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Abstract— This paper presents an optimal transmission
strategy, with simple encoding and decoding, for the two-
user broadcast Z channel. This paper provides an explicit-
form expression for the capacity region and proves that the
optimal surface can be achieved by independent encoding.
Specifically, the information messages corresponding to each
user are encoded independently and the OR of these two
streams is transmitted. Nonlinear turbo codes that pro-
vide a controlled distribution of ones and zeros are used to
demonstrate a low-complexity scheme that works close to
the optimal surface.

Index Terms—broadcast channel, broadcast Z channel, ca-
pacity region, turbo codes.

I. Introduction

Degraded-broadcast channels were first studied by Cover
in [1] and a formulation for the capacity region was estab-
lished in [2], [3] and [4]. The key idea to achieve the opti-
mal surface of the capacity region for degraded-broadcast
channels is superposition coding. In superposition coding
for degraded-broadcast channels, the data sent to the user
with the most degraded channel is encoded first. Given
the encoded bits for that user, an appropriate codebook
for the second most degraded channel user is selected, and
so forth. Hence superposition coding is in general a joint
encoding scheme. However, combining independently en-
coded streams of each user is an optimal scheme for some
broadcast channels including broadcast Gaussian channels
[1] and broadcast binary-symmetric channels[1] [2].

This paper focuses on the study of broadcast Z channels.
The Z channel is the binary-asymmetric channel shown in
Fig. 1(a). Fig. 1(b) shows a two-user broadcast Z chan-
nel. This paper provides an explicit-form expression for
the capacity region of the two-user broadcast Z channel
and proves that independent encoding with successive de-
coding can achieve this capacity region.

This paper is organized as follows. In Section II, some
definitions and notation for broadcast channels are intro-
duced. The proof that independent encoding can achieve
the optimal surface of the capacity region for the two-user
broadcast Z channel is presented in Section III. Nonlinear-
turbo codes, designed to achieve the optimal surface, are
presented in Section IV and simulation results are shown
in Section V. Section VI delivers the conclusions.

This work was supported by the Defence Advanced Research
Project Agency SPAWAR Systems Center, San Diego, California un-
der Grant N66001-02-1-8938 and by the state of California and ST
Microelectronics through UC Discovery Grant 03-10142.
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Fig. 1. (a) Z channel. (b) Broadcast Z channel.

II. Definitions and Preliminaries

A. Degraded broadcast channels

The general representation of a discrete memoryless
broadcast channel is given in Fig. 2. A single signal X is
broadcast to M users through M different channels. Chan-
nel A2 is a physically degraded version of channel A1 and
broadcast channel X → Y1, Y2 is physically degraded if
p(y1, y2|x) = p(y1|x)p(y2|y1) [5]. A physically degraded
broadcast channel with M users is shown in Fig. 3. Since
each user decodes its received signal without collaboration,
we only need to consider the marginal transition probabil-
ities p(y1|x), p(y2|x), · · · , p(yM |x) of the component chan-
nels A1, A2, · · · , AM . Since only the marginal distributions
affect receiver performance, a weaker notion of a stochas-
tically degraded broadcast is defined in [2] and [5].

Let A1 and A2 be two channels with same input alphabet
X , output alphabet Y1 and Y2, and transition probability
p1(y1|x) and p2(y2|x) respectively. A2 is a degraded version
of A1 if there exists a transition probability q(y2|y1) such
that

p2(y2|x) =
∑

y1∈Y1

q(y2|y1)p1(y1|x).

A broadcast channel with receivers Y1, Y2 · · · , YM is a
stochastically degraded broadcast channel if every com-
ponent channel Ai is a degraded version of Ai−1 for all
i = 2, · · · , M [2]. Since the marginal transition probabil-
ities p(y1|x), p(y2|x), · · · , p(yM |x) completely determine a
stochastically degraded broadcast channel, we can model
any stochastically degraded broadcast channel as a physi-
cally degraded broadcast channel with the same marginal
transition probabilities.

