
Weighted Universal Recovery, Practical Secrecy,
and an Efficient Algorithm for Solving Both

Thomas A. Courtade and Richard D. Wesel
Department of Electrical Engineering
University of California, Los Angeles

Los Angeles, California 90095
Email: tacourta@ee.ucla.edu, wesel@ee.ucla.edu

Abstract—In this paper, we consider a network of n nodes, each
initially possessing a subset of packets. Each node is permitted
to broadcast functions of its own packets and the messages it
receives to all other nodes via an error-free channel. We provide
an algorithm that efficiently solves the Weighted Universal
Recovery Problem and the Secrecy Generation Problem for this
network.

In the Weighted Universal Recovery Problem, the goal is to
design a sequence of transmissions that ultimately permits all
nodes to recover all packets initially present in the network. We
show how to compute a transmission scheme that is optimal in
the sense that the weighted sum of the number of transmissions
is minimized.

For the Secrecy Generation Problem, the goal is to generate
a secret-key among the nodes that cannot be derived by an
eavesdropper privy to the transmissions. In particular, we wish
to generate a secret-key of maximum size. Further, we discuss
private-key generation, which applies to the case where a subset
of nodes is compromised by the eavesdropper.

For the network under consideration, both of these problems
are combinatorial in nature. We demonstrate that each of these
problems can be solved efficiently and exactly. Notably, we do
not require any terms to grow asymptotically large to obtain our
results. This is in sharp contrast to classical information-theoretic
problems despite the fact that our problems are information-
theoretic in nature.

Finally, the algorithm we describe efficiently solves an Integer
Linear Program of a particular form. Due to the general form
we consider, it may prove useful beyond these applications.

I. INTRODUCTION

Consider a set of n nodes, each in possession of a set of
packets. Formally, let P = {p1, . . . , pm} be an indexed set of
m (possibly repeated) packets, where each pi is an element
of a sufficiently large finite field F equipped with addition
and multiplication operations ⊕ and ⊗ respectively. Let Pi ⊆
P denote the set of packets initially available at node i and
assume that {Pi}ni=1 satisfies

⋃n
i=1 Pi = P . Each node is

permitted to broadcast functions of its own packets and the
messages it receives to all other nodes via an error-free |F|-
ary channel (i.e., nodes are restricted to sending an integer
number of packets).

The network model we just described is a realistic one
for many situations. For example, a collection of servers will
contain many files, some of which are repeated on several
servers. Servers are allowed to communicate with one another
by broadcasting IP packets to all other servers in the network.

To each server, this channel can be viewed as an error-free
|F|-ary channel.

Two questions naturally arise for this type of network:
1) The Weighted Universal Recovery Problem: How can

we derive a communication scheme so that (i) each node
is ultimately able to recover all packets in P , and (ii)
the weighted sum of the transmissions by the nodes is
minimized?

2) The Secrecy Generation Problem: If an eavesdropper
is permitted to observe all transmissions between the
nodes, what is the largest secret-key that can be gener-
ated among all the nodes? What is the largest private-
key that can be generated among a subset of nodes
if the complementary subset is compromised by the
eavesdropper?

Each of these problems is combinatorial in nature and, as we
shall see, they are intimately connected. In this paper, we show
that each of these problems can be efficiently (and exactly)
solved for the network model we described. Moreover, we
provide an explicit algorithm based on submodular function
optimization that solves each of these problems via solving
an Integer Linear Program (ILP) of a particular form. Due to
the general form of the ILP we consider, our algorithm may
prove useful for solving a variety of combinatorial problems
beyond these particular applications. Before proceeding, we
give a very brief introduction to these two problems.

A. The Universal Recovery Problem

Distributed data exchange problems have received a great
deal of attention over the past several years. The powerful
techniques afforded by network coding [1], [2] have paved
the way for cooperative communications at the packet-level.

The unweighted universal recovery problem was originally
introduced in [3]. The authors of the present paper charac-
terized the set of transmission strategies that permit universal
recovery for multi-hop networks in [4], [5]. Moreover, tight
concentration results were given on the number of transmis-
sions required when packets are randomly distributed in the
network [4], [5].

A randomized algorithm for solving the unweighted univer-
sal recovery problem was given in [6], and the first determin-
istic algorithm for solving the unweighted universal recovery
problem was recently given in [7]. In the concluding remarks

of [7], the weighted universal recovery problem was posed as
an open problem. The present paper definitively resolves this
issue.

B. The Secrecy Generation Problem

In the context of this paper, the secrecy generation problem
was originally studied in [8]. In [8], the authors gave single-
letter characterizations of the secret-key and private-key ca-
pacities for a network of nodes connected by an error-free
broadcast channel. While these results are very general, they
are insufficient from a practical perspective for two reasons.
First, (as with most information-theoretic problems) the results
require the nodes to observe arbitrarily long sequences of iid
source symbols, which is generally not the case in practice.
Second, no efficient algorithm is provided which achieves the
respective secrecy capacities. Some recent work [9], [10] has
addressed the latter point.

