Multiterminal Source Coding with an Entropy-Based Distortion Measure

Thomas Courtade and Rick Wesel

Department of Electrical Engineering
University of California, Los Angeles

4 August, 2011

IEEE International Symposium on Information Theory
Saint Petersburg, Russia
Motivation
The lossless one-helper problem

Question
What is the achievable rate region for a lossless one-helper network with a single source?
Motivation
The lossless one-helper problem

Question
What is the achievable rate region for a lossless one-helper network with a single source?

The answer to this question appears to be out of reach for now.
Motivation
The lossless one-helper problem

\[X \xrightarrow{R_x} \text{Encoder} \xrightarrow{R_y} \text{Decoder} \xrightarrow{\hat{X}} \]

Theorem (Ahlswede-Körner-Wyner 1975)

\[\mathcal{R} = \left\{ (R_x, R_y) : \begin{array}{l}
R_x \geq H(X|U) \\
R_y \geq I(Y;U)
\end{array} \right\}
\]

for some distribution

\[p(x, y, u) = p(x, y)p(u|y), \]

where \(|U| \leq |Y| + 2\).
Motivation

The lossless one-helper problem

Theorem (Kaspi-Berger 1982)

\[R = \left\{ (R_0, R_x, R_y) : \exists p(x, y, v, u) = p(x, y)p(u|x)p(v|y, u) \text{ such that} \right. \]

\[R_0 \geq I(X; U|Y), \]

\[R_x \geq H(X|V, U), \]

\[R_x + R_y \geq H(X) + I(Y; V|U, X) \left\} \right. \]
Motivation

The lossless one-helper problem
Motivation
The lossless one-helper problem

Achievable rate region appears to be unknown.
Achievable rate region appears to be unknown.

The encoder without a source is problematic.
Motivation

The lossless one-helper problem

- Achievable rate region appears to be unknown.
- The encoder without a source is problematic.
- Intuitively, it should send some lossy estimate of X.
We study two cases of the MTSC problem:

1. Joint distortion constraint: $\mathbb{E} \left[d(X, Y, \hat{Z}) \right] \leq D$,
2. Distortion constraint only on X: $\mathbb{E} \left[d(X, \hat{Z}) \right] \leq D$.
We study two cases of the MTSC problem:

1. Joint distortion constraint: \(\mathbb{E} \left[d(X, Y, \hat{Z}) \right] \leq D \),
2. Distortion constraint only on \(X \): \(\mathbb{E} \left[d(X, \hat{Z}) \right] \leq D \).

We consider a particular choice of \(\hat{Z} \) and \(d(\cdot) \) (Case 1):

- \(\hat{Z} = \mathbb{R}^{|\mathcal{X} \times \mathcal{Y}|}_+ \) (i.e., the set of functions from \(\mathcal{X} \times \mathcal{Y} \) to \(\mathbb{R}_+ \)).
- \(d(x, y, \hat{z}) = \log \left(\frac{1}{\hat{z}(x,y)} \right) \).
We study two cases of the MTSC problem:

1. Joint distortion constraint: \(\mathbb{E} \left[d(X, Y, \hat{Z}) \right] \leq D \),
2. Distortion constraint only on \(X \): \(\mathbb{E} \left[d(X, \hat{Z}) \right] \leq D \).

We consider a particular choice of \(\hat{Z} \) and \(d(\cdot) \) (Case 2):

- \(\hat{Z} = \mathbb{R}^{\lvert \mathcal{X} \rvert} \) (i.e., the set of functions from \(\mathcal{X} \) to \(\mathbb{R}_+ \)).
- \(d(x, \hat{z}) = \log \left(\frac{1}{\hat{z}(x)} \right) \).
Examples
An entropy-based distortion measure

- To make things interesting, we assume \(\sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \hat{z}(x,y) \leq M \).
Examples

An entropy-based distortion measure

- To make things interesting, we assume $\sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \hat{z}(x, y) \leq M$.
- Without loss of generality:
 $$\sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \hat{z}(x, y) = 1 \Rightarrow d(x, y, \hat{z}) = D \left(1_{\{(x',y')=(x,y)\}} \| \hat{z}(x', y') \right).$$
Examples
An entropy-based distortion measure