Theorem 1 ([2] [4]) The capacity region for the two-user
degraded broadcast channel X → Y1 → Y2 is the convex
hull of the closure of all (R1, R2) satisfying

R2 ≤ I(X2;Y2) R1 ≤ I(X; Y1|X2), (1)

for some joint distribution p(x2)p(x|x2)p(y, z|x), where the
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Fig. 2. Broadcast channel.
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Fig. 3. Physically degraded broadcast channel.

auxiliary random variable X2 has cardinality bounded by
|X2| ≤ min {|X |, |Y1|, |Y2|}.
B. The broadcast Z channel

The Z channel is a binary-asymmetric channel with
Pr{y = 0|x = 1} = 0 (see Fig. 1(a)). If symbol 1 is trans-
mitted, symbol 1 is received with probability 1. If symbol 0
is transmitted, symbol 1 is received with probability α and
symbol 0 is received with probability 1 − α. We can con-
sider a Z channel as the OR operation of the channel input
X and Bernoulli noise N with parameter α (see Fig. 4(a)).
The diagram of a two-user broadcast Z channel is shown in
Fig. 1(b). Because broadcast Z channels are stochastically
degraded, we can model any broadcast Z channel as a phys-
ically degraded broadcast Z channel as shown in Fig. 4(b),
where α∆ = α2−α1

1−α1
and α2 ≥ α1.

III. Optimal Transmission Strategy for the
Two-User Broadcast Z Channel

The communication system for the two-user broadcast
Z channel is shown in Fig. 5. In a general scheme, the
transmitter jointly encodes the independent messages W1

and W2. The receivers decode the noisy signals without
collaboration. Since the broadcast Z channel is stochasti-
cally degraded, its capacity region can be found directly
from Theorem 1. The capacity region for the broadcast Z
channel X → Y1 → Y2 (see Fig. 6) is the convex hull of the
closure of all (R1, R2) satisfying

R2 ≤ I2 = I(X2;Y2)
= H

(
(p2γ + q2q1)(1− α2)

)−
p2H

(
γ(1− α2)

)− q2H
(
q1(1− α2)

)
, (2)

R1 ≤ I1 = I(X;Y1|X2)
= p2

(
H(γ(1− α1))− γH(1− α1)

)
+

q2

(
H(q1(1− α1))− q1H(1− α1)

)
, (3)

for some probabilities p1, p2, γ, where H(p) is the binary
entropy function, q1 = 1− p1, q2 = 1− p2 and

α2 = Pr{y2 = 1|x = 0} = 1− (1− α1)(1− α∆). (4)
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Fig. 4. (a) OR operation view of Z channel. (b) Physically degraded
broadcast Z channel.
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Fig. 5. Communication system for 2-user broadcast Z channel.

A. An independent encoding scheme

The previously defined broadcast communication system
has a joint encoder which is potentially quite complex. We
propose an independent encoding scheme for the broadcast
Z channel, which can achieve the optimal surface of the ca-
pacity region. Fig. 7 shows the system diagram of the inde-
pendent encoding scheme. First the messages W1 and W2

are encoded separately and independently. X1 and X2 are
two binary random variables with Pr{Xj = 1} = pj and
Pr{Xj = 0} = qj . Thus pj +qj = 1, j = 1, 2. The transmit-
ter broadcasts X, which is the OR of X1 and X2. We will
show that by appropriately choosing the distribution of X1

and X2, i.e. q1 and q2, we can achieve any transmission
rate pair in the optimal surface of the capacity region. The
corresponding information theoretic diagram is Fig. 6 with
γ = 0. Letting γ = 0 in equation (2) and (3), the achievable
region for the broadcast Z channel X → Y1 → Y2, with the
independent encoding scheme of Fig. 7, is the closure of all
(R1, R2) satisfying

R2 ≤ I2 = H(q2q1(1− α2))− q2H(q1(1− α2)), (5)
R1 ≤ I1 = q2H(q1(1− α1))− q2q1H(1− α1), (6)

for some 0 ≤ q1, q2 ≤ 1.
Let us prove that any transmission rate pair in the op-

timal surface of the capacity region can be achieved using
the independent encoding scheme of Fig. 7 with appropri-
ate distributions of X1 and X2.