In this paper, we address these two issues. In particular,
we leverage the results of [8] and apply them to the network
model that we described above. In doing so, we provide an
efficient algorithm that achieves the secrecy capacity without
requiring any quantities to grow asymptotically large.

C. Organization

This paper is organized as follows. In Section II, we
formally introduce the weighted universal recovery problem
and discuss the corresponding solution. Section III presents
the secrecy generation problem and gives the secret-key and
private-key capacities. In Section IV, we derive an algorithm
that efficiently solves a particular ILP. Since the universal
recovery problem and the secrecy generation problem are
instances of this ILP, the algorithm applies to them as well.
Complexity of the algorithm is also discussed in Section IV.
Section V delivers the conclusions.

II. WEIGHTED UNIVERSAL RECOVERY

In the first part of this paper, we study the weighted
universal recovery problem. In this problem, one considers
a single-hop network of n nodes that all wish to recover
m desired packets. A transmission scheme is said to permit
universal recovery if every node is ultimately able to recover
all m packets initially present in the network. The goal is to
find a transmission scheme permitting universal recovery that
minimizes the weighted sum of the of transmissions made by
each node.

Formally, let w ∈ Rn be a non-negative weight vector and
let Pi ⊆ {p1, . . . , pm} = P be the set of packets originally
available at node i. Each node is aware of the indices of
the packets available to every other node. Assume {Pi}ni=1

satisfies
⋃n
i=1 Pi = P , and define P ci = P\Pi. Each pj ∈ F,

where F is some finite field (e.g. F = GF(2m)) equipped with
addition and multiplication operations ⊕ and ⊗ respectively.
We assume throughout that the pi’s are mutually independent
and uniformly distributed over F. Node i is allowed to make at
most xi transmissions and universal recovery is achieved if all
nodes are ultimately able to recover all m packets. The goal is

to minimize wTx subject to x permitting universal recovery.
This is best demonstrated by a simple example.

Example 1: Suppose we have a network of three nodes, and
let Pi = {p1, p2, p3}\pi. One transmission is not sufficient,
thus

∑3
i=1 xi ≥ 2. It can be seen that two transmissions

suffice: let node 1 transmit p2 which lets node 2 have P2∪p2 =
{p1, p2, p3}. Now, node 2 transmits p1⊕p3, allowing nodes 1
and 3 to each recover all three packets (by “subtracting” off the
packet already known to them respectively). This transmission
scheme is optimal for any w3 ≥ w2 ≥ w1 ≥ 0.

It turns out that the set of transmission schemes permitting
universal recovery is described by a polytope. We quote a
result from [4], [5] which characterizes this set. Define E =
{1, . . . , n} throughout.

Theorem 1 (Single-Hop Universal Recovery [4], [5]): If
node i is allowed to make at most xi transmissions, then
x = (x1, . . . , xn) permits universal recovery if and only if

∑
i∈U

xi ≥

∣∣∣∣∣∣
⋂

i∈E\U

P ci

∣∣∣∣∣∣ , for all ∅ 6= U (E. (1)

In light of Theorem 1, the weighted universal recovery
problem can be solved by optimizing the following Integer
Linear Program (ILP):

minimize wTx (2)

subject to:
∑
i∈U

xi ≥

∣∣∣∣∣∣
⋂

i∈E\U

P ci

∣∣∣∣∣∣ for all ∅ 6= U (E.

Our first main result is the following:

Theorem 2: The weighted universal recovery problem can
be solved in polynomial time.

We derive an algorithm that solves ILPs of the same form
as (2) in Section IV. We remark that, given a vector x
which permits universal recovery, the encoding and decoding
operations can be efficiently computed using the algorithm by
Jaggi et al. [12]. See [4], [5] for details. Therefore, the difficult
part in solving the universal recovery problem lies entirely
in determining an optimal vector x which permits universal
recovery.

To our knowledge, the algorithm we derive in Section IV is
the first polynomial time algorithm for solving the weighted
single-hop universal recovery problem and the second poly-
nomial time algorithm for solving the unweighted single-hop
universal recovery problem (wi = 1,∀i), with the first being
the recently proposed Deterministic Data Exchange (DDE)
Algorithm [7]. DDE takes a linear-algebraic approach that
relies on a maximum-rank subroutine. The stark differences
between the algebraic approach of DDE and the combinatorial
approach described in Section IV make each interesting in its
own right. One advantage of our algorithm is the ability to

quickly generate a certificate of optimality or infeasibility as
described in Section IV-D and IV-E.

III. PRACTICAL SECRECY GENERATION

In this section we retain the setup of the universal recovery
problem, but we consider a different goal. In particular, we
wish to generate a secret-key among the nodes that cannot
be derived by an eavesdropper privy to all of the trans-
missions among nodes. Also, like the nodes themselves, the
eavesdropper is assumed to know the indices of the packets
initially available to each node. The goal is to generate the
maximum amount of “secrecy” that cannot be determined by
the eavesdropper.

