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Motivation
The lossless one-helper problem
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Question

What is the achievable rate region for a lossless one-helper network with a
single source?

The answer to this question appears to be out of reach for now.
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Motivation
The lossless one-helper problem
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Theorem (Ahlswede-Körner-Wyner 1975)

R =

(Rx, Ry) :

Rx ≥ H(X|U)
Ry ≥ I(Y ;U)
for some distribution
p(x, y, u) = p(x, y)p(u|y),
where |U| ≤ |Y|+ 2


Courtade and Wesel (UCLA) MTSC: Entropy-Based Distortion ISIT 2011 3 / 23



Motivation
The lossless one-helper problem
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Theorem (Kaspi-Berger 1982)

R =

(R0, Rx, Ry) :

∃p(x, y, v, u) = p(x, y)p(u|x)p(v|y, u) such that
R0 ≥ I(X;U |Y ),
Rx ≥ H(X|V,U),
Rx +Ry ≥ H(X) + I(Y ;V |U,X)
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Motivation
The lossless one-helper problem
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Achievable rate region appears to be unknown.

The encoder without a source is problematic.

Intuitively, it should send some lossy estimate of X.
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Multiterminal Source Coding
with an entropy-based distortion measure
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We study two cases of the MTSC problem:

1 Joint distortion constraint: E
[
d(X,Y, Ẑ)

]
≤ D,

2 Distortion constraint only on X: E
[
d(X, Ẑ)

]
≤ D.

We consider a particular choice of Ẑ and d(·) (Case 1):

Ẑ = R|X×Y|+ (i.e., the set of functions from X × Y to R+).

d(x, y, ẑ) = log
(

1
ẑ(x,y)

)
.
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Examples
An entropy-based distortion measure

To make things interesting, we assume
∑

(x,y)∈X×Y ẑ(x, y) ≤M .

Without loss of generality:∑
(x,y)∈X×Y

ẑ(x, y) = 1 ⇒ d(x, y, ẑ) = D
(
1{(x′,y′)=(x,y)}‖ẑ(x′, y′)

)
.

We obtain the erasure distortion measure if we restrict ẑ(x, y) to
functions of the form:

ẑ(x, y) =

{
1 if (x, y) = (x′, y′)
0 otherwise

and ẑ(x, y) =
1

|X × Y|
∀x, y.

If (Rx, Ry) = (0, 0), setting ẑ(x, y) = p(x, y) results in distortion
H(X,Y ).

If (Rx, Ry) = (0, H(Y )), setting ẑ(x, y) = p(x|y) results in distortion
H(X|Y ).

Courtade and Wesel (UCLA) MTSC: Entropy-Based Distortion ISIT 2011 8 / 23



Examples
An entropy-based distortion measure

To make things interesting, we assume
∑

(x,y)∈X×Y ẑ(x, y) ≤M .
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ẑ(x, y) =

{
1 if (x, y) = (x′, y′)
0 otherwise
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functions of the form:
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If (Rx, Ry) = (0, H(Y )), setting ẑ(x, y) = p(x|y) results in distortion
H(X|Y ).

Courtade and Wesel (UCLA) MTSC: Entropy-Based Distortion ISIT 2011 8 / 23



Examples
An entropy-based distortion measure

To make things interesting, we assume
∑

(x,y)∈X×Y ẑ(x, y) ≤M .
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ẑ(x, y) = 1 ⇒ d(x, y, ẑ) = D
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Examples
Rate distortion with side information

Theorem (Wyner-Ziv 1976)

Let (X,Y ) be drawn i.i.d. and let d(x, ẑ) be given. The rate distortion
function with side information is

RY (D) = min
p(w|x)

min
f
I(X;W |Y )

where the minimization is over all functions f : Y ×W → Ẑ and
conditional distributions p(w|x) such that E [d(X, f(Y,W ))] ≤ D.

Corollary

For our choice of Ẑ and d(·), the rate distortion function with side
information is:

RY (D) = H(X|Y )−D.
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Examples
Rate distortion with side information

Proof of Corollary:

D ≥ E [d(X, f(Y,W ))] = E
[
log

(
1

f(Y,W )[X]

)]
= D(p(x|y, w)‖f(y, w)[x]) +H(X|Y,W ) ≥ H(X|Y,W ).

Therefore:

RY (D) = min
p(w|x)

min
f
{H(X|Y )−H(X|Y,W )} ≥ H(X|Y )−D.

Taking f(y, w)[x] = p(x|y, w) and W =

{
X with probability 1− D

H(X|Y )

∅ with probability D
H(X|Y )

achieves equality throughout ⇒ RY (D) = H(X|Y )−D.
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Examples
Rate distortion with side information

Encoder Decoder
H(X|Y )−D

X

Y

Ẑ

Ed(X, Ẑ) ≤ D

Intuition: every “bit” of distortion we tolerate saves one bit of rate.

