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Finite Block Lengths
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Abstract—Based on random codes and typical set decoding, an
alternative proof of Root and Varaiya’s compound channel coding
theorem for linear Gaussian channels is presented. The perfor-
mance limit of codes with finite block length under a compound
channel is studied through error bounds and simulation. Although
the theorem promises uniform convergence of the probability of
error as the block length approaches infinity, with short block
lengths the performance can differ considerably for individual
channels. Simulation results show that universal performance can
be a practical goal as the block lengths become large.

Index Terms—Compound channel, random coding bound,
sphere-packing bound (SPB), universal code.

I. INTRODUCTION

TRADITIONAL code design is often targeted at a specific
channel. The performance of such channel-specific codes

can deteriorate significantly when these codes are faced with
unexpected channels. For example, an optimal additive white
Gaussian noise (AWGN) code might not perform well under
periodic erasure channels [1] or partial band jamming channels
[2]. With space–time codes, the comparison in [3, Fig. 6 ] shows
that a code in [4] optimized for Rayleigh fading performs poorly
in the special case of singular channel. In the other extreme, also
in [3, Fig. 6], an Alamouti space–time block code performs very
well on singular channels but has poor performance on unitary
channels.

One approach to solve this problem is to design individual op-
timal codes for each channel condition. However, this scheme
requires storage for all the possible codes at the transmitter and
the receiver and the ability of both sides to intelligently iden-
tify and adapt to the environment. An alternative approach is to
design a universal code, one that works reasonably well under
most, if not all, possible scenarios. In this paper, we study both
the theoretic and practical aspects of the latter approach, fo-
cusing on how block length affects the behavior of universal
codes.

The rest of the paper is organized as follows. Section II re-
views the compound channel coding theorem. Section III intro-
duces the periodic erasure channel, a simple compound channel.
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Section IV discusses the figures of merit that are useful for per-
formance evaluation on compound channels. Section V exam-
ines the finite-black-length behavior of universal codes through
error bounds and computer simulation. Section VI concludes the
paper. The Appendix gives the details of a typical-set-decoding
proof of the linear Gaussian compound channel coding theorem.

II. COMPOUND CHANNEL CODING THEOREM

A compound channel arises when users communicate under
some channel uncertainty [5], i.e., users know the channel be-
longs to a family of channels but they do not know exactly what
the channel is. Throughout this paper, we will restrict our dis-
cussion to discrete memoryless channels (DMCs).

A set of DMCs comprises compound channel as follows.

Definition 1: A compound channel is a family of channels
indexed by denoted by

(1)

where and are the input and output alphabet, respectively.
is the channel index set which can be finite, countably infinite,

or uncountably infinite. is the conditional probability
governing the channel with index .

We assume that the channel index remains unchanged during
the course of the transmission, or at least the time that the
channel index stays the same is longer than the codeword block
length. If the index varies arbitrarily from symbol to symbol,
then such a channel is referred to as an arbitrarily varying
channel [5], which is not the focus of this paper. The capacity
of a compound channel is defined as

(2)

where is the mutual information between the input and
output random variables. The supremum in (2) is over all pos-
sible input distributions in the set , which is usually spec-
ified by the input power constraint. Define the infimum of the
individual channel capacities as

(3)

Note that . However it can be shown that
if and only if [6]. So any set of posi-

tive-capacity channels will have a positive compound channel
capacity.
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Blackwell, Breiman, and Thomasian [7] proved that the ca-
pacity of a compound channel with a discrete alphabet can be
achieved by a single sequence of codes. A similar result also ap-
peared in [6]. This result was extended by Root and Varaiya [8]
to (square) linear Gaussian compound channels where
the alphabet is continuous. A slight generalization of their the-
orem to the (rectangular) multiple-input multiple-
output (MIMO) channels is stated below.

Theorem 1: A family of real MIMO channels is denoted as
, where the index set is an arbitrary set. The

channel input/output behavior is governed by ,
where is an real matrix representing the path gains
between transmitter antennas and receiver antennas. The
input is an real random vector with zero mean and
covariance matrix , where is the set of positive sym-
metric matrices with trace less or equal to . The output is
an real random vector. The noise is a real Gaussian
random vector of dimension with zero mean and covari-
ance matrix . Assume there exist real numbers , , and

satisfying and , such that for each

1) , where is the spectral norm of a matrix,
i.e., the square root of the largest eigenvalue of ;

2) , for any nonzero real vector ;

where stands for transpose. Then any rate defined
in (2) is achievable. i.e., There exists a sequence of
codes such that the probability of error under any channel in the
family approaches zero as the block length approaches infinity.

Proof: The theorem for real square channel matrices first
appeared in [8]. The decoding techniques used in the original
proof complicate the error probability bounding. In the Ap-
pendix, we give an alternative proof based on random codes
and typical-set decoding.

