
Lower-Complexity Layered Belief-Propagation
Decoding of LDPC Codes

Yuan-Mao Chang, Andres I. Vila Casado, Mau-Chung Frank Chang, and Richard D. Wesel

Department of Electrical Engineering, University of California, Los Angeles, CA 90095-1594

Email: {ymchang, avila, mfchang, wesel}@ee.ucla.edu

Abstract— The design of LDPC decoders with low com-
plexity, high throughput, and good performance is a critical
task. A well-known strategy is to design structured codes
such as quasi-cyclic LDPC (QC-LDPC) that allow partially-
parallel decoders. Also, several works show that sequen-
tial schedules, such as Layered Belief-Propagation (LBP),
converge faster than the traditional flooding schedule. In
this paper, we propose a novel low-complexity sequential
schedule called Zigzag LBP (Z-LBP). Current LBP sched-
ules do not allow partially-parallel architectures for some
codes, such as high-rate codes with small-to-medium block-
lengths. Our proposed algorithm can still be implemented
in a partially-parallel manner in these codes. Z-LBP pro-
vides the same benefits of LBP such as faster convergence
speed and achieves lower frame error rates than flooding.

Index Terms— Belief-propagation, channel codes, error-
control codes, low-density parity-check codes.

I. Introduction

Low-Density Parity-Check (LDPC) codes, linear block
codes defined by a very sparse parity-check matrix H, are
often proposed as the channel coding solutions for mod-
ern wireless communication systems. Medium-rate LDPC
codes are used in standards such as DVB-S2 [1], WiMax
(IEEE 802.16e) [2], and wireless LAN (IEEE 802.11n) [3].
Furthermore, high-rate LDPC codes have been selected as
the channel coding scheme for mmWave WPAN (IEEE
802.15.3c) [4]. This recent success of LDPC codes is mainly
due to structures that allow partially-parallel decoders [5].
These structured codes, called quasi-cyclic LDPC (QC-
LDPC), are used in all the standards mentioned above.

QC-LDPC codes are represented as an array of sub-
matrices as follows

HQC =







A1,1 · · · A1,t

...
...

As,1 · · · As,t






, (1)

where each sub-matrix Ai,j is a p × p circulant matrix. A
circulant matrix is a square matrix in which each row is a
one-step cyclic shift of the previous row, and the first row
is a one-step cyclic shift of the last row.

QC-LDPC decoders have a significantly higher through-
put than the decoders of random sparse matrices [6]. The
QC-LDPC structure guarantees that at least p messages
can be computed in a parallel fashion at all times if flood-
ing schedule is used [5]. Well designed QC-LDPC codes
perform as well as random sparse matrices [7].

This work was supported by the US DARPA through the TEAM
contract and the Boeing corporation.

The original message-passing schedule, called flooding
scheduling, updates all the variable nodes simultaneously
using the previously generated check-to-variable messages
and then updates all the check nodes simultaneously using
the previously generated variable-to-check messages. Se-
quential message-passing schedules are used to update the
nodes sequentially instead of simultaneously. Several stud-
ies show that sequential scheduling not only improves the
convergence speed in terms of number of iterations but also
outperforms the traditional flooding scheduling for a large
number of iterations. There are different types of sequen-
tial schedules, such as a sequence of check-node updates
[8] [9] and a sequence of variable-node updates [10] [11].
Sequential scheduling is also presented in [12] under the
name of Layered Belief Propagation (LBP). Similar ideas
are presented and analyzed in [13], [14], and [15].

In this paper, we will use the term LBP to denote all se-
quential schedules. Check-node-centric LBP (C-LBP) indi-
cates a sequence of check-node updates, and variable-node-
centric LBP (V-LBP) indicates a sequence of variable-node
updates. Simulations and theoretical results in [8]-[15]
show that LBP converges twice as fast as flooding because
the messages are updated using the most recent informa-
tion available as opposed to updating several messages with
the same pre-update information. C-LBP has the same
decoding complexity per iteration as flooding [9], thus al-
lowing the convergence speed increase at no cost. How-
ever, the V-LBP solutions proposed in [10] and [11] have a
higher complexity per iteration than flooding and C-LBP.
This higher complexity arises from the check-to-variable
message computations as will be shown in Section II-B.