What if Y is rate limited? Does a similar theme prevail?
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d-Lossy Coding of Correlated Sources
Joint distortion criterion

Encoder

Encoder

Decoder

Rx

Ry

X

Y

Ẑ

Ed(X,Y, Ẑ) ≤ D

Theorem

R =

(Rx, Ry, D) :
Rx ≥ H(X|Y )−D
Ry ≥ H(Y |X)−D
Rx +Ry ≥ H(X,Y )−D
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d-Lossy Coding of Correlated Sources
Joint distortion criterion

We obtain a D-bit enlargement of the achievable rate region in all
directions.

The proof relies on the WZ corollary and lemmas of the form:

Lemma (Distortion Preimage)

Define A(ẑn) = {(xn, yn) : d(xn, yn, ẑn) ≤ D + ε}. Then

|A(ẑn)| ≤ 2n(D+2ε).

Intuitively, if we have a reconstruction ẑn then nD additional bits of
information about (xn, yn) are required to determine (xn, yn)
completely.

This hints at a relationship with the Slepian-Wolf region.
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d-Lossy Coding of Correlated Sources
Joint distortion criterion: Proof sketch

The basic idea is to show a correspondence with the Slepian-Wolf
region as follows:

Claim 1

If (Rx, Ry, D) is an achievable RD point, then (Rx + θD,Ry + (1− θ)D)
is an achievable Slepian-Wolf rate pair for some θ ∈ [0, 1].

Proved using the distortion preimage lemmas combined with a
decomposition of the distortion measure and a random binning
argument.

Claim 2

If (Rx + θD,Ry + (1− θ)D) is an achievable Slepian-Wolf rate pair for
some θ ∈ [0, 1], then (Rx, Ry, D) is an achievable RD point.

Proved via the WZ corollary and timesharing.

Combining the two claims with the known form of the Slepian-Wolf
region gives the expression for the achievable rate distortion region.
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Decomposing the Entropy Measure d(·)
Joint distortion criterion: Proof sketch

Given a rate distortion code, ẑ can be thought of as a probability
mass function on X × Y, we can decompose it uniquely as:
ẑ(x, y) = ẑ(x)ẑ(y|x).

This allows the definition of the marginal and conditional distortions
Dx and Dy|x: D ≥ E

[
d(Xn, Y n, Ẑn)

]
= E

[
dx(X

n, Ẑn)
]

︸ ︷︷ ︸
Dx

+E
[
dy|x(X

n, Y n, Ẑn)
]

︸ ︷︷ ︸
Dy|x

.

This prompts the following lemma:

Lemma (Marginal and Conditional Distortion Preimages)

Define Ax(ẑn) = {(xn) : dx(xn, ẑn) ≤ Dx + ε} and
Ay|x(xn, ẑn) =

{
(yn) : dy|x(x

n, yn, ẑn) ≤ Dy|x + ε
}

. Then

|Ax(ẑn)| ≤ 2n(Dx+2ε) and |Ay|x(xn, ẑn)| ≤ 2n(Dy|x+2ε).
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ẑ(x, y) = ẑ(x)ẑ(y|x).
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n, yn, ẑn) ≤ Dy|x + ε
}

. Then

|Ax(ẑn)| ≤ 2n(Dx+2ε) and |Ay|x(xn, ẑn)| ≤ 2n(Dy|x+2ε).
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{
(yn) : dy|x(x
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Proving Claim 1
Joint distortion criterion: Proof sketch

Claim 1

If (Rx, Ry, D) is an achievable RD point, then (Rx + θD,Ry + (1− θ)D)
is an achievable Slepian-Wolf rate pair for some θ ∈ [0, 1].

Suppose we have a sequence of (2nRx , 2nRy , n) rate-distortion codes
achieving average distortion D.

With high probability, E
[
dx(X

n, Ẑn)
]
≤ Dx + ε and

E
[
dy|x(X

n, Y n, Ẑn)
]
≤ Dy|x + ε. Also, Dx +Dy|x ≤ D + ε.

Bin the xn’s into 2n(Dx+3ε) bins and send bin index along with
rate-distortion codeword. This requires rate Rx +Dx + 3ε and allows
the decoder to recover Xn w.h.p. by the MDPI lemma.