Root and Varaiya’s compound channel coding theorem for
MIMO channels appeared in 1968, although it is only recently
that MIMO channels have drawn considerable attention. A nat-
ural application of the compound channel coding theorem is uni-
versal space–time code design as in [3], [9], [10].

The essential fact about the compound channel coding the-
orem is that the probability of error goes to zero uniformly as
long as the code rate is less than the compound channel capacity
no matter what channel the sequence of codes is actually en-
countering. This uniform convergence does not mean that the
error probability of each channel in the compound channel goes
to zero at exactly the same speed, but the speed is at least lower-
bounded. The difference is negligible at large block lengths, but
significant for codes with relatively short block lengths.

III. PERIODIC ERASURE CHANNELS

In order to evaluate the finite-black-length performance of a
single code under various channels, we need a relatively simple
compound channel. In Theorem 1, the compound channels are
matrix channels. Although these matrix channels provide plenty
of flexibility, they complicate the mathematical analysis. One
simple compound channel involves erasing transmitted symbols

periodically with different patterns. Each distinct erasure pattern
generates a distinct channel.

As far as the effect of block length is concerned, sending
a codeword through a periodic erasure channel is equivalent
to puncturing the codewords first then sending through a stan-
dard (unerased) channel. This equivalence provides great con-
venience in computing the error bounds as explained in the rest
of the paper. As a result, We are able to gain insight into the
short-black-length behavior.

Consider a binary-symmetric channel (BSC) with input sym-
bols . The channel is expressed by

with probability
with probability

For a BSC with periodic erasures , where
are the erasing coefficients with period , i.e., .

Similarly an AWGN periodic erasure channel can be formulated
as , where is the Gaussian noise.

The periodic erasure channel can be regarded as a very
simple matrix channel that is a diagonal matrix containing only
ones and zeros. It is a simplified model for frequency-hopped or
orthogonal frequency division multiplexing (OFDM) systems
where partial band interference arises due to frequency-depen-
dent disturbance or jamming [2].

IV. FIGURE OF MERIT

Before we analyze the performance of an error-correcting
code under various channels, a fair and convenient figure of
merit is needed. This figure should automatically take channel
conditions into consideration and act consistently across all
channels.

Some figures of merit depend on the regime of concern. For
example, in the low signal-to-noise ratio (SNR) regime and the
wideband regime, Verdú proposes the normalized energy per in-
formation bit to be the figure of merit [11]. In this paper,
we do not limit analysis in the low-SNR regime, thus precluding
the use of . Conventionally, the code performance in an
AWGN channel is gauged by the SNR required to achieve a cer-
tain target bit-error rate (BER) or frame-error rate (FER). SNR
can be used to evaluate different codes under the same channel
condition and the same rate. However, as will be shown later, it
is not suitable to evaluate codes under multiple-channel condi-
tions or compound channels. One possible metric is the normal-
ized SNR proposed by Forney [12], defined as

(4)

where is the code rate, and is often called
the SNR gap of a code. The value of the SNR gap indicates how
far a system is operating from the Shannon limit.

In [1], excess mutual information (EMI) was proposed as the
figure of merit for the purpose of universal code design. It is
defined as

EMI (5)

where is the rate of the code and is the SNR at which
the code achieves a certain target probability of error,
is the mutual information of the channel at that SNR given the
input distribution. For the AWGN channel with Gaussian input,



3068 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 9, SEPTEMBER 2007

coincides with the capacity of the channel. EMI indi-
cates the penalty in terms of not transmitted information that
is paid due to the imperfectness of the code. For an AWGN
channel, the EMI and SNR gap can be approximately related
by a constant factor in the high-SNR and high-rate regime. As-
suming a real AWGN channel with Gaussian input, the SNR gap
can be written as

SNR gap

(6)

EMI can be written as

EMI

(7)

Thus SNR gap EMI. The approximations in (6)
and (7) are valid when and are both large. However, if
we perform the same analysis for a channel where every other
symbol is erased, we see that SNR gap EMI.
Thus, SNR gap and EMI are fundamentally different figures of
merit, and one must choose between them.

We prefer EMI to SNR gap because EMI indicates how the
error probability changes as block length increases. For typ-
ical-set decoding in a Gaussian channel, the error probability
of a Gaussian code book of block length is upper-bounded by
[13, p. 245]

(8)

Although EMI is not the true error exponent for typical set de-
coding due to the fact that the in (8) hides too much informa-
tion, the appearance of EMI in the exponent in (8) manifests its
importance in determining the error probability.

V. PERFORMANCE EVALUATION

A finite-black-length code is often compared to the Shannon
capacity to measure its imperfectness. However, this com-
parison is not completely fair; in most cases, the Shannon
capacity can only be achieved as the block length goes to
infinity. Among available finite-black-length analysis tools are
the sphere-packing bound (SPB) [14] and the random-coding
bound (RCB) [15]. The probability of error for codes with finite
block length is lower-bounded by the SPB.