The theory behind secrecy generation among multiple ter-
minals was originally established in [8] for a very general class
of problems. Our results should be interpreted as a practical
application of the theory originally developed in [8]. Indeed,
our results and proofs are special cases of those in [8] which
have been significantly streamlined to deal with the scenario
under consideration. The aim of the present section is to
show how secrecy can be generated in a practical scenario. In
particular, we show that it is possible to efficiently generate the
theoretically maximum amount of secrecy among nodes in the
network described in the beginning of Section I. Moreover, we
show that this is possible in the non-asymptotic regime (i.e.,
there are no ε’s and we don’t require n → ∞.). Finally, we
show that it is possible to generate perfect secrecy instead of
ε-secrecy without any sacrifice.

A. Practical Secrecy Results

In this subsection, we state our secrecy results. We begin
with some definitions1. Let F denote the set of all trans-
missions (all of which are available to the eavesdropper by
definition). A function K of P is called a secret key (SK) if
K is recoverable by all nodes after observing F, and it satisfies
the [perfect] secrecy condition

I(K;F) = 0,

and the uniformity condition

Pr (K = k) =
1

|K|
for all k ∈ K,

where K is the alphabet of possible keys.
We define CSK(P1, . . . , Pn) to be the secret-key capacity

for a particular distribution of packets. We will drop the
notational dependence on P1, . . . , Pn where it doesn’t cause
confusion. By this we mean that a secret-key K can be
generated if and only if K = FCSK . In other words, the
nodes can generate exactly CSK packets worth of secret-key;
no more, and no less.

1We attempt to follow the notation of [8] where appropriate.

Let MSK(P1, . . . , Pn) be the optimum value of the follow-
ing ILP:

minimize
∑
i∈E

xi (3)

subject to:
∑
i∈U

xi ≥

∣∣∣∣∣∣
⋂

i∈E\U

P ci

∣∣∣∣∣∣ for all ∅ 6= U (E.

Our first result of this section is the following:

Theorem 3: The secret-key capacity is given by:
CSK(P1, . . . , Pn) = |P | −MSK(P1, . . . , Pn).

Next, consider the related problem where a subset D (E
of nodes is compromised. In this problem, the eavesdropper
has access to F and Pi for i ∈ D. In this case, the secret-
key should also be kept hidden from the nodes in D (or else
the eavesdropper could also recover it). Thus, for a subset of
nodes D, let PD =

⋃
i∈D Pi, and call K a private-key (PK)

if it is a secret-key which is only recoverable by the nodes in
E\D, and also satisfies the stronger secrecy condition:

I(K;F, PD) = 0.

Similar to above, define CPK(P1, . . . , Pn, D) to be the
private-key capacity for a particular distribution of packets
and subset of nodes D. Again, we mean that a private-key
K can be generated if and only if K = FCPK . In other words,
the nodes in E\D can generate exactly CPK packets worth
of private-key; no more, and no less. Note that, since PD is
known to the eavesdropper, each node i ∈ D can transmit
its respective set of packets Pi without any loss of secrecy
capacity.

Let MPK(P1, . . . , Pn, D) be the optimum value of the
following ILP:

minimize
∑
i∈Dc

xi (4)

subject to:
∑
i∈U

xi ≥

∣∣∣∣∣∣
⋂

i∈E\U

P ci

∣∣∣∣∣∣ for all ∅ 6= U (Dc.

Our second result of this section is the following:

Theorem 4: The private-key capacity is given by:
CPK(P1, . . . , Pn, D) = |P\PD| −MPK(P1, . . . , Pn, D).

The basic idea here is that the users in Dc should just
generate a secret-key from P\PD.

By the definitions of the SK and PK capacities, observe
that it is possible to compute these capacities efficiently by
solving the unweighted universal recovery problem. Moreover,
as we will see in the achievability proofs, these capacities
can be achieved by performing universal recovery. Thus, the
algorithm we present in Section IV can be employed to
efficiently solve the practical secrecy generation problem we
consider.

We conclude this subsection with an example to illustrate
the results.

Example 2: Consider again the network of Example 1 and
assume F = {0, 1} (i.e., each packet is a single bit). The
secret-key capacity for this network is 1 bit. After performing
universal recovery, the eavesdropper knows p2 and the parity
p1⊕p3. A perfect secret-key is K = p1 (we could alternatively
use K = p3). If any of the nodes are compromised by the
eavesdropper, the private-key capacity is 0.

We remark that the secret-key in the above example can
in fact be attained by all nodes using only one transmission
(i.e., universal recovery is not a prerequisite for secret-key
generation). However, it remains true that only one bit of
secrecy can be generated.

B. Proof of Theorems 3 and 4

In this subsection, we prove Theorems 3 and 4. We again
remark that our proofs can be seen as special cases of those in
[8] which have been adapted to the case at hand. We require
the following lemma.

Lemma 1: Given a packet distribution P1, . . . , Pn, let K
be a secret-key achievable with communication F. Then the
following holds:

H(K|F) = H(P)−
n∑
i=1

xi.

for some vector x = (x1, . . . , xn) which is feasible for ILP
(3).

