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Abstract— In recent times the need of spectral efficiency
has become a relevant topic for many communication systems,
especially for wireless services. In order to achieve the best trade-
off between bandwidth occupancy and error-rate performance,
several structures that involve large constellations havebeen
proposed in literature. This paper focuses on LDPC-coded
systems using 16-QAM constellations on a channel affected by
Additive White Gaussian Noise (AWGN). The LDPC codes that
have been used include both binary and non-binary systems. In
order to be compared, they have been designed such that they
are equivalent in terms of blocklength, rate and average column
weight. Simulation results show how the structure that involves
a q-ary LDPC code outperforms the other schemes: new possible
scenarios to be analyzed and ongoing works are then introduced.

I. I NTRODUCTION

With an ever-increasing demand for wireless services, the
need for spectral efficiency in data communications has be-
come an important topic. To alleviate the crowding of the
radio-frequency spectrum, it is desirable to make more effi-
cient use of currently allocated frequency bands. Historically,
the most popular scheme to improve bandwidth-efficiency
has been to utilize higher-order modulation. This approach
allows more bits per transmitted symbol, but the higher symbol
density requires increased power to achieve acceptable bit-
error-rate (BER) performance. In order to achieve the best
possible performance, capacity approaching codes as Turbo-
Codes (TC) and Low-Density Parity-Check (LDPC) codes
have been adopted by a multitude of systems - from stor-
age devices to optical communications. LDPC codes [1] are
algebraic codes characterized by a sparse parity-check (PC)
matrix, H , having M rows andN columns. LDPC codes
can be classified as either regular or irregular depending on
their row and column degree-distributions. Regular LDPC
codes have a parity check matrix in which all rows (and
columns) have equal weight, while the irregular LDPC codes
do not exhibit this property. Non-binary (orq-ary) LDPC
codes have codewords (and also a PC matrix) whose symbols
are elements of the finite fieldGF (q), with q > 2. These
non-binary LDPC codes typically have steeper bit-error-rate
curves, however the decoding complexity isO(Ntq2), where
N is the blocklength,t is the average column weight, and
q is the alphabet width [4], [5]. Using their bipartite graph

representation, [6] and [23] showed that LDPC codes may
perform very close to capacity on AWGN channels and achieve
capacity on binary erasure channels. Therefore, it is natural to
ask if LDPC codes can improve the bit-error-rate performance
of a code in a communication system that requires high
bandwidth efficiency [20]. In this paper, we compare three
different coding architectures, paying particular attention to
the properties of the LDPC code selected for each one. The
paper is organized as follows. In Section II the three different
architectures are introduced and we highlight the features
related to the application of LDPC codes to these architectures.
Further, we comment on the bandwidth efficiency of each of
the architectures. In Section III the simulation results are given,
and we also discuss the more practical aspects of the code
construction and decoding.

II. SYSTEM MODEL

In this section, we analyze the performance of a higher-
order coded modulation system over an AWGN channel. In
each system that we consider, the input to the modulator
is encoded by an LDPC code whose properties depend on
the particular system under consideration. At the receiver, the
received signal is sent to the LDPC decoder. Depending on
the transmitter model that was used, the receiver decodes
in a manner consistent with how the transmitter encoded
the message. In the three different architectures that willbe
introduced, the first two are based on binary LDPC codes,
while the last is based on aq-ary LDPC code.

Here we make two notes. First, in the Multi-level coding
architecture that we will introduce, the error correction coding
is performed by means ofp properly synchronized binary
LDPC codes, wherep = log2(q) and q represents the order
of the modulation. In our error-rate performance analysis,we
do not consider the influence of the inherent decoding delays
associated such a structure. Second, all the LDPC codes used
in this paper have been constructed using Quasi-Regular PC
matrices [20], [22] generated by the Progressive Edge-Growth
(PEG) algorithm [19].

Given a rateR and the average column weight (i.e. the
average variable-node degree in the Tanner graph),dv, it is
possible to compute the average row weight (i.e. the average
check-node degree),dc as follows:



dc =
dv

1 − R
. (1)

Furthermore, the column (variable-node) profile is provided
by this rule:

dvj
=






⌊dv⌋ − dv + 1 if j = ⌊dv⌋

⌊dv⌋ − dv if j = ⌊dv⌋ + 1
0 otherwise.

