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I. INTRODUCTION

Let Q = [0, 1] × [0, 1] denote the unit square and let Ln be a set of n line segments in Q. Two
line segments are said to be crossing if they intersect at any point. A subset of line segments is called
non-crossing if no two segments in the subset are crossing.

Consider the scenario where the endpoints of the n line segments are randomly distributed, indepen-
dently and uniformly, in Q. Define N(Ln) to be the size of the largest non-crossing subset of segments.
Formally:

N(Ln) = max
U⊆Ln

{|U| : `1, `2 do not cross for all `1, `2 ∈ U} ,

where |U| denotes the number of line segments in the subset U . Further, define L(Ln) to be the maximum
sum-length over all non-crossing subsets of Ln. Formally:

L(Ln) = max
U⊆Ln

{∑
`∈U

‖`‖ : `1, `2 do not cross for all `1, `2 ∈ U

}
,

where ‖`‖ denotes the length of line segment `. In this short note, we prove that N(Ln) and L(Ln) are
both Θ(

√
n) asymptotically almost surely. It is possible to extend these results to the case where line

segments are required to be separated by some minimum distance. Partial characterizations of this more
general case are given in Section II-B.

II. MAIN RESULTS AND PROOFS

A. Non-Crossing Line Segments
Our first two results are that N(Ln) and L(Ln) both behave roughly like

√
n:

Theorem 1: Asymptotically almost surely,
√
n/2 ≤ N(Ln) ≤ 15

√
n.

Theorem 2: Asymptotically almost surely,
√
n/7 ≤ L(Ln) ≤ 22

√
n.

While we have made no significant efforts to optimize the coefficients of the bounds in Theorems 1 and
2, minor modifications to our arguments can yield somewhat tighter results. Additional techniques are
likely required in order to close the gap completely. The case where line segments are required to be
separated by some minimum distance is discussed in Section II-B.

Proof of Theorem 1: Throughout the proof, we make the distinction between left and right endpoints
of line segments. This is somewhat arbitrary, but simplifies the argument significantly. Thus, a line segment
is generated according to the following process: (Step 1) the left endpoint is chosen uniformly from Q,
and (Step 2) the right endpoint is chosen independently and uniformly from Q.



Claim 1: With probability tending to 1 as n→∞, N(Ln) ≥
√
n/2.

Partition Q into
√
n disjoint horizontal strips, each having height 1/

√
n and width 1. Note that if a line

segment ` is contained in a single strip, then it will not intersect line segments contained in any other
strip. Then N(Ln) ≥ Y , where Y is the number of strips that contain line segments. Observe that

Pr [Line ` in strip j] = Pr [{left endpoint of ` in strip j} ∧ {right endpoint of ` in strip j}]
= Pr [left endpoint of ` in strip j]× Pr [right endpoint of ` in strip j]

=
1

n
.

Where we used the fact that the probability a given point falls in a particular strip is 1/
√
n and points

are chosen independently. Then, the probability that a given strip does not contain any line segments is:

(1− 1/n)n ≈ 1/e.

Further, note that:

Pr [{Line ` not in strip i} ∧ {Line ` not in strip j}]
= 1− Pr [{Line ` in strip i} ∨ {Line ` in strip j}]
= 1− (Pr [Line ` in strip i] + Pr [Line ` in strip j])
= 1− 2/n.

Where we used the fact that the events {Line ` in strip i} and {Line ` in strip j} are disjoint. Then for
any pair of strips (i, j), the probability that neither strip i nor strip j contains any line segments is

(1− 2/n)n ≈ 1/e2.

Let Xi be the indicator random variable taking value 1 if strip i contains no line segments and taking
the value 0 otherwise. Note that EXi ≈ e−1, Var(Xi) ≈ e−1(1− e−1), and

Cov(Xi, Xj) = E [XiXj]− E [Xi]E [Xj]

= (1− 2/n)n − (1− 1/n)2n

≤ e−2 − e−2 + o(1)

= o(1).