- To make things interesting, we assume \(\sum_{(x, y) \in \mathcal{X} \times \mathcal{Y}} \hat{z}(x, y) \leq M \).
- Without loss of generality:
 \[
 \sum_{(x, y) \in \mathcal{X} \times \mathcal{Y}} \hat{z}(x, y) = 1 \quad \Rightarrow \quad d(x, y, \hat{z}) = D \left(1 \{ (x', y') = (x, y) \} \| \hat{z}(x', y') \right).
 \]
- We obtain the erasure distortion measure if we restrict \(\hat{z}(x, y) \) to functions of the form:
 \[
 \hat{z}(x, y) = \begin{cases}
 1 & \text{if } (x, y) = (x', y') \\
 0 & \text{otherwise}
 \end{cases} \quad \text{and} \quad \hat{z}(x, y) = \frac{1}{|\mathcal{X} \times \mathcal{Y}|} \forall x, y.
 \]
Examples
An entropy-based distortion measure

- To make things interesting, we assume $\sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \hat{z}(x,y) \leq M$.
- Without loss of generality:
 \[
 \sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \hat{z}(x,y) = 1 \implies d(x,y,\hat{z}) = D \left(1_{\{(x',y')=(x,y)\}} \| \hat{z}(x',y') \right).
 \]

- We obtain the erasure distortion measure if we restrict $\hat{z}(x,y)$ to functions of the form:
 \[
 \hat{z}(x,y) = \begin{cases}
 1 & \text{if } (x,y) = (x',y') \\
 0 & \text{otherwise}
 \end{cases}
 \quad \text{and} \quad
 \hat{z}(x,y) = \frac{1}{|\mathcal{X} \times \mathcal{Y}|} \quad \forall x,y.
 \]

- If $(R_x, R_y) = (0,0)$, setting $\hat{z}(x,y) = p(x,y)$ results in distortion $H(X,Y)$.
Examples
An entropy-based distortion measure

- To make things interesting, we assume $\sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \hat{z}(x, y) \leq M$.
- Without loss of generality:

$$\sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \hat{z}(x, y) = 1 \Rightarrow d(x, y, \hat{z}) = D\left(1_{\{(x',y')=(x,y)\}} \| \hat{z}(x', y') \right).$$

- We obtain the erasure distortion measure if we restrict $\hat{z}(x, y)$ to functions of the form:

$$\hat{z}(x, y) = \begin{cases} 1 & \text{if } (x, y) = (x', y') \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad \hat{z}(x, y) = \frac{1}{|\mathcal{X} \times \mathcal{Y}|} \quad \forall x, y.$$

- If $(R_x, R_y) = (0, 0)$, setting $\hat{z}(x, y) = p(x, y)$ results in distortion $H(X, Y)$.
- If $(R_x, R_y) = (0, H(Y))$, setting $\hat{z}(x, y) = p(x|y)$ results in distortion $H(X|Y)$.
Theorem (Wyner-Ziv 1976)

Let \((X, Y)\) be drawn i.i.d. and let \(d(x, \hat{z})\) be given. The rate distortion function with side information is

\[
R_Y(D) = \min_{p(w|x)} \min_f \mathbb{E}[d(X, f(Y, W))] \leq D.
\]

where the minimization is over all functions \(f : \mathcal{Y} \times \mathcal{W} \rightarrow \hat{\mathcal{Z}}\) and conditional distributions \(p(w|x)\) such that \(\mathbb{E}[d(X, f(Y, W))] \leq D\).
Examples
Rate distortion with side information

Theorem (Wyner-Ziv 1976)

Let \((X, Y)\) be drawn i.i.d. and let \(d(x, \hat{z})\) be given. The rate distortion function with side information is

\[
R_Y(D) = \min_{p(w|x)} \min_f \mathbb{E}[d(X, f(Y, W))]
\]

where the minimization is over all functions \(f : \mathcal{Y} \times \mathcal{W} \to \hat{Z}\) and conditional distributions \(p(w|x)\) such that \(\mathbb{E}[d(X, f(Y, W))] \leq D\).