B. Optimal transmission strategy

Each particular choice of (p1, p2, γ) in Fig. 6 gives a par-
ticular transmission strategy and a rate pair (I1, I2). We

X Y1

1

Y2X2

p1

p2

q2 q1

Fig. 6. Information theoretic diagram of the system.
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Fig. 7. Optimal transmission strategy for broadcast Z channels.



say that the optimal surface of a capacity region is the set
of all Pareto optimal points (I1, I2), which are points for
which it is impossible to increase rate I1 without decreasing
rate I2 or vice versa. A transmission strategy is optimal if
and only if it achieves a rate pair in the optimal surface.

Theorem 2: Every rate pair in the optimal surface of the
capacity region for a broadcast Z channel with
0 < α1 < α2 < 1 can be achieved with the independent
encoding scheme shown in Fig. 7. In other words, every
rate pair in the optimal surface of the capacity region can
be achieved with γ = 0 in Fig. 6.

Before proving Theorem 2, we present and prove some
preliminary results. From equations (2) and (3), we can
see that the transmission strategies (1 − γ, 1 − p2, 1 − p1)
and (p1, p2, γ) have the same transmission rate pairs. So
we can assume γ ≤ 1−p1 in the rest of the section without
loss of generality.

Theorem 3: For a broadcast Z channel with
0 < α1 < α2 < 1, any transmission strategy (p1, p2, γ) with
0 < p2 < 1, 0 < γ < 1− p1 is not optimal.

The proof is given in Appendix A.
Corollary 1: The capacity region for the broadcast Z

channel X → Y1 → Y2 is the convex hull of the achiev-
able region with the independent encoding scheme.

Proof: From Theorem 3, we know that the transmission
strategy (p1, p2, γ) is optimal only if at least one of these
four equations p2 = 0, p2 = 1, γ = 1 − p1, γ = 0 is true.
When p2 = 0, p2 = 1 or γ = 1 − p1, the transmission
rate for the second user, I2 in equation (2), is zero, which
means that the only optimal rate pair that can be achieved
is point B in Fig. 13. Point B can also be achieved by
the independent encoding scheme with γ = 0, p2 = 0 and
p1 = arg max(H((1 − x)(1 − α1)) − (1 − x)H(1 − α1)).
Thus, all the optimal rate pairs in the optimal surface of the
capacity region can be achieved by using the independent
encoding scheme with γ = 0 and time sharing.

The achievable region given by equations (5) and (6)
is not in an explicit form. In order to find the explicit
form of the achievable region, we consider the following
optimization problem: maximize λI1 + (1 − λ)I2 for any
fixed λ ∈ [0, 1].

Theorem 4: The optimal solution to the maximization
problem

maximize λI1 + (1− λ)I2 (7)
subject to I2 = H(q2q1(1− α2))− q2H(q1(1− α2))

I1 = q2H(q1(1− α1))− q2q1H(1− α1)
0 ≤ q2 ≤ 1, 0 ≤ q1 ≤ 1,

is unique and it is given below for any fixed λ ∈ [0, 1].
Define

ϕ(x) =
log(1− (1− α2)x)

log(1− (1− α1)x) + log(1− (1− α2)x)
, (8)

ψ(x) =
1

xeH(x)/x + x
. (9)

Case 1: if ϕ(ψ(1−α1)) ≤ λ ≤ 1, then the optimal solution
is q∗2 = 1, q∗1 = ψ(1 − α1) and the corresponding rate pair

1

2

1

2

Z

X

Y

P

Fig. 8. (a) The capacity region and two upper bounds. (b) Point Z
can not be on the boundary of the capacity region.

is I∗1 = H(q∗1(1− α1))− q∗1H(1− α1), I∗2 = 0.
Case 2: if 0 ≤ λ ≤ ϕ(1), then the optimal solution is
q∗2 = ψ(1 − α2), q∗1 = 1 and the corresponding rate pair is
I∗1 = 0, I∗2 = H(q∗2(1− α2))− q∗2H(1− α2).
Case 3: if ϕ(1) < λ < ϕ(ψ(1 − α1)), then the optimal
solution has

λ log(1− q∗1(1− α1)) = (1− λ) log(1− q∗1(1− α2)), (10)

H(q∗1(1− α2))− q∗1(1− α2) log 1−q∗2q∗1 (1−α2)
q∗2q∗1 (1−α2)

=
log(1−q∗1 (1−α2))
log(1−q∗1 (1−α1))

· (H(q∗1(1− α1))− q∗1H(1− α1)
)
. (11)

The proof is given in Appendix B. The achievable re-
gion is shown with two upper bounds in Fig. 8(a). From
case 1, we can see that point A corresponds to the largest
transmission rate for the second user. The first upper
bound is the tangent of the achievable region in point
A, and its slope is −ϕ(1)/(1 − ϕ(1)). From case 2, we
show that point B provides the largest transmission rate
for the first user. The second upper bound is the tan-
gent of the achievable region in point B, and its slope is
−ϕ(ψ(1−α1))/(1−ϕ(ψ(1−α1))). Case 3 gives us the op-
timal surface of the achievable region except points A and
B.