Furthermore, QC-LDPC codes where the sub-matrices
can have at most one “1” per column and one “1” per
row facilitate C-LBP and V-LBP decoding in a partially-
parallel fashion as shown in [9] and [12]. This parity-
check matrix structure allows the partially-parallel process-
ing each of the p nodes over the bi-partite graph, and each
processor uses the most recent information available. Thus,
QC-LDPC structures guarantee that C-LBP and V-LBP
can perform partially-parallel computations and maintain
sequential schedule.

However, small-to-medium blocklength high-rate QC-
LDPC codes generally need more than one diagonal per
sub-matrix and only allow one row of sub-matrices. If there
were more than one row of sub-matrices, the sub-matrix
size will be small, thus diminishing the possible through-
puts. Therefore, the C-LBP decoders presented in [9] can-



not be implemented in a partially-parallel fashion. This
issue will be shown in Section IV-A.

We propose a zigzag LBP scheduling scheme called Z-
LBP that can decode any LDPC code and allows partially-
parallel decoding for QC-LDPC codes. This novel strategy
reduces the computation complexity per iteration. More-
over, Z-LBP keeps the advantages of the sequential schedul-
ing such as faster convergence speed and better decoding
performance with respect to flooding.

This paper is structured as follows: Section II dis-
cusses the issues that arise when implementing flooding
and LBP. Section III introduces Z-LBP. Section IV dis-
cusses the partially-parallel decoding implementation for
high-rate QC-LDPC codes that do not allow C-LBP de-
coding. Section V delivers the conclusions of this paper.

II. LBP implementation issues

A. Efficient computation of the check-to-variable messages

The message from check node ci to variable node vj is
generated using the following equation,

mci→vj
=

∏

vb∈N (ci)\vj

sgn (mvb→ci
) × φ





∑

vb∈N (ci)\vj

φ (| mvb→ci
|)



 ,

(2)
where N (ci) \vj denotes the neighbors of ci excluding vj ,
and φ(x) is defined as φ(x) = − log

(

tanh(x
2 )

)

. mci→vj
is

usually generated using a binary operator called Soft-XOR
denoted by ⊞

x ⊞ y = φ (φ(x) + φ(y)) . (3)

Soft-XOR is commutative, associative and easy to imple-
ment [9] [16] [17]. Eq. (2) can be implemented in practice
as follows,

mci→vj
=

∏

vb∈N (ci)\vj

sgn (mvb→ci
) × ⊞

vb∈N (ci)\vj

mvb→ci
. (4)

Eq. (4) shows that dc − 2 Soft-XORs are required to com-
pute each mci→vj

. Therefore, dc(dc − 2) Soft-XORs are
required to separately compute all the mci→vj

from the
same check node ci.

However, if a message-passing schedule requires the de-
coder to compute all the mci→vj

from the same ci simul-
taneously, there is an efficient implementation [18]. This
efficient implementation is illustrated in Fig. 1. For any
degree-dc check node, first generate dc − 2 intermediate
values, fci,1 = mv1→ci

, and fci,j = fci,j−1 ⊞ mvj→ci
for

j = {2, . . . , dc−1}. This first step successively accumulates
mvj→ci

in a forward order. Then, generate dc − 2 interme-
diate values, bci,dc

= mvdc→ci
, and bci,j = bci,j+1 ⊞mvj→ci

for j = {dc − 1, . . . , 2}. This second step successively ac-
cumulates mvj→ci

in a backward order. Finally, mci→vj

is computed by doing fci,j−1 ⊞ bci,j+1. This method uses
3(dc − 2) Soft-XORs to correctly compute all the mci→vj

from the same ci at the same time. This algorithm is opti-
mal in the sense that no algorithm using fewer Soft-XORs

icvm →3 icd cvm →−2 icd cvm →−1icvm →1 icvm →2

3, −ci dcf
2, −ci dcf2,icf

4,icb
2, −ci dcb 1, −ci dcb3,icb

1, −ci dcf

2,icb

3vci
m →

icvm →3 icd cvm →icd cvm →−2 icd cvm →−1icvm →2

2vci
m → 2−→

cdi vcm
1−→

cdi vcm

Fig. 1. The most efficient way to calculate mci→vj
from the same ci

can correctly compute all the mci→vj
from the same ci si-

multaneously. Flooding and C-LBP decoders use this strat-
egy because they compute all the mci→vj

from the same ci

at the same time.
This check-node update is equivalent to the BCJR algo-

rithm [19] over the trellis representation of the check-node
equation in the log-likelihood domain. The forward accu-
mulation of fci,j corresponds to the BCJR α recursion in
the log-likelihood domain. Also, the backward accumula-
tion of bci,j corresponds to the BCJR β recursion in the
log-likelihood domain.