Corollary

For our choice of \(\hat{Z}\) and \(d(\cdot)\), the rate distortion function with side information is:

\[
R_Y(D) = H(X|Y) - D.
\]
Proof of Corollary:

\[
D \geq \mathbb{E} \left[d(X, f(Y, W)) \right] = \mathbb{E} \left[\log \left(\frac{1}{f(Y, W)[X]} \right) \right] \\
= D(p(x|y, w)||f(y, w)[x]) + H(X|Y, W) \geq H(X|Y, W).
\]

Therefore:

\[
R_Y(D) = \min_{p(w|x)} \min_f \left\{ H(X|Y) - H(X|Y, W) \right\} \geq H(X|Y) - D.
\]

Taking \(f(y, w)[x] = p(x|y, w) \) and \(W = \begin{cases} X & \text{with probability } 1 - \frac{D}{H(X|Y)} \\ \emptyset & \text{with probability } \frac{D}{H(X|Y)} \end{cases} \)

achieves equality throughout \(\Rightarrow R_Y(D) = H(X|Y) - D. \)
Examples
Rate distortion with side information

\[H(X|Y) - D \]

Intuition: every "bit" of distortion we tolerate saves one bit of rate.

What if \(Y \) is rate limited? Does a similar theme prevail?

Courtade and Wesel (UCLA)
Examples
Rate distortion with side information

\[H(X|Y) - D \]

Intuition: every “bit” of distortion we tolerate saves one bit of rate.
Examples
Rate distortion with side information

\[H(X|Y) - D \]

- Intuition: every “bit” of distortion we tolerate saves one bit of rate.
- What if \(Y \) is rate limited? Does a similar theme prevail?
\(d\)-Lossy Coding of Correlated Sources

Joint distortion criterion

\[X \xrightarrow{R_x} \text{Encoder} \xrightarrow{Y} \text{Decoder} \xrightarrow{\hat{Z}} \]

\[E_d(X, Y, \hat{Z}) \leq D \]

Theorem

\[R = \left\{ (R_x, R_y, D) : \begin{array}{l} R_x \geq H(X|Y) - D \\ R_y \geq H(Y|X) - D \\ R_x + R_y \geq H(X,Y) - D \end{array} \right\} \]
We obtain a D-bit enlargement of the achievable rate region in all directions.

Intuitively, if we have a reconstruction \hat{z}_n then nD additional bits of information about (x_n, y_n) are required to determine (x_n, y_n) completely. This hints at a relationship with the Slepian-Wolf region.
We obtain a D-bit enlargement of the achievable rate region in all directions.

The proof relies on the WZ corollary and lemmas of the form:

Lemma (Distortion Preimage)

Define $A(\hat{z}^n) = \{(x^n, y^n) : d(x^n, y^n, \hat{z}^n) \leq D + \epsilon\}$. Then

$$|A(\hat{z}^n)| \leq 2^{n(D+2\epsilon)}.$$
We obtain a D-bit enlargement of the achievable rate region in all directions.

The proof relies on the WZ corollary and lemmas of the form:

Lemma (Distortion Preimage)

Define $A(\hat{z}^n) = \{(x^n, y^n) : d(x^n, y^n, \hat{z}^n) \leq D + \epsilon\}$. Then

$$|A(\hat{z}^n)| \leq 2^{n(D+2\epsilon)}.$$

Intuitively, if we have a reconstruction \hat{z}^n then nD additional bits of information about (x^n, y^n) are required to determine (x^n, y^n) completely.
We obtain a D-bit enlargement of the achievable rate region in all directions.