Given α1 and α2, which completely describe a two-user
degraded broadcast Z channel, the capacity region can be
explicitly described. Cases 1 and 2 identify the corner
points of the capacity region. From Cases 1, 2, and 3 above,
the rest of the curve is described by the following range of
q1 values:

ψ(1− α1) < q1 < 1. (12)

The associated q2 values follow from (11). The curve of the
capacity region boundary follows from using the q1 and q2

values in (5) and (6). For example, for α1 = 0.15 and
α2 = 0.6, the range of q1 values is 0.445 < q1 < 1 and the
associated capacity region boundary is plotted in Fig. 12.

Finally, we prove Theorem 2.
Proof by contradiction: Suppose the point Z in Fig. 8(b)

is on the boundary of the capacity region for the broad-
cast Z channel but not in the achievable region with the
independent encoding scheme. Thus, it can be achieved
only by time sharing of points X and Y , which is in the
achievable region. Clearly, The slope of the line segment
XY is neither zero nor infinity. Suppose the slope of XY
is −k, 0 < k < ∞, so points X and Y provide the same
k · R1 + R2. From Theorem 4, the optimal solution to
the maximization problem max(λI1 +(1−λ)I2)) is unique,
therefore neither X nor Y maximizes
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Fig. 10. 16-state nonlinear turbo code structure, with k0 = 2 input
bits per trellis section.

(k ·I1+I2). Thus, there exists an achievable point P on the
right upper side of the line XY and the triangle 4XY P is
in the capacity region. So the point Z must not be on the
boundary of the capacity region (contradiction).2

IV. Nonlinear-Turbo Codes for the Two-User
Broadcast Z Channel

In this section we show a practical implementation of the
transmission strategy for the two-user broadcast Z channel.
As proved in Section III, the optimal surface is achieved
by transmitting the OR of the encoded data of each user,
provided that the density of ones of each of these encoded
streams is chosen properly. Hence, a family of codes that
provides a controlled density of ones and zeros is required.
We propose the use of nonlinear turbo codes, introduced in
[6]. Nonlinear turbo codes are parallel concatenated trellis
codes, with k0 input bits and n0 output bits per trellis
section. A look-up table assigns the output label of each
branch of the trellis, so that the required ones density is
achieved. Each constituent encoder for the turbo code in
this paper is a 16-state trellis code, with k0 = 2, with trellis
structure shown in Fig. 10. The output labels are assigned
via a constrained search that provides the required ones
density for each case, using the tools presented in [6] for
the Z Channel. Also, the tools presented in [6] were general
enough to be applied to the Z Channel with erasures as
perceived by user 1.

Receiver 1 uses sequential decoding as shown in Fig. 11.
Denote as X̂2 the decoded stream corresponding to user 2.
Since the transmitted data is x = x1(OR)x2, whenever a
bit x2 = 1, there is no information about x1, and x1 can be
considered an erasure. Hence, the input stream to Decoder
1 is

ŷ1 = e(y1, x̂2) =
{

y1 if x̂2 = 0,
e if x̂2 = 1.

(13)

Therefore, Decoder 2 sees a Z Channel with erasures as
shown in Fig. 9. Note that if α1 is much smaller than α2 we
can use hard decoding in Decoder 2 instead of soft decoding

1Y e

Decoder 2

Decoder 1 1X̂

2X̂

1Y�
Fig. 11. Decoder structure for user 1.
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Fig. 12. Broadcast Z channel with crossover probabilities α1 = 0.15
and α2 = 0.6 for receiver 1 and 2 respectively: achievable capac-
ity region, simulated rate pairs (R1, R2) and their corresponding
optimal rates.

without any loss in performance. Since the code for user 2 is
designed for a Z Channel with 0-to-1 crossover probability
1− (1− α2)q1, and the channel perceived by Decoder 2 in
user 1 is a Z-Channel with crossover probability 1 − (1 −
α1)q1 < 1− (1−α2)q1, the bit error rate of x̂2 is negligible
compared to the bit error rate of Decoder 1. In fact, in
all the simulations shown in Section V, which include 100
frame errors of user 1, none of the errors were produced by
Decoder 2.