B. V-LBP implementation issues

The V-LBP solutions proposed in [10] and [11] have a
higher complexity per iteration than flooding and C-LBP
which arises from the check-to-variable message compu-
tations. Since the V-LBP algorithm sequentially updates
variable nodes, it does not allow computing all the mci→vj

from the same ci at the same time. Hence, the required
number of Soft-XORs to compute all the mci→vj

from the
same ci is dc(dc − 2).

There is a method, proposed in [14], to reduce the com-
plexity of V-LBP. Define Mci

as

Mci
=

∏

vb∈N (ci)

sgn (mvb→ci
) × ⊞

vb∈N (ci)

mvb→ci
. (5)

Mci
is the Soft-XOR of all mvj→ci

destined the same ci. A
Soft-XOR’s inverse operator, Soft-NXOR, denoted by ⊟, is
defined as

x ⊟ y = φ (φ(x) − φ(y)) . (6)

Thus, the message from check-node ci to variable-node vj

can be computed by

mci→vj
= Mci

⊟ mvj→ci
. (7)

The decoder first initializes all Mci
for each check node.

Then, separately generates all the mci→vj
using Eq. (7).

Also, when a new mvj→ci
is computed, Mci

is re-calculated
using

Mci
= mci→vj

⊞ mvj→ci
. (8)

In each iteration, computing all the mci→vj
from the

same ci requires dc Soft-NXORs. Moreover, dc Soft-XORs
are needed to re-calculate Mci

since there will be dc new
mvj→ci

on every iteration. Assuming that the complexity
of Soft-XOR and Soft-NXOR is the same, the number of



required operations per iteration needed to update a check
node is 2dc. We omit the dc Soft-XORs required to com-
pute Mci

initially in Eq. (5).
However, Soft-XOR is not invertible on every point.

Without loss of generality, assume mv1→ci
is 0. Then, Mci

is 0, so mci→v1
= φ (φ(0) − φ(0)) = ∞. Also, even if all

|mvj→ci
| are bigger than 0, this algorithm is still numeri-

cal unstable because the dynamic range of Soft-NXOR is
[0,∞). When the two arguments of Soft-NXOR are similar,
the output is very large and out of quantization levels. The
large quantization noise makes this strategy not practical
for implementation. The authors of [17] also arrived to the
conclusion that this technique is not feasible in practice.

III. Zigzag LBP

We propose a novel LBP schedule that requires fewer
number of operations per iteration than flooding, C-LBP,
and V-LBP to compute all the mci→vj

. Zigzag LBP is a
V-LBP strategy that performs variable-node updates in a
zigzag pattern over the parity-check matrix. One direc-
tional updating, forward updating or backward updating
of all variable nodes, corresponds to one iteration. Zigzag
updating guarantees that all the mci→vj

can be generated
by using the technique presented in Section II-A.

The Z-LBP algorithm is formally presented in Algorithm
1. First, the decoder initializes all fci,j of the every check
node. Then, the first iteration, as well as all the odd iter-
ations, consists of the sequential update of variable nodes
vj , j = {N . . . 1} in a backward fashion. All the mci→vj

destined to the same variable node vj are generated us-
ing fci,j−1 ⊞ bci,j+1. Then, the decoder generates all the
mvj→ci

from the same vj . Finally, the decoder calculates
all the bci,j for every ci that is a neighbor of vj using
bci,j+1 ⊞ mvj→ci

. The second iteration, as well as all even
iterations, updates the variable nodes vj , j = {1 . . . N} in
a forward fashion. All the mci→vj

of the same variable
node vj are still generated using fci,j−1 ⊞ bci,j+1, and then
all the mvj→ci

are generated. Finally, the decoder calcu-
lates all the fci,j for every ci that is a neighbor of vj using
fci,j−1 ⊞ mvj→ci