Moreover, if K is a PK (with respect to a set D) and each
node i ∈ D transmits its respective set of packets Pi, then

H(K|F) = H(P |PD)−
∑
i∈Dc

xi.

for some vector x = (x1, . . . , xn) which is feasible for ILP
(4).

Proof: We assume throughout that all entropies are
with respect to the base-|F| logarithm (i.e., information is
measured in packets). For this and the following proofs, let
F = (F1, . . . , Fn) and F[1,i] = (F1, . . . , Fi), where Fi denotes
the transmissions made by node i. For simplicity, our proof
does not take into account interactive communication, but can
be modified to do so. Allowing interactive communication
does not change the results. See [8] for details.

Since K and F are functions of P :

H(P) = H(F,K, P1, . . . , Pn)

=

n∑
i=1

H(Fi|F[1,i−1]) +H(K|F)

+

n∑
i=1

H(Pi|F,K, P[1,i−1]).

Set xi = H(Fi|F[1,i−1]) + H(Pi|F,K, P[1,i−1]). Then, the
substituting xi into the above equation yields:

H(K|F) = H(P)−
n∑
i=1

xi.

To show that x = (x1, . . . , xn) is a feasible vector for ILP
(3), we write:∣∣∣∣∣∣
⋂

i∈E\U

P ci

∣∣∣∣∣∣ = H(PU |PUc)

= H(F,K, PU |PUc)

=

n∑
i=1

H(Fi|F[1,i−1], PUc) +H(K|F, PUc)

+
∑
i∈U

H(Pi|F,K, P[1,i−1], PUc∩[i+1,n])

≤
∑
i∈U

H(Fi|F[1,i−1]) +
∑
i∈U

H(Pi|F,K, P[1,i−1])

=
∑
i∈U

xi.

In the above inequality, we used the fact that conditioning
reduces entropy, the fact that K is a function of (F, PUc) for
any U 6= E, and the fact that Fi is a function of Pi (by the
assumption that communication is not interactive).

To prove the second part of the lemma, we can assume D =
{1, . . . , k}. The assumption that each node i in D transmits
all of the packets in Pi implies Fi = Pi. Thus, for i ∈ D we
have xi = H(Pi|P[1,i−1]). Repeating the above argument, we
obtain

H(K|F) = H(P)−H(PD)−
∑
i∈Dc

xi

= H(P |PD)−
∑
i∈Dc

xi,

completing the proof of the lemma.
Proof of Theorem 3: Converse Part. Suppose K is

a secret-key achievable with communication F. Then, by
definition of a SK and Lemma 1 we have

CSK = H(K) = H(K|F) = H(P)−
n∑
i=1

xi

≤ H(P)−MSK = |P | −MSK .

Achievability Part. By definition, universal recovery can be
achieved with MSK transmissions. Moreover, the communi-
cation F can be generated as a linear function of P (see [4]).
Denote this linear transformation by F = LP . Note that L
only depends on the indices of the packets available to each
node, not the values of the packets themselves (see [12] and
[4]). Let PF = {P ′ : LP ′ = F} be the set of all packet
distributions which generate F.

By our assumption that the packets are iid uniform from F,
each P ′ ∈ PF is equally likely given F was observed. Since

F has dimension MSK , |PF| = F|P |−MSK . Thus, we can set
K = F|P |−MSK and label each P ′ ∈ PF with a unique element
in K. The label for the actual P (which is reconstructed by
all nodes after observing F) is the secret-key. Thus, CSK ≥
|P | −MSK .

We remark that this labelling can be done efficiently by an
appropriate linear transformation mapping P to K.

Proof of Theorem 4: Converse Part. Suppose K is a
private-key. Then, by definition of a PK and Lemma 1,

CPK = H(K) = H(K|F) = H(P |PD)−
∑
i∈Dc

xi

≤ H(P |PD)−MPK = |P\PD| −MPK .

Achievability Part. Let each node i ∈ D transmit Pi so that
we can update Pj ← Pj ∪PD for each j ∈ Dc. Now, consider
the universal recovery problem for only the nodes in Dc. By
Theorem 1, MPK is the minimum number of transmissions
required among the nodes in Dc so that each node in Dc

recovers P . At this point, the achievability proof proceeds
identically to the SK case.

IV. AN EFFICIENTLY SOLVABLE ILP

In this section, we introduce a special ILP and provide an
efficient algorithm for solving it. This algorithm can be used
to efficiently solve the weighted universal recovery problem
and, consequently, the secrecy generation problem. We begin
by introducing some notation.

Let E = {1, . . . , n} be a finite set with n elements. We
denote the family of all subsets of E by 2E . We frequently use
the compact notation E\U and U+i to denote the sets E∩U c
and U ∪{i} respectively. For a vector x = (x1, . . . , xn) ∈ Rn,
define the corresponding functional x : 2E → R as:

x(U) :=
∑
i∈U

xi, for U ⊆ E.

Throughout this section, we let F = 2E − {∅, E} denote
the family of nonempty proper subsets of E. Let B =
{B1, . . . , Bn}. No special structure is assumed for the Bi’s
except that they are finite.

