the arrow shows the small movement of the rate
pair .

Second compare the strategies and
for a small positive number

(23)
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Fig. 13. Broadcast Z channel with crossover probabilities � = 0:15 and � = 0:6 for receiver 1 and 2 respectively: achievable capacity region, simulated rate
pairs (R ;R ) and their corresponding optimal rates.

TABLE II
BER FOR TWO-USER BROADCAST Z CHANNEL WITH CROSSOVER PROBABILITIES � = 0:15 AND � = 0:6

Fig. 14. Capacity region and the changes of rate pairs.

and

(24)

where is the relative entropy between the distributions
and . The arrow in Fig. 14 shows the small movement of

the rate pair .

Now we show (25)–(26) at the top of the following page.
Let and . We have

and want to show that

(27)

Since

(28)

and

(29)

it is true that

(30)

It follows from (30) and the fact
that . Thus, the inequality (25) is
true, which means that the slope of is smaller than that of
in Fig. 14. Hence, the achievable shaded region is on the upper
right side of the point . Therefore, we can increase both terms
in the rate pair simultaneously and the strategy

is not optimal when and .
Q.E.D.
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(25)

is monotonically increasing in

(26)

(38)

APPENDIX B

Here we prove Theorem 4, which provides the unique optimal
solution to the maximization problem (12). In problem (12), the
objective function is bounded and the domain ,

is closed, so the maximum exists and can be attained.
First we discuss some possible optimal solutions and then we
show that only one of them is optimal for any fixed .

Case 0: If or or , then
and so it cannot be optimal.

Case 1: If and , then and

(31)

(32)

Case 2: If and , then and

(33)

(34)

Case 3: If , , then the optimum is attained
when

(35)

and

(36)

For any fixed , the optimal solution is in Case 1, 2, or 3.

Lemma 1: Function is monotoni-
cally increasing in the domain of when .

Lemma 2: The solution in Case 1 cannot be optimal when
.

Proof: When and ,

and . Therefore, for any fixed , . When
, (35) holds, and so

(37)

When , we get (38) at the top of the page

where follows from the facts that
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and ,
and follows from (37). Therefore, Case 1 cannot be optimal
when . Q.E.D.

Lemma 3: The solution in Case 2 cannot be optimal when
.

Proof: When and ,

and . Therefore, for any fixed , . When
, (35) holds, and so

(39)

When

(40)

where (a) follows from the facts that

and , and (b) follows from (39).
Therefore, Case 2 cannot be optimal when . Q.E.D.

Lemma 4: The solution to (35) exists in and is unique
for any in the range of .

Proof: Equation (35) is equivalent to . From
Lemma 1, is monotonically increasing. Therefore,
when , the solution is unique and

. Q.E.D.

Lemma 5: The unique solution to (35) and (36) in
Case 3 is optimal if .

Proof: From Lemma 4, the solution to (35) is unique if
. From (36)

(41)

Clearly, is monotonically increasing,

(42)

and

(43)

That means the unique solution to (36) is in the domain of
. Furthermore, when ,

by Lemma 2 and Lemma 3, Case 1 or Case 2 cannot be optimal
because

(44)

(45)

Therefore, Case 3 is optimal. Q.E.D.

Lemma 6: The unique solution
in Case 1 is optimal if .

Proof: When , Case 3 is not optimal
because there is no solution to (35). Case 2 is not
optimal by Lemma 3. Hence, Case 1 is optimal. Q.E.D.

Lemma 7: The unique solution
in Case 2 is optimal if .

Proof: When , Case 3 is not optimal because
there is no solution to (36). Case 1 is not optimal by
Lemma 2. Hence, Case 2 is optimal. Q.E.D.

From Lemma 5, 6, and 7, Theorem 4 is immediately
proved. Q.E.D.
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