.
The decoder initializes all the fci,j in Line 3 of Algo-

rithm 1 following the order of the received channel infor-
mation. Hence, the decoder simultaneously receives all the
channel information and initializes all the fc,j . The Z-
LBP algorithm computes all the mci→vj

using the forward
and backward technique which is described in Section II-A
in a distributed fashion. However, the decoder computes
mci→vj

and either fci,j or bci,j instead of both of them in
each iteration. Thus, it requires a fewer number of Soft-
XORs to update a check node. Z-LBP requires 2(dc − 2)
Soft-XORs in order to update a check node. Flooding and
C-LBP require 3(dc−2) Soft-XORs to update a check node,
and V-LBP needs dc(dc−2) Soft-XORs. Thus, if we assume
the complexity of computing check-to-variable messages is
much higher than the complexity of computing variable-
to-check messages [9] [18], Z-LBP is 1.5 times simpler than
flooding and C-LBP and dc/2 times simpler than V-LBP
per iteration.

Algorithm 1 Z-LBP

1: Initialize all mci→vj
= 0

2: Initialize all mvj→ci
= Channel Information

3: Initialize all fci,j = fci,j−1 ⊞ mvj→ci

4: Iter = 1
5: if Iter is odd then

6: for every vj , j = {N, . . . , 1} do

7: for every ci ∈ N(vj) do

8: Generate and propagate mci→vj
=fci,j−1⊞bci,j+1

9: end for

10: for every ci ∈ N(vj) do

11: Generate and propagate mvj→ci

12: Compute bci,j = bci,j+1 ⊞ mvj→ci

13: end for

14: end for

15: else

16: for every vj , j = {1, . . . , N} do

17: for every ci ∈ N(vj) do

18: Generate and propagate mci→vj
=fci,j−1⊞bci,j+1

19: end for

20: for every ci ∈ N(vj) do

21: Generate and propagate mvj→ci

22: Compute fci,j = fci,j−1 ⊞ mvj→ci

23: end for

24: end for

25: end if

26: Iter = Iter + 1
27: if Stopping rule is not satisfied then

28: Go to Step 5;
29: end if

Let us denote the number of the edges of the bi-partite
graph as NE . There are NE fc,j values and NE bc,j values.
This suggests that the Z-LBP decoder needs a memory of
size 2NE . However, in the case of an odd iteration, the
decoder computes a new bc,j after updating mvj→ci

. Thus,
the new bc,j can be written in the same memory address
of fc,j given that fc,j is not needed anymore. The same
can also be said about the even iterations, the new fc,j can
be written in the same memory address of bc,j . Therefore,
the required memory size is only NE . This is the same
memory size required for a C-LBP decoder which is half
the memory required for a flooding decoder [9].

Fig. 2 shows the AWGN performance of four different
scheduling strategies, flooding, V-LBP, C-LBP, and Z-LBP
as the number of iterations increases. All the simulations
correspond to the blocklength-1944 rate-1/2 LDPC code
presented in the IEEE 802.11n standard [3]. This figure
shows that Z-LBP has a better convergence speed than
flooding across all iterations. The frame error rate of flood-
ing around 20 and 40 iterations are equal to the frame er-
ror rate of Z-LBP around 15 and 30 iterations respectively.
However, since the computation complexity of Z-LBP is
1.5 times simpler than that of flooding, Z-LBP’s conver-
gence speed in terms of the number of Soft-XORs is twice
as much as that of flooding. C-LBP and V-LBP’s con-
vergence speeds in terms of the number of iterations are



0 10 20 30 40 50
10

-4

10
-3

10
-2

10
-1

10
0

Iteration

F
E

R

Flooding
C-LBP
V-LBP
Z-LBP

Fig. 2. Performance of flooding, C-LBP, V-LBP, and Z-LBP at
different iterations for a fixed Eb/N0 = 1.75 dB

similar. Although Z-LBP’s convergence speed in terms of
the number of iterations is around 1.5 slower than that of
C-LBP, the computation complexity of Z-LBP is 1.5 times
simpler than that of C-LBP per iteration. Thus, C-LBP
and Z-LBP’s convergence speeds in terms of the number of
Soft-XORs are almost the same.