V. Results

We have simulated the transmission strategy for the
two-user broadcast Z channel with crossover probabilities
α1 = 0.15 and α2 = 0.6, using nonlinear turbo codes, with
the structure shown in Fig. 10. Fig. 12 shows the achiev-
able region of the rate pairs (R1, R2) on this channel, and
the simulated rate pairs. It also shows the optimal rate
pairs used to compute the ones densities of each code. For
each of these four simulated rate pairs, the loss in mutual
information from the associated optimal rate is only 0.04
bits or less in R1 and only 0.02 bits or less in R2. Table I
shows bit error rates for each rate pair, the ones densities
p1 and p2, and the interleaver lengths K1 and K2 used for
each code. For simplicity, we chose K1 and K2 so that the
codeword length n would be the same for user 1 and user
2, except for rate pairs R1 = 1/2 and R2 = 1/22, where
one codeword length of user 2 is twice the length of user 1.

VI. Conclusions

This paper presented an optimal transmission strategy
for the broadcast Z channel with simple encoding and de-
coding. We proved that any point in the optimal surface of
the capacity region can be achieved by independently en-
coding the messages corresponding to different users and



TABLE I

BER for two-user broadcast Z channel with crossover probabilities α1 = 0.15 and α2 = 0.6.

R1 R2 p1 p2 K1 K2 BER1 BER2

1/12 1/5 0.106 0.56 4800 1700 2.54× 10−5 1.24× 10−5

1/6 1/6 0.196 0.5 2048 2048 7.01× 10−6 5.33× 10−6

1/3 1/9 0.336 0.3739 4608 1536 7.13× 10−6 6.70× 10−6

1/2 1/22 0.463 0.1979 5632 1024 9.27× 10−7 3.27× 10−6

transmitting the OR of the encoded signals. Also, the dis-
tributions of the outputs of each encoder that achieve the
optimal surface were provided. Nonlinear-turbo codes that
provide a controlled distribution of ones and zeros in the
codes were used to demonstrate a low-complexity scheme
that works close to the optimal surface.

Appendices

Appendix A

Here we prove Theorem 3. In (2) and (3), denote

I1(p1, p2, γ) = I(X;Y1|X2)
∣∣
p1,p2,γ

(14)

I2(p1, p2, γ) = I(X2; Y2)
∣∣
p1,p2,γ

(15)

I1,2(p1, p2, γ) = (I1, I2)
∣∣
p1,p2,γ

. (16)

The strategy (p1, p2, γ) has the rate pair I1,2(p1, p2, γ). The
theorem is true if we can increase both I1 and I2 when
0 < p2 < 1, 0 < γ < 1− p1.

Firstly we compare the strategies (p1, p2, γ) and
(p1 − p2δ1, p2, γ − q2δ1) for a small positive number δ1.

∆1Ij = Ij(p1−p2δ1, p2, γ−q2δ1)−Ij(p1, p2, γ)

' ∂Ij(p1 − p2δ1, p2, γ − q2δ1)
∂δ1

∣∣∣
δ1=0

δ1

= (−1)jq2p2(1− αj)
(
log

1− γ(1− αj)
γ(1− αj)

+ log
q1(1− αj)

1− q1(1− αj)
)
δ1, j = 1, 2. (17)

The small change of the rate pair (∆1I1, ∆1I2) is shown
Fig. 13. Point A is the rate pair of the strategy (p1, p2, γ),
the arrow ∆1 shows the small movement of the rate pair
(∆1I1,∆1I2).

Secondly we compare the strategies (p1, p2, γ) and
(p1 − (γ − q1)δ2, p2 − q2δ2, γ) for a small positive number
δ2.