Then, letting X =
∑√n

i=1Xi be the number of strips that don’t contain any line segments, and noting that

Var(X) =
∑
i

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj)

≤
√
n

(
1

e

(
1− 1

e

)
+ o(1)

)
+
√
n(
√
n− 1)o(1)

≤
√
n+ n · o(1),

Chebyshev’s inequality yields:

Pr

[
|X − EX| ≥ 1

10

√
n

]
≤ 100× Var(X)

n

≤ 100×
√
n+ n · o(1)

n
→ 0.



Therefore, with probability tending to 1,

X ≤
(

1 +
1

10
+ o(1)

) √
n

e
≤
√
n

2
.

Hence, Y =
√
n−X ≥

√
n/2 with probability tending to 1. This proves the claim.

We briefly remark that it is possible, with probability tending to 1, to find Ωε(
√
n) non-crossing

segments1 of length greater than 1 − ε. The basic idea is to modify the above proof so that the left
(right) endpoint of each line segment is within distance ε/2 of the left (right) edge of Q. We omit the
details in the interest of brevity.

Claim 2: With probability tending to 1 as n→∞, N(Ln) ≤ 15
√
n.

From [1], there exists an absolute constant c such that for any 2k points in the plane, the number
of non-crossing left-right2 perfect matchings is upper-bounded by c · 29k. Consider any realization of n
line segments in the plane and further consider the 2k (k left and k right) endpoints corresponding to
any subset S consisting of k line segments. Conditioned on the locations of the left and right endpoints,
every left-right perfect matching of these 2k points is equally likely, and thus the probability that these k
segments are non-crossing is upper bounded by:

Pr [S is non-crossing] ≤ c · 29k

k!

since there are k! left-right perfect matchings on the 2k endpoints.
Stirling’s formula states

lim
k→∞

k!
√

2πk
(
k
e

)k = 1,

and thus

c · 29k

k!
≤ o(1) ·

(
29 · e
k

)k
.

Recalling the crude upper bound
(
n
k

)
≤
(
n·e
k

)k, a union bound gives:

Pr[∃ k non-crossing segments] ≤
(
n

k

)
c · 29k

k!

≤ o(1) ·
(

29 · n · e2

k2

)k
Letting k = 15

√
n, we have

Pr[∃ 15
√
n non-crossing segments] ≤ o(1) ·

(
29 · e2

152

)15
√
n

≤ o(1) · (.96)15
√
n

→ 0.

This proves the claim and completes the proof of Theorem 1.

1A function f(n) is said to be Ωε(g(n)), if there exists an integer n0 and a constant cε depending only on ε so that f(n) ≥ cεg(n) for
all n > n0.

2A left-right perfect matching distinguishes between left endpoints and right endpoints in edges. In other words, an edge is only allowed
to match a left endpoint to a right endpoint.



Proof of Theorem 2:
We claim that, asymptotically almost surely, there exists a subset of non-crossing line segments U ⊆ Ln

satisfying ∑
`∈U

‖`‖ > 1

7

√
n, (1)

where ‖`‖ denotes the length of line segment `.
Indeed, consider the non-crossing set of line segments constructed in the proof of the lower bound of

Theorem 1. Denote this set U . Let the endpoints of a line segment ` ∈ U be given in Cartesian form:
(x1, y1) and (x2, y2). Note that ‖`‖ ≥ |x1− x2| := L`, where the random variable L` is independent from
the event {` ∈ U}, since this event only depends on y1 and y2. Moreover, {L`}`∈U is a set of independent
identically distributed random variables, each with expectation 1/3 and finite variance. Therefore, by the
weak law of large numbers

Pr

(∣∣∣∣∣ 1

|U|
∑
`∈U

L` −
1

3

∣∣∣∣∣ > 1

21

)
→ 0.

Some basic algebra combined with the fact that |U| ≥
√
n/2 a.a.s. proves the claim.

The estimate given in (1) is essentially the best possible. Indeed, the upper bound of Theorem 1
combined with the fact that ‖`‖ ≤

√
2 yields

∑
`∈U ‖`‖ < 22

√
n for any non-crossing subset U a.a.s. This

completes the proof of the theorem.