The proof relies on the WZ corollary and lemmas of the form:

Lemma (Distortion Preimage)

Define $A(\hat{z}^n) = \{(x^n, y^n) : d(x^n, y^n, \hat{z}^n) \leq D + \epsilon\}$. Then

$$|A(\hat{z}^n)| \leq 2^{n(D+2\epsilon)}.$$

Intuitively, if we have a reconstruction \hat{z}^n then nD additional bits of information about (x^n, y^n) are required to determine (x^n, y^n) completely.

This hints at a relationship with the Slepian-Wolf region.
The basic idea is to show a correspondence with the Slepian-Wolf region as follows:

Claim 1

If \((R_x, R_y, D)\) is an achievable RD point, then \((R_x + \theta D, R_y + (1 - \theta)D)\) is an achievable Slepian-Wolf rate pair for some \(\theta \in [0, 1]\).

Proved using the distortion preimage lemmas combined with a decomposition of the distortion measure and a random binning argument.
The basic idea is to show a correspondence with the Slepian-Wolf region as follows:

Claim 1

If (R_x, R_y, D) is an achievable RD point, then $(R_x + \theta D, R_y + (1 - \theta) D)$ is an achievable Slepian-Wolf rate pair for some $\theta \in [0, 1]$.

Claim 2

If $(R_x + \theta D, R_y + (1 - \theta) D)$ is an achievable Slepian-Wolf rate pair for some $\theta \in [0, 1]$, then (R_x, R_y, D) is an achievable RD point.

Proved via the WZ corollary and timesharing.
The basic idea is to show a correspondence with the Slepian-Wolf region as follows:

Claim 1

If \((R_x, R_y, D)\) is an achievable RD point, then \((R_x + \theta D, R_y + (1 - \theta)D)\) is an achievable Slepian-Wolf rate pair for some \(\theta \in [0, 1]\).

Claim 2

If \((R_x + \theta D, R_y + (1 - \theta)D)\) is an achievable Slepian-Wolf rate pair for some \(\theta \in [0, 1]\), then \((R_x, R_y, D)\) is an achievable RD point.

- Proved via the WZ corollary and timesharing.
- Combining the two claims with the known form of the Slepian-Wolf region gives the expression for the achievable rate distortion region.
Decomposing the Entropy Measure $d(\cdot)$
Joint distortion criterion: Proof sketch

- Given a rate distortion code, \hat{z} can be thought of as a probability mass function on $\mathcal{X} \times \mathcal{Y}$, we can decompose it uniquely as:
 \[\hat{z}(x, y) = \hat{z}(x) \hat{z}(y | x). \]
Decomposing the Entropy Measure $d(\cdot)$

Joint distortion criterion: Proof sketch

- Given a rate distortion code, \hat{z} can be thought of as a probability mass function on $\mathcal{X} \times \mathcal{Y}$, we can decompose it uniquely as:
 \[
 \hat{z}(x, y) = \hat{z}(x) \hat{z}(y|x).
 \]

- This allows the definition of the marginal and conditional distortions D_x and $D_{y|x}$:
 \[
 D \geq \mathbb{E} \left[d(X^n, Y^n, \hat{Z}^n) \right] = \mathbb{E} \left[d_x(X^n, \hat{Z}^n) \right] + \mathbb{E} \left[d_{y|x}(X^n, Y^n, \hat{Z}^n) \right].
 \]
Decomposing the Entropy Measure $d(\cdot)$

Joint distortion criterion: Proof sketch

- Given a rate distortion code, \hat{z} can be thought of as a probability mass function on $X \times Y$, we can decompose it uniquely as:
 \[
 \hat{z}(x, y) = \hat{z}(x) \hat{z}(y|x).
 \]

- This allows the definition of the marginal and conditional distortions D_x and $D_{y|x}$:
 \[
 D \geq \mathbb{E} \left[d(X^n, Y^n, \hat{Z}^n) \right] = \mathbb{E} \left[d_x(X^n, \hat{Z}^n) \right] + \mathbb{E} \left[d_{y|x}(X^n, Y^n, \hat{Z}^n) \right].
 \]

- This prompts the following lemma:

Lemma (Marginal and Conditional Distortion Preimages)