With the above notation established, we consider the fol-
lowing Integer Linear Program (ILP) in this section:

min

∑
i∈E

wixi :
∑
i∈U

xi ≥

∣∣∣∣∣∣
⋂

i∈E\U

Bi

∣∣∣∣∣∣ ,∀ U ∈ F , xi ∈ Z

 .

(5)

It is clear that any algorithm that efficiently solves this ILP
also solves ILP (2) by putting Bi ← P ci .

A. Submodular Optimization

Our algorithm for solving ILP (5) relies heavily on submod-
ular function optimization. To this end, we give a very brief
introduction to submodular functions here.

A function g : 2E → R is said to be submodular if, for all
X,Y ∈ 2E ,

g(X) + g(Y) ≥ g(X ∩ Y) + g(X ∪ Y).

Over the past three decades, submodular function optimization
has received a significant amount of attention. Notably, several
polynomial time algorithms have been developed for solving
the Submodular Function Minimization (SFM) problem

min {g(U) : U ⊆ E} .

We refer the reader to [13], [14], [17] for a comprehen-
sive overview of SFM and known algorithms. As we will
demonstrate, we can solve ILP (5) via an algorithm that
iteratively calls a SFM routine. The most notable feature
of SFM algorithms is their ability to solve problems with
exponentially many constraints in polynomial time. One of
the key drawbacks of SFM is that the problem formulation
is very specific. Namely, SFM routines typically require the
function g to be submodular on all subsets of the set E.

B. The Algorithm

We begin by developing an algorithm to solve an equality
constrained version of ILP (5). We will remark on the general
case at the conclusion of this section. To this end, let M be a
positive integer and consider the following ILP:

minimize wTx (6)

subject to: x(U) ≥

∣∣∣∣∣∣
⋂

i∈E\U

Bi

∣∣∣∣∣∣ for all U ∈ F , and (7)

x(E) =M. (8)

Remark 1: We assume wi ≥ 0, else in the case without the
equality constraint we could allow the corresponding xi →
+∞ and the problem is unbounded from below.

Algorithm IV.1: SOLVEILP(B, E,M,w)

comment: Define f : 2E → R as in equation (9).

x← COMPUTEPOTENTIALX(f,M,w)
if CHECKFEASIBLE(f, x)

then return (x)
else return (Problem Infeasible)

Theorem 5: Algorithm IV.1 solves the equality constrained
ILP (6) in polynomial time. If feasible, Algorithm IV.1 returns
an optimal x. If infeasible, Algorithm IV.1 returns “Problem
Infeasible”.

Proof: The proof is accomplished in three steps:
1) First, we show that if our algorithm returns an x, it is

feasible.
2) Second, we prove that if a returned x is feasible, it is

also optimal.
3) Finally, we show that if our algorithm does not return

an x, then the problem is infeasible.
Each step is given its own subsection.

Algorithm IV.1 relies on three basic subroutines given
below:

Algorithm IV.2: COMPUTEPOTENTIALX(f,M,w)

comment: If feasible, returns x satisfying
(7) and (8) that minimizes wTx.

comment: Order elements of E so that
w1 ≥ w2 ≥ · · · ≥ wn.

for i← n to 2

do

comment: Define fi(U) := f(U + i) for
U ⊆ {i, . . . , n}.

xi ← SFM(fi, {i, . . . , n})
x1 ←M −

∑n
i=2 xi

return (x)

Algorithm IV.3: CHECKFEASIBLE(f, x)

comment: Check if x(U) ≤ f(U) for
all U ∈ F with 1 ∈ U .

comment: Define f1(U) := f(U + 1) for U ⊆ E.

if SFM(f1, E) < 0
then return (false)
else return (true)

Algorithm IV.4: SFM(f, V)

comment: Minimize submodular function f over
groundset V . See [17] for details.

v ← min {f(U) : U ⊆ V }
return (v)

C. Feasibility of a Returned x

In this section, we prove that if Algorithm IV.1 returns a
vector x, it must be feasible. We begin with some definitions.

Definition 1: A pair of sets X,Y ⊂ E is called crossing if
X ∩ Y 6= ∅ and X ∪ Y 6= E.

Definition 2: A function g : 2E → R is crossing submod-
ular if

g(X) + g(Y) ≥ g(X ∩ Y) + g(X ∪ Y)

for X,Y crossing.
We remark that minimization of crossing submodular func-

tions is well established, however it involves a lengthy reduc-
tion to a standard submodular optimization problem. However,
the crossing family F admits a straightforward algorithm,
which is what we provide in Algorithm IV.1. We refer the
reader to [13] for complete details on the general case.

For M a positive integer, define

f(U) :=M −

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣− x(U), for U ∈ F . (9)

Lemma 2: The function f is crossing submodular on F .
Proof: For X,Y ∈ F crossing:

f(X) + f(Y) =M −

∣∣∣∣∣⋂
i∈X

Bi

∣∣∣∣∣− x(X)

+M −

∣∣∣∣∣⋂
i∈Y

Bi

∣∣∣∣∣− x(Y)

=M −

∣∣∣∣∣⋂
i∈X

Bi

∣∣∣∣∣− x(X ∩ Y)

+M −

∣∣∣∣∣⋂
i∈Y

Bi

∣∣∣∣∣− x(X ∪ Y)

≥M −

∣∣∣∣∣ ⋂
i∈X∩Y

Bi

∣∣∣∣∣− x(X ∩ Y)

+M −

∣∣∣∣∣ ⋂
i∈X∪Y

Bi

∣∣∣∣∣− x(X ∪ Y)

= f(X ∩ Y) + f(X ∪ Y).