For a degree-dc check node, the computation complexity
of Z-LBP is dc/2 times simpler than that of V-LBP. The
code in the IEEE 802.11n standard has the check-node de-
grees 7 and 8. Thus, the computation complexity of Z-LBP
is 3.5 times simpler than that of V-LBP. Hence, Z-LBP’s
convergence speed in terms of the number of Soft-XORs is
around 2 times faster than V-LBP.

Fig. 3 shows frame error rates of these four scheduling
strategies presented above at different SNRs. Since the
complexity of Z-LBP is 1.5 times simpler than flooding
and C-LBP, the 50-iteration computation complexity of Z-
LBP is equivalent to the 33-iteration that of flooding and
C-LBP. Similarly, Z-LBP is 3.5 times simpler than V-LBP.
Thus, the 50-iteration Z-LBP corresponds to 14-iteration
V-LBP. The performance of Z-LBP is 0.15 dB better than
flooding. There is no difference between C-LBP and Z-
LBP’s performance. However, the coding gain between Z-
LBP and V-LBP is around 0.2 dB.

IV. Implementation issues for medium

blocklength High-Rate LDPC codes

Modern wireless communication systems provide higher
and higher throughputs. IEEE 802.11a [20] can provide
tens of Mbps, and IEEE 802.11n [3] improves the through-
put to hundreds of Mbps. Recently, a wireless communi-
cation standard, IEEE 802.15.3c [4] targets throughputs
on the order of Gbps. Hence, high-rate LDPC codes with
high-throughput decoders are needed.

Parity-check matrices of small-to-medium blocklength
high-rate QC-LDPC codes have one row of sub-matrices,
where each sub-matrix consists of several (more than one)

1.25 1.5 1.75
10

-4

10
-3

10
-2

10
-1

10
0

Eb/No(db)

F
E

R

Flooding(Iter=50)
Flooding(Iter=33)
C-LBP(Iter=50)
C-LBP(Iter=33)
V-LBP(Iter=50)
V-LBP(Iter=14)
Z-LBP(Iter=50)

Fig. 3. Frame error rate performance of flooding, C-LBP, V-LBP,
and Z-LBP for different iterations v.s. Eb/N0

Fig. 4. The structure of a parity check matrix

cyclic-shift diagonals in order to avoid degree-1 variable
nodes. In these cases, the single row of sub-matrices is nec-
essary because multiple rows would require the sub-matrix
size to be too small to provide the necessary throughput.
Fig. 4 shows the structure of the parity-check matrix of
a regular high-rate LDPC code. Diagonal lines represent
the “1”s of H. For example, the rate-14/15 LDPC code
proposed in the IEEE 802.15.3c standard is a regular code
with a similar structure to the one shown in Fig. 4. Its
blocklength is 1440, and its check-node degree dc is 45.

A. C-LBP implementation issues

Algorithm 2 describes the partially-parallel version of the
C-LBP algorithm [9]. The C-LBP decoder processes one
row of sub-matrices at the same time. Separate proces-
sors simultaneously update all check nodes Cl in the same
row of sub-matrices l. Different variable-to-check messages
mV →Cl

must be generated and propagated at the same
time. If each sub-matrix contains at most one “1” per col-
umn and one “1” per row, the processors access disjoint
sets of variable nodes. This guarantees that each processor
uses the most recent information available even if all the
processors perform in parallel.

However, for small-to-medium blocklength high-rate
QC-LDPC codes, the C-LBP algorithm presented in [9]
cannot be implemented in a partially-parallel fashion. The
reason is that the parity-check matrix contains only one
row of sub-matrices. Thus step 3 and 4 in Algorithm 2 be-
come the variable-node update and check-node update of
the flooding scheduling respectively. Therefore, partially-
parallel C-LBP becomes exactly the same as flooding in



Fig. 5. The labeled cyclic-shift diagonals in one sub-matrix

complexity, convergence speed, and decoding capability.
Partially-parallel C-LBP for small-to-medium high-rate
QC-LDPC codes is not a sequential schedule.