(2)

Wheredvj
represents the fraction of columns with weight

j in the given PC matrix, and⌊z⌋ is defined as the largest
integer less than or equal toz. Analogously, the row (check-
node) profile can be computed as follows:

dcj
=






⌊dc⌋ − dc + 1 if j = ⌊dc⌋

⌊dc⌋ − dc if j = ⌊dc⌋ + 1
0 otherwise.

(3)

Here,dcj
represents the fraction of rows with weightj in

the given PC matrix.

A. Turbo-like receiver

In the architecture given in Figure 1, the transmitted signal
is a binary LDPC codeword that has been properly mapped
to the constellation associated with the given higher-order
modulation scheme.

Fig. 1. Turbo iterative detection-and-decoding receiver for a LDPC coded
system

At the receiver, the soft detector incorporates extrinsic
information provided by the binary LDPC decoder, and the
LDPC decoder incorporates soft information provided by
the detector. Extrinsic information between the detector and
decoder is exchanged in an iterative way until an LDPC
codeword is found or a maximum number of iteration is
performed [5], [12]. With LDPC codes, convergence to a
codeword is easily detected by the receiver when the parity

check equations are satisfied. The decoding Message Passing
Algorithm (MPA) is described in detail in [4], [5]. In this
architecture, the received vectory is demapped by a log-
likelihood ratio (LLR) calculation for each of the coded bits
included in the transmitted vectorx. The extrinsic information
provided by the detector is the difference of the soft-inputand
soft-output LLR values for the coded bits. For theκ-th code
bit of x, xκ, the extrinsic LLR value of the estimated bit is
computed as follows:

LD(xκ) = log
P (xκ = +1|y)
P (xκ = −1|y)

− log
P (xκ = +1)

P (xκ = −1)

= log
P (xκ = +1|y)
P (xκ = −1|y)

− LC(xκ), (4)

whereLC(xκ) is the extrinsic information ofxκ computed
by the LDPC decoder in the previous turbo iteration. Note that
LC(xκ) = 0 at the first iteration. Assuming the bits associated
with x are statistically independent of one another, thea priori
probabilityP (x) can be expressed in the following way:

P (x) =

N∏

i=1

P (xi) =

N∏

i=1

[1 + exp(−xxi · LC(xi))] , (5)

wherexxi corresponds to the value (either +1 or -1) of the
i-th bit in the vectorx.

B. Multilevel Coding

Imai’s idea of multilevel coding (MLC) is to protect each
address bitxi of the constellation points by an individual
binary codeξi at level i [3]. At the receiver, each codeξi

is decoded individually starting from the lowest level and
taking into account decisions of prior decoding stages. This
procedure is called multistage decoding (MSD). In contrast
to Ungerboeck’s trellis coded modulation (TCM) [7]-[9], the
MLC approach provides flexible transmission rates because it
decouples the dimensionality of the signal constellation from
the code rate. Furthermore, any kind of code may be used as
component code. Although MLC offers excellent asymptotic
coding gains, it achieved only theoretical interest in the past.
In practice, system performance was severely degraded due to
high error rates at low levels. A straightforward generalization
of Imai’s approach is to useq-ary component codes based
on non-binary partitioning of the signal set; however, using
binary codes in conjunction with multilevel codes turns out
to be asymptotically optimal. For practical coded modulation
schemes where boundary effects have to be taken into account,
Huber and Kofman [13], [14] proved that the capacity of the
adopted modulation scheme can be achieved by multilevel
codes together with MSD if and only if the individual rates of
the component codes are properly chosen. Here it is assumed
that the signal points are equiprobable and the partitioning
is regular. Further yet, in [11], the authors generalized these
results to arbitrary signaling and labeling of signal points by
means of the chain rule for mutual information. In this way



we can create a model with virtually independent parallel
channels for each address bit at the different partitioning
levels, these levels are called equivalent channels. In order
to better understand the idea beneath this concept, consider
the previously described modulation scheme withL = 2λ

signal points. Since each of the signal points exists in aD-
dimensional signal space, every signal point is taken from the
signal setT = {τ0, τ1, . . . , τL−1} whereT ⊂ RD (R being
the field of real numbers).