Observe that, with f defined as above, the constraints of
ILP (6) can be equivalently written as:

f(U) =M −

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣− x(U) ≥ 0 for all U ∈ F , and

(10)
x(E) =M.

Without loss of generality, assume the elements of E are
ordered lexicographically so that w1 ≥ w2 ≥ · · · ≥ wn. At
iteration i in Algorithm IV.2, xj = 0 for all j ≤ i. Thus,
setting

xi ← min
U⊆{i,...,n}

{fi(U)}

= min
U⊆{i,...,n}:i∈U

{f(U)}

= min
U⊆{i,...,n}:i∈U

{
M −

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣− x(U)

}
(11)

and noting that the returned x satisfies x(E) =M , rearranging
(11) guarantees that

x(E\U) ≥

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣ , for all U ⊆ {i, . . . , n}, i ∈ U (12)

as desired. Iterating through i ∈ {2, . . . , n} guarantees (12)
holds for 2 ≤ i ≤ n.

Remark 2: In the feasibility check routine (Algorithm IV.3),
we must be able to evaluate f1(E). The reader can verify that
putting f(E) = 0 preserves submodularity.

Now, in order for the feasibility check to return true, we
must have

min
U⊆E

{f1(U)} = min
U⊆E:1∈U

{f(U)}

= min
U⊆E:1∈U

{
M −

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣− x(U)

}
≥ 0,

implying that

x(E\U) ≥

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣ , for all U ⊆ E, 1 ∈ U. (13)

Combining (12) and (13) and noting that x(E) = M proves
that x is indeed feasible. Moreover, x is integral as desired.

D. Optimality of a Returned x

In this section, we prove that if Algorithm IV.1 returns a
feasible x, then it is also optimal. First, we require two more
definitions and a lemma.

Definition 3: A constraint of the form (10) corresponding
to U is said to be tight for U if

f(U) =M −

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣− x(U) = 0.

Lemma 3: If x is feasible, X,Y are crossing, and their
corresponding constraints are tight, then the constraints corre-
sponding to X ∩ Y and X ∪ Y are also tight.

Proof: Since the constraints corresponding to X and Y
are tight, we have

0 = f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y) ≥ 0.

The first inequality is due to submodularity and the last
inequality holds since x is feasible. This implies the result.

Definition 4: A family of sets L is laminar if X,Y ∈ L
implies either X ∩ Y = ∅, X ⊂ Y , or Y ⊂ X .

At iteration k (1 < k ≤ n) of Algorithm IV.2, let Uk be
the set where (11) achieves its minimum. Note that k ∈ Uk ⊆
{k, . . . , n}. By construction, the constraint corresponding to
Uk is tight. Also, the constraint x(E) =M is tight. From the
Uk’s and E we can construct a laminar family as follows: if
Uj ∩ Uk 6= ∅ for j < k, then replace Uj with Ũj ← Uk ∪ Uj .
By Lemma 3, the constraints corresponding to the sets in the
newly constructed laminar family are tight. Call this family L.
For each i ∈ E, there is a unique smallest set in L containing
i. Denote this set Li. Since k ∈ Uk ⊆ {k, . . . , n}, Li 6= Lj
for i 6= j. Note that L1 = E and Li ⊂ Lj only if j < i.

For each Li ∈ L there is a unique smallest set Lj such that
Li ⊂ Lj . We call Lj the least upper bound on Li.

Now, consider the dual linear program to (6):

maximize −
∑
U∈F

πU

(
M −

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣
)
− πEM

subject to:
∑

U∈F :i∈U
πU + πE + wi = 0, for 1 ≤ i ≤ n

πU ≥ 0 for U ∈ F , and πE free.

For each Li ∈ L, let the corresponding dual variable
πLi

= wj − wi, where Lj is the least upper bound on
Li. By construction, πLi

≥ 0 since it was assumed that
w1 ≥ · · · ≥ wn. Finally, let πE = −w1 and πU = 0 for
U /∈ L.

Now, observe that:∑
U∈F :i∈U

πU + πE + wi = 0

as desired for each i. Thus, π is dual feasible. Finally, note
that πU > 0 only if U ∈ L. However, the primal constraints
corresponding to the sets in L are tight. Thus, (x, π) form a
primal-dual feasible pair satisfying complementary slackness
conditions, and are therefore optimal.