Algorithm 2 Partially-Parallel C-LBP

1: Initialize all mci→vj
= 0

2: for every row of sub-matrix l do

3: Generate and propagate mV →Cl

4: Generate and propagate mCl→V

5: end for

6: if Stopping rule is not satisfied then

7: Position = 2;
8: end if

B. Partially-parallel implementation of Z-LBP

Z-LBP can perform in a partially-parallel fashion by up-
dating a column of sub-matrices. First, label the cyclic-
shift diagonals in each sub-matrix as shown in Fig. 5. As-
sume there are Nmat sub-matrices, and each sub-matrix
has Ndiag cyclic-shift diagonals (Ndiag > 1). Then, the
order of variable-node updates at step 6 in Algorithm 1
is slightly changed to “for every column of sub-matrix
SMj j = {Nmat, . . . , 1}.” This labeling prevents mem-
ory access conflicts when all processors process p variable
nodes at the same time. All the mci→vj

are still com-
puted using fc,j−1 ⊞ bc,j+1. However, since Ndiag > 1,
the decoder requires extra dc − Nmat Soft-XORs in order
to compute fci,j or bci,j in advance. For example, when
the decoder prepares to update the sub-matrix SM2 in a
forward fashion, the decoder needs to compute fc,Ndiag+j

j = {1, . . . , Ndiga − 1} in advance. Because of the compu-
tation fci,j or bci,j in advance, the decoder does not use
the recent information available at step 8 and 18 in Algo-
rithm 1. However, this does not diminish the performance
significantly.

Consider the rate-14/15 QC-LDPC code used in IEEE
802.15.3c. The check-node degree dc is equal to 45, and
there are 15 sub-matrices. Hence, Z-LBP in a partially-
parallel fashion requires 114 Soft-XORs to compute all the
mci→vj

from the same check node ci. V-LBP needs 1935
Soft-XORs to compute all the mci→vj

from the same ci.
The flooding schedule requires 129 Soft-XORs to compute
all the mci→vj

from the same ci. Therefore, Z-LBP is 17
times and 1.13 times simpler than V-LBP and flooding
respectively.

Fig. 6 shows the AWGN performance of three differ-
ent scheduling strategies, flooding, V-LBP, and Z-LBP in

0 10 20 30 40 50
10

-6

10
-5

10
-4

10
-3

10
-2

Iteration

F
E

R

Flooding
V-LBP
Z-LBP

Fig. 6. Performance of flooding, C-LBP, V-LBP, and Z-LBP in
a partially-parallel fashion at different iterations for a fixed
Eb/N0 = 6.0 dB

a partially-parallel fashion, as the number of iterations in-
creases. All the simulations use the same blocklength-1440
rate-14/15 LDPC code proposed in the IEEE 802.15.3c
standard. The figure shows that Z-LBP in a partially-
parallel fashion has better convergence speed than flooding
across all iterations. Z-LBP’s convergence speed in terms
of the number of Soft-XORs is around 3 times faster than
flooding. Moreover, the convergence speed in terms of iter-
ations of Z-LBP and V-LBP are similar. However, Z-LBP
is 17 times simpler than V-LBP. Hence, the convergence
speed in terms of the number of Soft-XORs of Z-LBP is
much faster than that of V-LBP.

Fig. 7 shows frame error rates of these three scheduling
strategies presented above in a partially-parallel fashion
at different SNRs. Since the complexity of Z-LBP is 17
times and 1.13 times simpler than V-LBP and flooding
respectively, the 50-iteration complexity of Z-LBP is equal
to 3-iteration V-LBP and 44-iteration flooding. Fig. 7
shows the coding gain’s gap between flooding and Z-LBP
is 0.125 dB. The performance of Z-LBP is 0.5 dB better
than that of V-LBP.

V. CONCLUSION

We propose Z-LBP, a low-complexity sequential sched-
ule of variable node updates. For a degree-dc check-node,
the computation complexity per iteration of Z-LBP is dc/2
times simpler than that of V-LBP. Also, Z-LBP is 1.5
times simpler than flooding and C-LBP. Z-LBP outper-
forms flooding with a faster convergence speed and better
decoding capability.

For QC-LDPC codes where the sub-matrices can have at
most one “1” per column and one “1” per row, Z-LBP can
perform partially-parallel decoding. It provides the same
performance as C-LBP. Therefore, Z-LBP is alternative im-
plementation of LBP.

However, for small-to-medium blocklength high-rate



4 4.25 4.5 4.75 5 5.25 5.5 5.75 6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No(db)

F
E

R

Flooding(Iter=50)
Flooding(Iter=44)
V-LBP(Iter=50)
V-LBP(Iter=3)
Z-LBP(Iter=50)

Fig. 7. Frame error rate performance of flooding, V-LBP, and Z-LBP
in a partially-parallel fashion at different Eb/N0

QC-LDPC codes whose parity-check matrix contains only
one row of sub-matrices, partially-parallel C-LBP is exactly
the same as flooding. In contrast, the proposed Z-LBP can
still perform partially-parallel decoding and maintains a
sequential schedule.