When considering the AWGN channel, the channel output
signal points come from the alphabetY = RD. In order
to create effective error-correcting codes for such anL-ary
signal alphabet, labels have to be assigned to each signal
point, using a bijective mapping between the set of all possible
x and T . Since the mapping is bijective independently of
the partitioning strategy, the mutual information,I(Y ; T ),
between the transmitted signal pointτ ∈ T and the re-
ceived signal pointy ∈ Y equals the mutual information,
I(Y ; Xλ−1

0 ), between the mapper binary inputx ∈ {0, 1}λ

and the received signal pointy ∈ Y . Here we use the notation
Xb

a = [Xa, Xa+1, . . . , Xb]. Note that the physical channel
is characterized by the set{fY (y|τ)|τ ∈ T } of conditional
probability density functions of the received pointy given the
transmitted signal pointτ . Applying the chain rule of mutual
information, we obtain the following:

I(Y ; T ) = I(Y ; Xλ−1
0 )

= I(Y ; X0) + I(Y ; X1|X0) + . . .

+ I(Y ; Xλ−1|X
λ−2
0 ). (6)

Essentially, this shows that the transmission of binary
vectors over the physical channel can be separated into the
parallel transmission of each single bitxi over λ equivalent
channels withx0, . . . , xi−1 known. In other words, the mutual
information I(Y ; Xκ|X

κ−1
0 ) of the κ-th equivalent channel

can be easily calculated as the following:

I(Y ; Xκ|X
κ−1
0 ) = I(Y ; Xλ−1

κ |Xκ−1
0 ) − I(Y ; Xλ−1

κ+1 |X
κ
0 ).
(7)

Since the subsets at one partitioning level may not be
congruent, the mutual informationI(Y ; Xκ, . . . , Xλ−1) is
calculated by averaging over all possible combinations of
xκ−1

0 = x0, . . . , xκ−1. Specifically:

I(Y ; Xλ−1
κ |Xκ−1

0 ) = Ex
κ−1

0
∈{0,1}κ

[
I(Y ; Xλ−1

κ |xκ−1
0 )

]
.

(8)

Assuming the bits in the lower levels,xκ−1
0 , are fixed,

we see that theκ-th equivalent channel is characterized by
the pdf fy(y|xκ, xκ−1

0 ). The underlying signal subset for
the equivalentκ-th modulator is given byT (xκ−1

0 ), which
denotes the partition of the signal set with the set of bits
xκ−1

0 in common. Since the binary symbolxκ is potentially
represented several times in this subset, the signal pointτ is

in effect chosen uniformly from the subsetT (xκ
0 ). Therefore,

fY (y|xκ, xκ−1
0 ) is given by the expected value of the pdf

fY (y|τ) over all signal pointsτ out of the subsetT (xκ
0 ), as

follows:

fY (y|xκ, xκ−1
0 ) = Eτ∈T (xκ

0
) [fY (y|τ)]

=
1

P (T (xκ
0 ))

∑

τ∈T (xκ
0
)

P (τ) · fY (y|τ). (9)

Theκ-th equivalent channel is completely characterized by
a set of probability density functionsfY (y|xκ) of the received
point y if the binary symbolxκ is transmitted. Moreover,
since the subset for transmission of symbolxκ depends on the
symbols at levels 0 throughκ− 1, the set of pdf’s,fY (y|xκ),
is the set offY (y|xκ, xκ−1

0 ) for each possible combination of
xκ−1

0 . Specifically:

fY (y|xκ) =
{
fY (y|xκ, xκ−1

0 )|xκ−1
0 ∈ {0, 1}

κ}
. (10)

The multilevel coding approach together with its multistage
decoding procedure is a consequence of the chain rule de-
scribed in (6). The binary symbolsxi, i = 0, . . . , λ − 1,
come from independently encoding different data symbols.
Each binary encoder generates wordsxi = [xi1 , . . . , xiN

] of
the component codeξi, wherexij

∈ {0, 1}∀j ∈ {1, . . .N}.
Even if the choice of the component codes is arbitrary, we
assume that the blocklength,N , of each code,ξi, equal for
all levels. Nevertheless, we can still define different rates for
every ξi, resulting in different lengths of the encoder inputs,
denotedKi.