Define $A_x(\hat{z}^n) = \{(x^n) : d_x(x^n, \hat{z}^n) \leq D_x + \epsilon \}$ and $A_{y|x}(x^n, \hat{z}^n) = \{(y^n) : d_{y|x}(x^n, y^n, \hat{z}^n) \leq D_{y|x} + \epsilon \}$. Then

\[
|A_x(\hat{z}^n)| \leq 2^n(D_x+2\epsilon) \quad \text{and} \quad |A_{y|x}(x^n, \hat{z}^n)| \leq 2^n(D_{y|x}+2\epsilon).
\]
Claim 1

If \((R_x, R_y, D)\) is an achievable RD point, then \((R_x + \theta D, R_y + (1 - \theta)D)\) is an achievable Slepian-Wolf rate pair for some \(\theta \in [0, 1]\).
Proving Claim 1
Joint distortion criterion: Proof sketch

Claim 1
If \((R_x, R_y, D)\) is an achievable RD point, then \((R_x + \theta D, R_y + (1 - \theta)D)\) is an achievable Slepian-Wolf rate pair for some \(\theta \in [0, 1]\).

- Suppose we have a sequence of \((2^{nR_x}, 2^{nR_y}, n)\) rate-distortion codes achieving average distortion \(D\).
Claim 1

If \((R_x, R_y, D)\) is an achievable RD point, then \((R_x + \theta D, R_y + (1 - \theta)D)\) is an achievable Slepian-Wolf rate pair for some \(\theta \in [0, 1]\).

- Suppose we have a sequence of \((2^{nR_x}, 2^{nR_y}, n)\) rate-distortion codes achieving average distortion \(D\).
- With high probability, \(\mathbb{E}\left[d_x(X^n, \hat{Z}^n)\right] \leq D_x + \epsilon\) and
 \[\mathbb{E}\left[d_{y|x}(X^n, Y^n, \hat{Z}^n)\right] \leq D_{y|x} + \epsilon.\]
 Also, \(D_x + D_{y|x} \leq D + \epsilon.\)
Proving Claim 1
Joint distortion criterion: Proof sketch

Claim 1
If \((R_x, R_y, D)\) is an achievable RD point, then \((R_x + \theta D, R_y + (1 - \theta)D)\) is an achievable Slepian-Wolf rate pair for some \(\theta \in [0, 1]\).

- Suppose we have a sequence of \((2^{nR_x}, 2^{nR_y}, n)\) rate-distortion codes achieving average distortion \(D\).
- With high probability, \(\mathbb{E}\left[d_x(X^n, \hat{Z}^n)\right] \leq D_x + \epsilon\) and \(\mathbb{E}\left[d_{y|x}(X^n, Y^n, \hat{Z}^n)\right] \leq D_{y|x} + \epsilon\). Also, \(D_x + D_{y|x} \leq D + \epsilon\).
- Bin the \(x^n\)'s into \(2^{n(D_x + 3\epsilon)}\) bins and send bin index along with rate-distortion codeword. This requires rate \(R_x + D_x + 3\epsilon\) and allows the decoder to recover \(X^n\) w.h.p. by the MDPI lemma.
Claim 1

If \((R_x, R_y, D)\) is an achievable RD point, then \((R_x + \theta D, R_y + (1 - \theta)D)\) is an achievable Slepian-Wolf rate pair for some \(\theta \in [0, 1]\).

- Suppose we have a sequence of \((2^{nR_x}, 2^{nR_y}, n)\) rate-distortion codes achieving average distortion \(D\).
- With high probability, \(\mathbb{E}\left[d_x(X^n, \hat{Z}^n)\right] \leq D_x + \epsilon\) and \(\mathbb{E}\left[d_y|x(X^n, Y^n, \hat{Z}^n)\right] \leq D_{y|x} + \epsilon\). Also, \(D_x + D_{y|x} \leq D + \epsilon\).
- Bin the \(x^n\)'s into \(2^{n(D_x + 3\epsilon)}\) bins and send bin index along with rate-distortion codeword. This requires rate \(R_x + D_x + 3\epsilon\) and allows the decoder to recover \(X^n\) w.h.p. by the MDPI lemma.
- Bin the \(y^n\)'s into \(2^{n(D_{y|x} + 3\epsilon)}\) bins and send bin index along with rate-distortion codeword. This requires rate \(R_y + D_{y|x} + 3\epsilon\) and allows the decoder to recover \(Y^n\) w.h.p. by the CDPI lemma.
Claim 2