E. No Returned x = Infeasibility

Finally, we prove that if the feasibility check returns false,
then ILP (6) is infeasible. Note by construction that the vector
x passed to the feasibility check satisfies

M −

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣− x(U) ≥ 0 for all nonempty U ⊆ {2, . . . , n},

and x(E) =M . Again, let Uk be the set where (11) achieves
its minimum and let L be the laminar family generated by
these Uk’s and E exactly as before. Again, the constraints
corresponding to the sets in L are tight (this can be verified
in a manner identical to the proof of Lemma 3). Now, since
x failed the feasibilty check, there exists some exceptional set
T with 1 ∈ T for which

M −

∣∣∣∣∣⋂
i∈T

Bi

∣∣∣∣∣− x(T) < 0.

Generate a set LT as follows: Initialize LT ← T . For each
Li ∈ L, Li 6= E, if LT ∩ Li 6= ∅, update LT ← LT ∪ Li.
Now, we can add LT to family L while preserving the laminar
property. We pause to make two observations:

1) By an argument similar to the proof of Lemma 3, we
have that

M −

∣∣∣∣∣ ⋂
i∈LT

Bi

∣∣∣∣∣− x(LT) < 0.

2) The sets in L whose least upper bound is E form a
partition of E. We note that LT is a nonempty class of
this partition. Call this partition PL.

Again consider the dual constraints, however, let wi = 0
(this does not affect feasibility). For each L ∈ PL define the
associated dual variable πL = α, and let πE = −α. All other

dual variables are set to zero. It is easy to check that this π is
dual feasible. Now, the dual objective function becomes:

−
∑
U∈F

πU

(
(M −

∣∣∣∣∣⋂
i∈U

Bi

∣∣∣∣∣
)
− πEM

= −α
∑
L∈PL

(
M −

∣∣∣∣∣⋂
i∈L

Bi

∣∣∣∣∣− x(L) + x(L)

)
+ αM

= −α

(
M −

∣∣∣∣∣ ⋂
i∈LT

Bi

∣∣∣∣∣− x(LT)
)
− αx(E) + αM

= −α

(
M −

∣∣∣∣∣ ⋂
i∈LT

Bi

∣∣∣∣∣− x(LT)
)

→ +∞ as α→∞.

Thus, the dual is unbounded and therefore the primal problem
must be infeasible.

As an immediate corollary we obtain the following:

Corollary 1: The optimal value of the ILP:

min
{
x(E) : x(U) ≥

∣∣∩i∈E\UBi∣∣ , U ∈ F , xi ∈ Z
}

and the corresponding LP relaxation:

min
{
x(E) : x(U) ≥

∣∣∩i∈E\UBi∣∣ , U ∈ F , xi ∈ R
}

differ by less than 1.

Proof: Algorithm IV.1 is guaranteed to return an optimal
x if the intersection of the polytope and the hyperplane
x(E) = M is nonempty. Thus, if M∗ is the minimum such
M , then the optimal value of the LP must be greater than
M∗ − 1.

F. Solving the General ILP

Finally, we remark on how to solve the general case of the
ILP without the equality constraint given in (5). First, we state
a simple convexity result.

Lemma 4: Let p∗w(M) denote the optimal value of ILP (6)
when the equality constraint is x(E) = M . We claim that
p∗w(M) is a convex function of M .

Proof: Let M1 and M2 be integers and let θ ∈ [0, 1] be
such that Mθ = θM1 + (1 − θ)M2 is an integer. Let x(1)

and be x(2) optimal vectors that attain p∗w(M1) and p∗w(M2)
respectively. Let x(θ) = θx(1) + (1 − θ)x(2). By convexity,
x(θ) is feasible, though not necessarily integer. However, by
the results from above, optimality is always attained by an
integral vector. Thus, it follows that:

θp∗w(M1) + (1− θ)p∗w(M2) = θwTx(1) + (1− θ)wTx(2)

= wTx(θ) ≥ p∗w(Mθ).

Noting that p∗w(M) is convex in M , we can perform
bisection on M to solve the ILP in the general case. For our
purposes, it suffices to have relatively loose upper and lower
bounds on M since the complexity only grows logarithmically

in the difference. A simple lower bound on M is given by
M ≥ maxi |Bi|.

G. Complexity

Our aim in this paper is not to give a detailed complexity
analysis of our algorithm. This is due to the fact that the
complexity is dominated by the the SFM over the set E in
Algorithm IV.3. Therefore, the complexity of Algorithm IV.1
is essentially the same as the complexity of the SFM solver
employed.

However, we have performed a series of numerical ex-
periments to demonstrate that Algorithm IV.1 performs quite
well in practice. In our implementation, we ran the Fujishige-
Wolfe (FW) algorithm for SFM [15] based largely on a Matlab
routine by A. Krause [16]. While the FW algorithm has not
been proven to run in polynomial time, it has been shown
to work quite well in practice [15] (similar to the Simplex
algorithm for solving Linear Programs). Whether or not FW
has worst-case polynomial complexity is an open problem to
date. We remark that there are several SFM algorithms that
run in strongly polynomial time which could be used if a
particular application requires polynomially bounded worst-
case complexity [17].