Fig. 2. Multilevel encoder for 16-ary modulation

Using this notation, we define the rate of thei-th encoder
to beRi = Ki/N . The codeword symbols,xij

∈ xi, form the
the binary addressxj =

[
x0j

, . . . , xλ−1j

]
, which is mapped

to the signal pointτj (Figure 2). The code rate,R, of this



scheme is equal to the sum of the individual code rates,Ri,
as follows:

R =

λ−1∑

i=0

Ri =

λ−1∑

i=0

Ki

N
. (11)

As determined by the MSD procedure, the component codes
ξi are succesively decoded by the corresponding decoders,Di

(Figure 3). At thei-th stage,Di processes the block,y =
[y1, . . . , yN ] (yj ∈ Y ), of received signal points using the
decisions,̂xl, from the i previous decoding stages (i.e.l =
0, . . . , i − 1).

Fig. 3. Multistage decoding for 16-ary modulation

As noted earlier, this procedure necessarily introduces de-
lays in the decoding process. In order to satisfy the chain
rule (6) and preserve the mutual information, we require
that the estimated symbol,̂xl, is equal to the transmitted
symbol, xl. Therefore, if assume that error free decisions
are generated by the decodersDi, MSD can be interpreted
as an implementation of the chain rule (6), and hence is
mutual information preserving. In order to approach channel
capacity, we need to maximize the mutual information over
all controllable parameters. Usually, these are thea priori
probabilities of the signal points. Therefore, we require a
specific channel-input probability distribution,P (τ), in order
to achieve the channel capacity,C. These probabilities can
not be optimized independently for each individual level, and
hence we must consider the entire signal set. The capacity
of the i-th equivalent channel,Ci, is given by the respective
mutual informations,I(Y ; Xi|X

i−1
0 ), corresponding to the

channel input probabilities.Ci is then given as follows:

Ci = I(Y ; Xi|X
i−1
0 )

= E
x

i−1

0

[
C(T (xi−1

0 ))
]
− Exi

0

[
C(T (xi

0))
]
, (12)

whereC(T (xi
0)) denotes the capacity when using the subset

T (xi
0) with a priori probabilitiesP (τ)/P (T (xi

0)). At this

point, it is possible to determine the capacityC = C(T )
for a 2λ-ary digital modulation scheme given thea priori
probability distribution,P (τ), of the signal pointsτ ∈ T .
In particular,C is equal to the sum of the capacities of the
equivalent channels,Ci, in the MLC scheme:

C =

λ−1∑

i=0

Ci. (13)

The capacity,C, can be approached via MLC-MSD if the
individual rates,Ri, are chosen to be arbitrarily close to (but
not greater than) the capacities of the equivalent channelsCi.
In order to lower the latency of the MLC system, a different
decoding scheme has been studied in [10] and [11]. In the
MLC with Parallel Independent Decoding (PID) structure each
decoderDi does not use the decisions of the other levelsj 6= i.
In [11], the authors showed how the mutual information of
the modulation scheme can be approached with MLC-PID
if and only if the rateRi of each code is set in order to
fulfill Ri = I(Y ; Xi). Moreover, they showed that the MLC-
PID approach represents a suboptimal solution of an optimum
coded modulation scheme and that the capactiy of such a
scheme strongly depends on the particular labeling of signal
points. However, they also showed how the gap to an optimum
scheme can be very small using a Gray labeling of the signal
points.

C. Combination of q-ary LDPCC and q-ary modulation

In this final method that we analyze, we combine LDPC
codes overGF (q) (q = 2p, p a positive integer) withq-
ary modulation to achieve bandwidth-efficient transmission
(Figure 4). For a chosen code rate,R, and a blocklength,
N , it is necessary to find a parity-check (PC) matrix,H =

{hij}i=1,...,M,j=1,...,N
, wherehij ∈ GF (q) andR = 1−

M

N
.

In this manner, theK = NR information symbols and theM
parity symbols are encoded into aq-ary vectorx ∈ GF (q)N .
After q-ary LDPC encoding, theN elements ofx are mapped
into the modulated sequences = {sj}j=1,...,N

. This sequence

depends on the address given byxb =
{
xj

b

}

j=1,...,N
, where

xj
b =

{
xj

bk

}

k=0,...,p−1
is the binary representation of the

non-binary codeword symbolxj . Therefore, the bandwidth
efficiency of this structure is equal toR · p.