If \((R_x + \theta D, R_y + (1 - \theta)D)\) is an achievable Slepian-Wolf rate pair for some \(\theta \in [0, 1]\), then \((R_x, R_y, D)\) is an achievable RD point.
Claim 2

If \((R_x + \theta D, R_y + (1 - \theta)D) \) is an achievable Slepian-Wolf rate pair for some \(\theta \in [0, 1] \), then \((R_x, R_y, D) \) is an achievable RD point.

- Suppose \((\tilde{R}_x, \tilde{R}_y) \) is an achievable Slepian-Wolf rate pair.
Proving Claim 2

Joint distortion criterion: Proof sketch

Claim 2

If \((R_x + \theta D, R_y + (1 - \theta)D) \) is an achievable Slepian-Wolf rate pair for some \(\theta \in [0, 1] \), then \((R_x, R_y, D) \) is an achievable RD point.

- Suppose \((\tilde{R}_x, \tilde{R}_y) \) is an achievable Slepian-Wolf rate pair.
- Can assume
 \[
 (\tilde{R}_x, \tilde{R}_y) = (1 - \theta) \times (H(X), H(Y|X)) + \theta \times (H(X|Y), H(Y)).
 \]
Claim 2

If \((R_x + \theta D, R_y + (1 - \theta)D)\) is an achievable Slepian-Wolf rate pair for some \(\theta \in [0, 1]\), then \((R_x, R_y, D)\) is an achievable RD point.

- Suppose \((\tilde{R}_x, \tilde{R}_y)\) is an achievable Slepian-Wolf rate pair.
- Can assume
 \[(\tilde{R}_x, \tilde{R}_y) = (1 - \theta) \times (H(X), H(Y|X)) + \theta \times (H(X|Y), H(Y)).\]
- By the WZ corollary, \((R_x, R_y, D) = (\tilde{R}_x - \theta D, \tilde{R}_y - (1 - \theta)D, D)\) is an achievable RD point.
Claim 2

If \((R_x + \theta D, R_y + (1 - \theta)D)\) is an achievable Slepian-Wolf rate pair for some \(\theta \in [0, 1]\), then \((R_x, R_y, D)\) is an achievable RD point.

- Suppose \((\tilde{R}_x, \tilde{R}_y)\) is an achievable Slepian-Wolf rate pair.
- Can assume \((\tilde{R}_x, \tilde{R}_y) = (1 - \theta) \times (H(X), H(Y|X)) + \theta \times (H(X|Y), H(Y))\).
- By the WZ corollary, \((R_x, R_y, D) = (\tilde{R}_x - \theta D, \tilde{R}_y - (1 - \theta)D, D)\) is an achievable RD point.
- Making the substitution \((\tilde{R}_x, \tilde{R}_y) = (R_x + \theta D, R_y + (1 - \theta)D)\) completes the proof.
Theorem

\[
\mathcal{R} = \left\{ (R_x, R_y, D) : \begin{array}{l}
R_x \geq H(X|U) - D \\
R_y \geq I(Y; U) \\
\text{for some distribution} \\
p(x, y, u) = p(x, y)p(u|y), \\
\text{where } |U| \leq |Y| + 2
\end{array} \right\}
\]
In this case, the achievable rate region is enlarged by D bits in the R_x-direction only. The idea is that Y is already at D_{max}, and thus any increase in D doesn’t necessarily help decrease R_y.

Theorem

$$\mathcal{R} = \left\{ (R_x, R_y, D) : \begin{array}{l} R_x \geq H(X|U) - D \\
R_y \geq I(Y;U) \end{array} \right\}$$

for some distribution $p(x, y, u) = p(x, y)p(u|y)$, where $|\mathcal{U}| \leq |\mathcal{Y}| + 2$.