Bin the yn’s into 2n(Dy|x+3ε) bins and send bin index along with
rate-distortion codeword. This requires rate Ry +Dy|x + 3ε and
allows the decoder to recover Y n w.h.p. by the CDPI lemma.
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rate-distortion codeword. This requires rate Ry +Dy|x + 3ε and
allows the decoder to recover Y n w.h.p. by the CDPI lemma.
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Proving Claim 2
Joint distortion criterion: Proof sketch

Claim 2

If (Rx + θD,Ry + (1− θ)D) is an achievable Slepian-Wolf rate pair for
some θ ∈ [0, 1], then (Rx, Ry, D) is an achievable RD point.

Suppose (R̃x, R̃y) is an achievable Slepian-Wolf rate pair.

Can assume
(R̃x, R̃y) = (1− θ)× (H(X), H(Y |X)) + θ × (H(X|Y ), H(Y )).

By the WZ corollary, (Rx, Ry, D) = (R̃x − θD, R̃y − (1− θ)D,D) is
an achievable RD point.

Making the substitution (R̃x, R̃y) = (Rx + θD,Ry + (1− θ)D)
completes the proof.
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d-Lossy Coding with Coded Side Information
Distortion constraint on X only

Encoder

Encoder

Decoder

Rx

Ry

X

Y

Ẑ

Ed(X, Ẑ) ≤ D

Theorem

R =

(Rx, Ry, D) :

Rx ≥ H(X|U)−D
Ry ≥ I(Y ;U)
for some distribution
p(x, y, u) = p(x, y)p(u|y),
where |U| ≤ |Y|+ 2
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d-Lossy Coding with Coded Side Information
Distortion constraint on X only

In this case, the achievable rate region is enlarged by D bits in the
Rx-direction only. The idea is that Y is already at Dmax, and thus
any increase in D doesn’t necessarily help decrease Ry.

The proof is similar in spirit to the previous case. In particular, we
show a correspondence with the Ahlswede-Körner-Wyner region.
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An Application
Gambling with Rate-Limited Side Information

Suppose we bet on n i.i.d. horse races with outcomes Xn and
correlated side information Y n.

Our insider friend is only able to provide rate-limited side information
f(Y n) at rate Ry.

Starting with 1 ruble, in the ith race we bet a fraction ẑi(x) of our
wealth on horse x.

The expected doubling rate is:

E
1

n

n∑
i=1

log ẑi(xi)o(xi) = E log o(X)− Ed(Xn, Ẑn).

Theorem (Erkip 1996)

The optimum doubling rate is:

W ∗ = E log o(X)−D∗, where

D∗ = inf
p(x,y,u)=p(u|y)p(x,y)

{D : H(X|U) ≤ D, I(Y ;U) ≤ Ry} .
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wealth on horse x.

The expected doubling rate is:

E
1

n

n∑
i=1
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Theorem (Erkip 1996)

The optimum doubling rate is:

W ∗ = E log o(X)−D∗, where

D∗ = inf
p(x,y,u)=p(u|y)p(x,y)

{D : H(X|U) ≤ D, I(Y ;U) ≤ Ry} .

Courtade and Wesel (UCLA) MTSC: Entropy-Based Distortion ISIT 2011 20 / 23



An Application
Gambling with Rate-Limited Side Information

Suppose we bet on n i.i.d. horse races with outcomes Xn and
correlated side information Y n.

Our insider friend is only able to provide rate-limited side information
f(Y n) at rate Ry.

Starting with 1 ruble, in the ith race we bet a fraction ẑi(x) of our
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An Application
Gambling with Rate-Limited Side Information

Suppose we bet on n i.i.d. horse races with outcomes Xn and
correlated side information Y n.

Our insider friend is only able to provide rate-limited side information
f(Y n) at rate Ry, and an oracle provides side info g(Xn) at rate Rx.

Starting with 1 ruble, in the ith race we bet a fraction ẑi(x) of our
wealth on horse x.

The expected doubling rate is:

E
1

n

n∑
i=1

log ẑi(xi)o(xi) = E log o(X)− Ed(Xn, Ẑn).

Theorem (One oracle bit adds more than one bit to doubling rate)

The optimum doubling rate is:

W ∗ = E log o(X)−D∗, where

D∗ = inf
p(x,y,u)=p(u|y)p(x,y)

{D : H(X|U)−Rx ≤ D, I(Y ;U) ≤ Ry} .
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Concluding Remarks

Two lossy source coding problems which are open in general can be
solved for our choice of d(·):

1 MTSC with a joint distortion constraint.
2 MTSC with a single distortion constraint: Dx = D, Dy = Dmax.

It is possible that more cases can be solved.

The entropy-based distortion measure d(·) has shown up in the
literature before (cf. image compression, the information bottleneck
problem). This may point to some potential applications of the
results presented today.

Due to the relationship between d(·) and relative entropy, there may
be some additional applications in estimation/portfolio/gambling
theory.

Algorithmically satisfying from an engineering perspective.
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Thank You!
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