B. Extension to d-Disjoint Line Segments
Two apparently stronger results can be deduced via a slight modification of the previous proofs. We

state the results and sketch the proofs in this section.
First, define the distance between two line segments `1, `2 ∈ Ln as the minimum distance between any

point in `1 and any point in `2. Formally,

d(`1, `2) := inf
x∈`1,y∈`2

‖x− y‖,

where ‖x− y‖ is the Euclidean distance between points x, y ∈ Q. A set U of line segments is said to be
d-disjoint if all pairs of line segments in U are at least distance d apart. Then

Nd(Ln) = max
U⊆Ln

{|U| : d(`1, `2) > d for all `1, `2 ∈ U}

is the size of the largest d-disjoint subset of line segments in Ln. Similarly, define

Ld(Ln) = max
U⊆Ln

{∑
`∈U

‖`‖ : d(`1, `2) > d for all `1, `2 ∈ U

}
.

Note that N(Ln) = N0(Ln) and L(Ln) = L0(Ln). With these definitions in hand, we state our last two
results:

Theorem 3: Asymptotically almost surely, Nd(n)(Ln) = Θ(
√
n) if d(n) = O(n−1/4).

Theorem 4: Asymptotically almost surely:

• Ld(n)(Ln) =

{
Θ(1/d(n)) if d(n) = Ω(1/

√
n)

Ω(
√
n) if d(n) = o(1/

√
n)

• Ld(Ln) < 9/d.



Proof of Theorem 3: Repeat the constructive part in the proof of Theorem 1, except divide Q into
squares of size n−1/4 × n−1/4. Asymptotically almost surely, this yields at least

√
n/2 disjoint squares

containing lines. Since d(n) = O(n−1/4), we can find a constant fraction of the boxes containing lines that
are pairwise distance d(n) apart. This shows that we can find Ω(

√
n) line segments which are d(n)-disjoint.

Since Nd(n)(Ln) is non-increasing in d(n), the upper bound of Theorem 1 proves the converse part.

Proof of Theorem 4: To prove the lower bounds, repeat the constructive part in the proof of Theorem
1. Assume first that d(n) = Ω(1/

√
n). Now, we can partition the strips (taking every (d(n)

√
n)th strip) into

classes of roughly equal size so that all strips within a class are separated by a distance greater than d(n).
By the pigeon-hole principle, at least one of these classes contains at least

√
n/(2×Mn) d(n)-disjoint line

segments a.a.s., where Mn is the number of classes in the partition. Some simple arithmetic reveals that
Mn is roughly d(n)

√
n. Thus, there exists Ω(1/d(n)) d(n)-disjoint line segments a.a.s. If d(n) = o(1/

√
n),

taking every other strip is sufficient. Hence there exist Ω(
√
n) d(n)-disjoint line segments in this case.

In both cases, we can apply the weak law of large numbers (as in the proof of Theorem 2) to give the
desired lower estimate for Ld(n)(Ln).

For the converse, let U be a subset of d-disjoint line segments, and for ` ∈ U , generate a rectangle of
dimension d×‖`‖ by “widening” the segment equally on both sides. Since U is a subset of d-disjoint line
segments, these rectangles must be pairwise disjoint. Since the sum of the areas of the rectangles is at
most slightly larger than the area of Q (rectangles can extend beyond the unit square), a simple volumetric
argument then shows that Ld(Ln) ≤ (1 + d)2/d. Without loss of generality, d ≤

√
2, thus Ld(Ln) < 9/d.

III. CONCLUDING REMARKS

We have given several concentration results for n random line segments in the unit square. First, we
show that the maximum number of non-crossing segments behaves roughly like

√
n. Second, we show

that there is a non-crossing subset of line segments whose lengths sum to roughly
√
n, which is the

maximum possible. Finally, if line segments are required to be separated by some minimum distance d,
we obtain a partial characterization of the previous two quantities. These results can be applied to the
study of user capacity and transport capacity in random geometric graphs.

An interesting direction for further work would be to study Nd(n)(Ln) when d(n) = ω(n−1/4), and
Ld(n)(Ln) when d(n) = o(1/

√
n) more thoroughly. Another important direction for future work would be

to examine the behavior of a maximal subset of non-crossing (or d-disjoint) line segments that is chosen
greedily. We conjecture that a greedily selected non-crossing (or d-disjoint) maximal subset of segments
exhibits behavior which is order-identical to an optimally chosen subset. Experimental evidence appears
to support this conjecture.
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