$\text{Courtade and Wesel (UCLA)}$
In this case, the achievable rate region is enlarged by D bits in the R_x-direction only. The idea is that Y is already at D_{max}, and thus any increase in D doesn’t necessarily help decrease R_y.

The proof is similar in spirit to the previous case. In particular, we show a correspondence with the Ahlswede-Körner-Wyner region.

Theorem

$$ R = \left\{ (R_x, R_y, D) : \begin{array}{l} R_x \geq H(X|U) - D \\ R_y \geq I(Y;U) \\ \text{for some distribution} \\ p(x, y, u) = p(x, y)p(u|y), \text{ where } |U| \leq |Y| + 2. \end{array} \right\} $$
Suppose we bet on n i.i.d. horse races with outcomes X^n and correlated side information Y^n.

The expected doubling rate is:

$$E 1_n \sum_{i=1}^{n} \log \hat{z}_i(x_i) o(x_i) = E \log o(X) - E d(X^n, \hat{Z}^n).$$

Theorem (Erkip 1996)
The optimum doubling rate is:

$$W^* = E \log o(X) - D^*,$$

where

$$D^* = \inf_{p(x,y,u)} \{D: H(X|U) \leq D, I(Y;U) \leq R_y\}.$$
Suppose we bet on n i.i.d. horse races with outcomes X^n and correlated side information Y^n.

Our insider friend is only able to provide rate-limited side information $f(Y^n)$ at rate R_y.

The expected doubling rate is:

$$E \log o(X) - E d(X^n, \hat{Z}^n).$$

Theorem (Erkip 1996)

The optimum doubling rate is:

$$W^* = E \log o(X) - D^*,$$

where

$$D^* = \inf_{p(x,y,u)} = p(u|y) / p(x,y) \{D : H(X|U) \leq D, I(Y;U) \leq R_y\}.$$
Suppose we bet on n i.i.d. horse races with outcomes X^n and correlated side information Y^n.

Our insider friend is only able to provide rate-limited side information $f(Y^n)$ at rate R_y.

Starting with 1 ruble, in the i^{th} race we bet a fraction $\hat{z}_i(x)$ of our wealth on horse x.

The expected doubling rate is:

$$E \sum_{i=1}^{n} \log \hat{z}_i(x_i) = E\log o(X) - D(\hat{z}_n)$$

Theorem (Erkip 1996)

The optimum doubling rate is:

$$W^* = E\log o(X) - D^*,$$

where

$$D^* = \inf_{p(x,y,u)} p(u|y) p(x,y) \{D: H(X|U) \leq D, I(Y;U) \leq R_y}\}.$$
An Application
Gambling with Rate-Limited Side Information

- Suppose we bet on n i.i.d. horse races with outcomes X^n and correlated side information Y^n.
- Our insider friend is only able to provide rate-limited side information $f(Y^n)$ at rate R_y.
- Starting with 1 ruble, in the i^{th} race we bet a fraction $\hat{z}_i(x)$ of our wealth on horse x.
- The expected doubling rate is:

$$
\mathbb{E} \frac{1}{n} \sum_{i=1}^{n} \log \hat{z}_i(x_i) o(x_i) = \mathbb{E} \log o(X) - \mathbb{E}d(X^n, \hat{Z}^n).
$$

Theorem (Erkip 1996)
The optimum doubling rate is:

$$
W^* = \mathbb{E} \log o(X) - D^*,
$$
where

$$
D^* = \inf p(x,y,u) = p(u|y) p(x,y) \{ D : H(X|U) \leq D, I(Y;U) \leq R_y \}.
$$
An Application
Gambling with Rate-Limited Side Information