∆2Ij = Ij(p1−(γ− q1)δ2, p2−q2δ2, γ)
−Ij(p1, p2, γ)

' ∂Ij(p1 − (γ − q1)δ2, p2 − q2δ2, γ)
∂δ2

∣∣∣
δ2=0

δ2

= (−1)jq2δ2

{
γ(1− αj) log

q1

γ
+

(1− γ(1− αj)) log
1− q1(1− αj)
1− γ(1− αj)

}

= (−1)jq2δ2D(γ(1− αj) ‖ q1(1− αj)),
j = 1, 2. (18)

1

2

1

2

Fig. 13. Capacity region and the changes of rate pairs.

where D(p ‖ q) is the relative entropy between distribu-
tion p and q. The arrow ∆2 in Fig. 13 shows the small
movement of the rate pair (∆2I1,∆2I2).

Now we show that

∆1I2

∆1I1
<

∆2I2

∆2I1
< 0. (19)

∆1I2
∆1I1

< ∆2I2
∆2I1

⇔ D(γ(1−α2)‖q1(1−α2))+log
1−γ(1−α2)
1−q1(1−α2)

D(γ(1−α1)‖q1(1−α1))+log
1−γ(1−α1)
1−q1(1−α1)

> D(γ(1−α2)‖q1(1−α2))
D(γ(1−α1)‖q1(1−α1))

⇔ D(γ(1−α1)‖q1(1−α1))

log
1−γ(1−α1)
1−q1(1−α1)

> D(γ(1−α2)‖q1(1−α2))

log
1−γ(1−α2)
1−q1(1−α2)

⇔ f(x) = D(γx‖q1x)

log 1−γx
1−q1x

is monotonically increasing

in {x|0 < x < 1}
⇔ f ′(x) =

(
log γx

q1x log 1−γx
1−q1x − (log 1−γx

1−q1x )2

+ log γx
q1x ( 1

1−γx − 1
1−q1x )

)
γ(log 1−γx

1−q1x )−2 > 0. (20)

Let u = 1−γx and v = 1−q1x. So we have 0 < v < u < 1
and need to prove that

g(u, v) = log
u

v
log

1− u

1− v
−(log

u

v
)2+log

1− u

1− v
(
1
u
− 1

v
) > 0.

(21)
Since g(v, v) = 0, ∀0 < v < 1, we just need to show
that ∂g(u,v)

∂u > 0 ∀0 < v < u < 1. For a fixed u, we
can consider φu(v) = ∂g(u,v)

∂u as a function of v. Because
φu(u) = ∂g(u,v)

∂u

∣∣
v=u

= 0, ∀0 < u < 1, we only need to prove

that ∂2g(u,v)
∂u∂v < 0. It is easy to check that ∀0 < v < u < 1

∂2g(u, v)
∂u∂v

= − (u− v)2

u2v2(1− u)(1− v)
< 0. (22)

Thus, the inequality (19) is true, which means that the
slope of ∆1 is smaller than that of ∆2 in Fig. 13. The



achievable shaded region is on the upper right side of point
A. Therefore, we can increase the rate pair I1,2(p2, γ, p1)
together and the strategy (p2, γ, p1) is not optimal.2

Appendix B

Here we prove Theorem 4. In problem (7), the objective
function λI1 + (1− λ)I2 is bounded and the domain
0 ≤ q1, q2 ≤ 1 is closed, so the maximum exists and can be
attained. First we discuss some possible optimal solutions
and then we show that only one of them is the optimum
for any fixed λ between 0 and 1.
Case 0: If q1 = 0 or q2 = 0 or q1 = q2 = 1, then I1 = I2 = 0
and so it can not be the optimum.
Case 1: If q2 = 1 and 0 < q1 < 1, then I2 = 0 and

∂I1

∂q1
= (1− α1) log

1− q1(1− α1)
q1(1− α1)

−H(1− α1) = 0 (23)

⇒ q∗1 =
1

(1− α1)(eH(1−α1)/(1−α1) + 1)
. (24)

Case 2: If q1 = 1 and 0 < q2 < 1, then I1 = 0 and

∂I2

∂q2
= (1− α2) log

1− q2(1− α2)
q2(1− α2)

−H(1− α2) = 0 (25)

⇒ q∗2 =
1

(1− α2)(eH(1−α2)/(1−α2) + 1)
. (26)