At the receiver, the output of the AWGN channel may be
expressed as:

yκ = sκ + nκ = (sκI
+ jsκQ

) + (nκI
+ jnκQ

) = yκI
+ jyκQ

,
(14)

where κ = 1, . . . , N and nκI
, nκQ

are two independent
noises with the same variance,σ2, related to the in-phase and
quadrature component of the modulated signal. Starting with
P (yκ|sκ), and using the Bayes’ theorem [20], thea posteriori
probability distribution can be written as:



Fig. 4. Block diagram of the structure that combinatesq-ary LDPC code
andq-ary modulation

P (sκ|yκ) = exp

(
−

(yκI
− sκI

)2 + (yκQ
− sκQ

)2

2σ2

)
. (15)

The probabilities in (15) are used to initialize the Message
Passing algorithm in the decoder [4]. We remark here that
the computational complexity of the algorithm provided by
[4] may be reduced by employing the Fast Fourier Transform
(FFT) or the Fast Hadamard Transform (FHT) approach [20].

III. S IMULATION RESULTS

In this section, we discuss simulation results obtained by
implementing the three structures introduced in the previ-
ous section. In each of these implementions, we use Gray-
mapped 16-QAM modulation, a global bandwidth efficiency
of 2 bits/symbol (i.e. a coding rate equal to 0.5), and an
input blocklength of 5000 bits per codeword. For the system
described in subsection II-A, the binary LDPC code has
blocklengthN = 10000 and rate 0.5. The variable-node degree
distribution, following the notation introduced in [21] and [22]
and according to (2) and [20] , isλ8 = 0.2 andλ9 = 0.8, where
λ(x) =

∑dv

i=2 λix
i−1, anddv is the maximum symbol-node

degree. In what follows, the maximum number of iterations
between the soft-detector and the LDPC decoder is set to 30
[12].

In order to make a fair comparison between architectures,
the PC matrix of the16-ary LDPC code used in the architec-
ture introduced in II-C also has a rate equal to 0.5, while the
blocklengthN is set to 2500 symbols, and the variable-node
degree distribution isλ2 = 0.8 andλ3 = 0.2 [20]. For this
decoding architecture and the MSD architecture, we set the
maximum number iterations performed by the LDPC decoder
to 25.

The MLC structure is defined by4 = log2(16) binary
LDPC codes corresponding to each address bit. . They each

have blocklengthN = 2500 and variable-node degree dis-
tribution λ2=0.8 and λ3=0.2. Each rate is defined to be
[R0, R1, R2, R3] = [0.337, 0.663, 0.337, 0.663] in the MSD
case and[R0, R1, R2, R3] = [0.349, 0.651, 0.349, 0.651] in
the PID case. These values agree with the ones in [10], since
16-QAM can be interpreted as product of two indepedent 4-
PAM costellations. The simulation results in Figure 5 show
how the q-ary LDPC code architecture from subsection II-
C outperforms the binary LDPC Turbo-like architecture of
subsection II-A. In particular, the gain is about 2.5 dB in
terms of Signal-to-Noise Ratio (SNR). Moreover, we also
observed that the MLC architectures outperform the Turbo-
like architecture, however they do not perform as close to
capacity as theq-ary LDPC coded architecture introduced in
subsection II-C.
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Fig. 5. Performance of the analyzed architectures on the AWGN channel.

IV. CONCLUSIONS

Three higher-order coded modulations employing LDPC
codes were introduced and analyzed in order to study their
corresponding trade-offs between bandwidth-effciency and bit-
error-rate performance.

Simulation results for 16-QAM modulation schemes showed
that the best performance can be achieved by using a code
whose alphabet size matches the modulation order. Conse-
quently, using such an architecture, associating each non-
binary coded symbol to a modulated symbol appears to be the
best solution in an environment (such the wireless one) where
high bandwidth-efficiency and good error-correction capability
is desirable.

Ongoing research that promises high spectral-efficiency
includes the analysis of different structures. Future directions
for research could investigate the behavior of the proposed
architectures over different channels and with different modu-
lation schemes , as well as different typologies of LDPC codes,
having different codeword length or degree-distribution profile
as in [24]. Further, since a complete analysis of decoding



architectures in terms of latency and complexity is lacking
in the literature, future works could potentially highlight such
features.
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