In our series of experiments, we chose Bi ⊂ F randomly,
where |F | = 50. We let n = |E| range from 10 to 190 in
increments of 10. For each value of n, we ran 10 experiments.
The average computation time is shown in Figure 1, with
error bars indicating one standard deviation. We consistently
observed that the computations run in approximately O(n1.85)
time. Due to the iterative nature of the SFM algorithm, we
anticipate that the computation time could be significantly
reduced by implementing the algorithm in C/C++ instead
of Matlab. However, the O(n1.85) trend should remain the
same. Regardless, we are able to solve the ILP problems
under consideration with an astonishing 2190 constraints in
approximately one minute.

V. CONCLUDING REMARKS

In this paper, we derive an efficient algorithm that solves
an Integer Linear Program of a particular form. We apply our
algorithm to the weighted universal recovery problem and the
secrecy generation problem for the network described in the
introduction. Our algorithm produces exact results for each
of these problems in the non-asymptotic regime. Due to the
general form of the ILP that is solved, our algorithm may be
of interest beyond the applications given here.

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network information
flow”, IEEE Transactions on Information Theory, July 2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding”, IEEE
Transactions on Information Theory, Feb. 2003.

[3] S. El Rouayheb, A. Sprintson, and P. Sadeghi, On coding for cooperative
data exchange, in Proc. Information Theory Workshop, Cairo, Egypt,
2009, pp. 118-122.

[4] T. Courtade, B. Xie, and R. Wesel, “Optimal Exchange of Packets for
Universal Recovery in Broadcast Networks,” MILCOM 2010, San Jose,
CA, October 31 - November 3, 2010.

Fig. 1. Experimental results. For the red dotted line, the multiplica-
tive constant α and exponent β were chosen to minimize the MSE∑n
i=1 | log(αnβ) − log(m̂n)|2, where m̂n is the sample mean of the

computation times for |E| = n.

[5] T. A. Courtade and R. D. Wesel, “Efficient Universal Recovery in
Broadcast Networks”. Forty-Eighth Annual Allerton Conference on Com-
munication, Control, and Computing: Monticello, IL, Sept. 29 - Oct. 1,
2010.

[6] A. Sprintson, P. Sadeghi, G. Booker, and S. El Rouayheb. A Randomized
Algorithm and Performance Bounds for Coded Cooperative Data Ex-
change. In 2010 IEEE International Symposium on Information Theory
Proceedings (ISIT 2010), Austin, Texas, USA, June 2010.

[7] A. Sprintson, P. Sadeghi, G. Booker, and S. El Rouayheb. Deterministic
Algorithm for Coded Cooperative Data Exchange. ICST QShine, Hous-
ton, Texas, November 17-19, 2010.

[8] I. Csiszár and P. Narayan. Secrecy Capacities for Multiple Terminals.
IEEE Trans. IT, Vol. 50, No. 12, Dec. 2004: 3047-3061.

[9] Y. Chunxuan, P. Narayan. Secret key and private key constructions for
simple multiterminal source models, ISIT 2005, pp.2133-2137, 4-9 Sept.
2005.

[10] Y. Chunxuan and A. Reznik. A simple secret key construction system
for broadcasting model. 44th Annual Conference on Information Sciences
and Systems (CISS), 2010.

[11] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems. Academic, New York, N.Y., 1982.

[12] Sidharth Jaggi, Peter Sanders, Philip A. Chou, Michelle Effros, Sebastian
Egner, Kamal Jain, Ludo M. G. M. Tolhuizen. Polynomial time algo-
rithms for multicast network code construction. IEEE Transactions on
Information Theory, 2005: 1973-1982.

[13] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer, Berlin. 2003.

[14] S. Fujishige. Submodular Functions and Optimization. Second Edition.
North-Holland, 2010.

[15] S. Fujishige, T. Hayashi and S. Isotani. The Minimum-Norm-Point Algo-
rithm Applied to Submodular Function Minimization. Kyoto University,
Kyoto Japan, 2006.

[16] A. Krause. SFO: A Toolbox for Submodular Function Optimization.
Journal of Machine Learning Research (2010).

[17] S. T. McCormick. Submodular Function Minimization. In Discrete Opti-
mization, K. Aardal, G. Nemhauser, and R. Weismantel, eds. Handbooks
in Operations Research and Management Science, Volume 12. Elsevier.
(2005).

[18] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004.

[19] C. Fragouli, J. Widmer, and J.-Y. L. Boudec, “A network coding
approach to energy efficient broadcasting: From theory to practice”, in
IEEE INFOCOM, Barcelona, Spain, Apr. 2006.

[20] C. Fragouli, J. Widmer, and J.-Y. L. Boudec, “Efficient Broadcasting
Using Network Coding,” IEEE/ACM Transactions on Networking, Vol.
16, No. 2, April 2008, 450-463.

[21] S. El Rouayheb, M.A.R. Chaudhry, and A. Sprintson. On the minimum
number of transmissions in single-hop wireless coding networks. In IEEE
Information Theory Workshop (Lake Tahoe), 2007.

[22] S. El Rouayheb, A. Sprintson, and C. N. Georghiades. On the relation
between the index coding and the network coding problems. Proc. of
IEEE International Symposium on Information Theory (ISIT08), 2008.