Case 3: If 0 < q1, q2 < 1, then the optimum is attained
when

q2
∂(λI1 + (1− λ)I2)

∂q2
+ q1

∂(λI1 + (1− λ)I2)
∂q1

= 0

⇒ λ log(1− q∗1(1−α1)) = (1−λ) log(1− q∗1(1−α2)), (27)

and

∂(λI1+(1−λ)I2)
∂q2

= 0

⇒ (1− λ)
(
H(q∗1(1− α2))− q∗1(1− α2) log 1−q∗2q∗1 (1−α2)

q∗2q∗1 (1−α2)

)

−λ
(
H(q∗1(1− α1))− q∗1H(1− α1)

)
= 0

⇒ H(q∗1(1− α2))− q∗1(1− α2) log 1−q∗2q∗1 (1−α2)
q∗2q∗1 (1−α2)

=
log(1−q∗1 (1−α2))
log(1−q∗1 (1−α1))

· (H(q∗1(1− α1))− q∗1H(1− α1)
)
. (28)

Now we are going to find which case is optimal for dif-
ferent λ.

Lemma 1: Function l(q1) = log(1−q1(1−α2))
log(1−q1(1−α1))

is monotoni-
cally decreasing in the domain 0 ≤ q1 ≤ 1 when α1 < α2

Lemma 2: The solution to equation (27) exists in (0, 1)
and is unique for any λ with ϕ(1) < λ < ϕ(0).

Proof: Equation (27) is equivalent to l(q∗1) = λ/(1− λ).
From Lemma 1, l(q1) is monotonically decreasing. There-
fore, when l(1) < λ/(1 − λ) < l(0), i.e. ϕ(1) < λ < ϕ(0),
the solution q − 1∗is unique and q∗1 ∈ (0, 1).2

Lemma 3: The unique solution (q∗1 , q∗2) to equation (27)
and (28) in case 3 is the optimum if ϕ(1) < λ < ϕ(ψ(1 −
α1)).

Proof: From Lemma 2, the solution q∗1 to equation (27)
is unique if ϕ(1) < λ < ϕ(ψ(1− α1)). From (28)

m(q2) =
(
H(q∗1(1− α2))− q∗1(1− α2) log 1−q2q∗1 (1−α2)

q2q∗1 (1−α2)

) ∗
log(1− q∗1(1− α1))−

(
H(q∗1(1− α1))− q∗1H(1− α1)

) ∗
log(1− q∗1(1− α2)) = 0. (29)

Clearly, m(q2) is monotonically increasing and

lim
q2→0

m(q2) = −∞ < 0. (30)

ϕ(1) < λ < ϕ(ψ(1− α1))
⇒ q∗1 > ψ(1− α1)
⇒ m(1) > 0. (31)

That means the unique solution q∗2 to equation (28) is in
the domain 0 ≤ q2 ≤ 1. Furthermore, when ϕ(1) < λ <
ϕ(ψ(1 − α1)), case 1 and case 2 can not be the optimum
because

∂(λI1 + (1− λ)I2)
∂q2

∣∣
q2=1,q1=ψ(1−α1)

< 0, (32)

∂(λI1 + (1− λ)I2)
∂q1

∣∣
q1=1,q2=ψ(1−α2)

< 0. (33)

Therefore, case 3 is the optimum.2
Lemma 4: The unique solution (q∗2 = 1, q∗1 = ψ(1− α1))

in case 1 is the optimum if ϕ(ψ(1− α1)) ≤ λ ≤ 1.
Proof: When ϕ(ψ(1−α1)) ≤ λ ≤ 1, case 3 is not optimal

because there is no solution q1 ∈ (0, 1) to equation (27).
Case 2 is not optimal because inequality (33) holds. So
case 1 is the optimum.2

Lemma 5: The unique solution (q∗2 = ψ(1− α2), q∗1 = 1)
in case 2 is the optimum if 0 ≤ λ ≤ ϕ(1).

Proof: When 0 ≤ λ ≤ ϕ(1), case 3 is not optimal because
there is no solution q2 ∈ (0, 1) to equation (28). Case 1 is
not optimal because inequality (32) holds. So case 2 is the
optimum.2

From Lemma 3,4 and 5, Theorem 4 is immediately
proved.2
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