References

[1] European Telecommunications Standards Institute (ETSI). Dig-
ital Video Broadcasting (DVB) Second generation, framing
structure for broadband satellite applications; EN 302 307
V1.1.1. 2005.

[2] IEEE 802.16e: Air Interface for Fixed and Mobile Broadband
Wireless Access Systems, IEEE, 2004.

[3] IEEE P802.11n/D1.05 October 2006, Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) specifications -
Enhancements for Higher Throughput (Draft).

[4] IEEE P802.15.3c/July 2007, Wireless Personal Area Network
(WPAN) Standard Physical Layer (PHY) specifications (Draft).

[5] M.M. Mansour and N.R. Shanbhag. Turbo decoder architectures
for low-density parity-check codes. In Proc. IEEE Global Con-
ference on Communications, pages 1383–1388, Taipei, Taiwan,
November 2002.

[6] Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong. Efficient encoding
of low-density parity-check codes. IEEE Trans. on Commun.,
54:71–81, January 2006.

[7] L. Chen, J. Xu, I. Djurdjevic, and S. Lin. Near Shannon limit
quasi-cyclic low-density parity-check codes. IEEE Trans. on
Commun., 52(7):1038–1042, July 2004.

[8] E. Yeo and P. Pakzad and B. Nikolic and V. Anantharam. High
throughput low-density parity-check decoder architectures. In
Proc. 2001 Global Conference on Communications, pages 3019–
3024, San Antonio, TX, November 2001.

[9] M.M. Mansour and N.R. Shanbhag. High-throughput LDPC
decoders. IEEE Trans. Very Large Scale Integration (VLSI)
Systems, 11:976–996, December 2003.

[10] H. Kfir and I. Kanter. Parallel versus sequential updating for
belief propagation decoding. Physica A, 330:259–270, 2003.

[11] J. Zhang and M. Fossorier. Shuffled belief propagation decoding.
IEEE Trans. on Commun., 53:209–213, February 2005.

[12] D. Hocevar. A reduced complexity decoder architecture via lay-
ered decoding of LDPC codes. In Proc. Signal Processing Sys-
tems SIPS 2004, pages 107–112, October 2004.

[13] E. Sharon and S. Litsyn and J. Goldberger. An efficient message-
passing schedule for LDPC decoding. In Proc. 23rd IEEE Con-
vention of Electrical and Electronics Engineers in Israel, pages
223–226, September 2004.

[14] P. Radosavljevic, A. de Baynast, and J. R. Cavallaro. Optimized
message-passing schedules for LDPC decoding. In Proc. Thirty-
Ninth Asilomar Conference on Signals, Systems and Comput-
ers, pages 591–595, 2005.

[15] A. I. Vila Casado, M. Griot, and R. D. Wesel. Informed dynamic
scheduling for belief-propagation decoding of LDPC codes. In
IEEE ICC 2007, pages 932–937, Glasgow, Scotland, July 2007.

[16] P. Roberston, E. Villebrun, and P. Hoeher. A comparison of
optimal and sub-optimal MAP decoding algorithm operating in
the log domain. In Proc. IEEE Int. Conf. Communications,
pages 1009–1013, 1995.

[17] C Jones, S. Dolinar, K. Andrews, D. Divsalar, Y. Zhang, and
W. Ryan,. Functions and Architectures for LDPC Decoding.
In IEEE ITW 2007, pages 577–583, Lake Tahoe, California,
September 2007.

[18] X.Y. Hu, E. Eleftheriou, D.M. Arnold, and A. Dholakia. Efficient
Implementations of the Sum-Product Algorithm for Decoding
LDPC Codes. In Proc. IEEE Global Conference on Communi-
cations, pages 1036–1036E, San Antonio, TX, November 2001.

[19] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal Decoding
of Linear Codes for Minimizing Symbol Error Rate. IEEE Trans.
Info. Theory, IT-20:284–287, March 1974.

[20] Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications, IEEE std. 802.11a, 1999.