- Suppose we bet on \(n \) i.i.d. horse races with outcomes \(X^n \) and correlated side information \(Y^n \).
- Our insider friend is only able to provide rate-limited side information \(f(Y^n) \) at rate \(R_y \).
- Starting with 1 ruble, in the \(i^{th} \) race we bet a fraction \(\hat{z}_i(x) \) of our wealth on horse \(x \).
- The expected doubling rate is:
 \[
 \mathbb{E} \frac{1}{n} \sum_{i=1}^{n} \log \hat{z}_i(x_i) o(x_i) = \mathbb{E} \log o(X) - \mathbb{E} d(X^n, \hat{Z}^n).
 \]

Theorem (Erkip 1996)

The optimum doubling rate is:
\[
W^* = \mathbb{E} \log o(X) - D^*, \quad \text{where}
D^* = \inf_{p(x,y,u) = p(u|y)p(x,y)} \left\{ D : H(X|U) \leq D, I(Y;U) \leq R_y \right\}.
\]
Suppose we bet on \(n \) i.i.d. horse races with outcomes \(X^n \) and correlated side information \(Y^n \).

Our insider friend is only able to provide rate-limited side information \(f(Y^n) \) at rate \(R_y \), and an oracle provides side info \(g(X^n) \) at rate \(R_x \).

Starting with 1 ruble, in the \(i^{th} \) race we bet a fraction \(\hat{z}_i(x) \) of our wealth on horse \(x \).

The expected doubling rate is:

\[
\mathbb{E} \frac{1}{n} \sum_{i=1}^{n} \log \hat{z}_i(x_i) o(x_i) = \mathbb{E} \log o(X) - \mathbb{E} d(X^n, \hat{Z}^n).
\]

Theorem (One oracle bit adds more than one bit to doubling rate)

The optimum doubling rate is:

\[
W^* = \mathbb{E} \log o(X) - D^*, \quad \text{where}
\]

\[
D^* = \inf_{p(x,y,u)=p(u|y)p(x,y)} \left\{ D : H(X|U) - R_x \leq D, I(Y;U) \leq R_y \right\}.
\]
Two lossy source coding problems which are open in general can be solved for our choice of $d(\cdot)$:

1. MTSC with a joint distortion constraint.
2. MTSC with a single distortion constraint: $D_x = D$, $D_y = D_{max}$.
Concluding Remarks

- Two lossy source coding problems which are open in general can be solved for our choice of $d(\cdot)$:
 1. MTSC with a joint distortion constraint.
 2. MTSC with a single distortion constraint: $D_x = D$, $D_y = D_{max}$.
- It is possible that more cases can be solved.
Concluding Remarks

- Two lossy source coding problems which are open in general can be solved for our choice of $d(\cdot)$:
 1. MTSC with a joint distortion constraint.
 2. MTSC with a single distortion constraint: $D_x = D$, $D_y = D_{max}$.

- It is possible that more cases can be solved.

- The entropy-based distortion measure $d(\cdot)$ has shown up in the literature before (cf. image compression, the information bottleneck problem). This may point to some potential applications of the results presented today.
Two lossy source coding problems which are open in general can be solved for our choice of $d(\cdot)$:

1. MTSC with a joint distortion constraint.
2. MTSC with a single distortion constraint: $D_x = D$, $D_y = D_{\text{max}}$.

It is possible that more cases can be solved.

The entropy-based distortion measure $d(\cdot)$ has shown up in the literature before (cf. image compression, the information bottleneck problem). This may point to some potential applications of the results presented today.

Due to the relationship between $d(\cdot)$ and relative entropy, there may be some additional applications in estimation/portfolio/gambling theory.
Concluding Remarks

- Two lossy source coding problems which are open in general can be solved for our choice of $d(\cdot)$:
 1. MTSC with a joint distortion constraint.
 2. MTSC with a single distortion constraint: $D_x = D, D_y = D_{\text{max}}$.

- It is possible that more cases can be solved.

- The entropy-based distortion measure $d(\cdot)$ has shown up in the literature before (cf. image compression, the information bottleneck problem). This may point to some potential applications of the results presented today.

- Due to the relationship between $d(\cdot)$ and relative entropy, there may be some additional applications in estimation/portfolio/gambling theory.

- Algorithmically satisfying from an engineering perspective.
Thank You!