The RCB, characterizing the average performance of ran-
domly selected codes, serves as an upper bound on the prob-
ability of error for an optimal code. However, in reality it might
be the case that even the RCB cannot be achieved by a carefully
designed code due to the increasing decoding complexity. A fair
assessment of a finite-black-length code can be made by mea-
suring its EMI against the EMI of the SPB or the RCB.

In what follows, we will state the SPB and the RCB for the
BSC and the AWGN channel, then use examples to illustrate the
finite-black-length behavior of universal codes.

A. Binary Symmetric Channels (BSCs)

1) Sphere-Packing Bound (SPB): The derivation of the SPB
for the probability of codeword error on the BSC
is combinatorial. For an ( , ) binary code, the bound can be
written as [15], [16]

(9)

where is the crossover probability of the BSC and is the
maximum integer such that .

2) Random Coding Bound (RCB) and Error Exponent: The
RCB for the BSC is computed as [15, p. 146]

(10)

where is the random coding exponent. However, even
for such a simple channel, does not have a simple ex-
plicit form. We need first to compute an intermediate parameter

whose relation with the code rate (in nats) is given as

(11)

where is the binary entropy function (in nats). The pos-
sible range of is .

For in the range

(12)

where is the crossover probability, the random coding
exponent of the BSC is

(13)

For

(14)

the exponent becomes

(15)

3) Extension to Periodic Erasure Channels: As mentioned
earlier, erasures by the channel are equivalent to punctures by
the transmitter as long as the receiver has full knowledge which
symbols are erased or punctured. We also assume the erasure
period is much shorter than the block length so that the effect
of the last (possibly fractional) period can be negligible. The
previously listed bounds and error exponents can be extended to
erasure channels by this equivalence. For example, the RCB of a
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Fig. 1. Random-coding error exponents for a BSC with capacity 0.5 bit.
11111–unerased channel, 00111–erasure channel.

Fig. 2. SPB and RCB for BSC with block length 100. 11111–unerased
channel, 00111–erasure channel.

rate- length- code with erasure pattern “ ” is the same as
that of a rate- length- code without erasures. The same
is true for the SPB.

4) Numerical Analysis: The random-coding error exponent
indicates the rate at which the error probability of the ensemble
codes approaches zero as block length grows. We consider a
BSC compound channel with erasure patterns “ ” and
“ ”. For a fair comparison, the BSCs have a crossover
probability for the first erasure pattern and for the
second pattern such that both channels have capacity 0.5 bit.
The random-coding error exponents are plotted in Fig. 1 for
various code rates. It is clear that the erased channel is more
favorable than the unerased channel from the perspective of
error exponent versus transmitted rate on a channel with a fixed
capacity.

We now show the error bounds versus EMI. Suppose CH1 is
the standard BSC with crossover probability and CH2 is a BSC
with the same crossover probability but with periodic erasure
pattern “ .” The capacities of two channels are

(16)

where is the bi-
nary entropy function in bits. In both cases, the code rate is .
According to (5), the EMI for CH1 is calculated by

and the EMI for CH2 is .
Bounds on the FER for block length are plotted against EMI
in Fig. 2. Again, the erasure channel is a more EMI-efficient

channel according to the SPB and the RCB. So one would ex-
pect a short-black-length universal code to have better perfor-
mance in an erasure channel than in a standard channel in terms
of EMI.

B. AWGN Channels

1) SPB: The derivation of Shannon’s SPB for the AWGN
channel is essentially geometric. The codewords of block
length are regarded as points on the surface of an -di-
mensional sphere with radius . The error probability
is lower-bounded by the probability that an -dimensional
Gaussian random variable falls outside a cone whose cap area
corresponds to that of the Voronoi region of the transmitted
codeword. The error probability is given as [14], [17]

(17)

where , is the half-cone angle of a cone whose
normalized solid angle is . i.e., Its solid angel is of
the total solid angle of the -dimensional sphere, where is the
information bit length. The half-cone angle satisfies

(18)
is given as

(19)

The computation in (18) and (19) becomes numerically unstable
when becomes large. The following asymptotic approxima-
tions should be used for large :

(20)

(21)

where .
2) RCB and Error Exponent: Assuming a Gaussian input, the

RCB for the AWGN channel has an explicit form [15, p. 340].
As in the BSC case, we need to compute the error exponent. For
the rate (in nats) in the range

(22)

where . The error exponent is

(23)
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Fig. 3. Random-coding error exponents for an AWGN channel with capacity
0.5 bit. 11111–unerased channel, 00111–erasure channel.

where . When is less than the left-hand side of (22),
the error exponent becomes

(24)

where

(25)

These bounds can again be extended to erasure channels
through the erasure–puncture equivalence. It is worth noting
that the equivalence only exists for erasure channels. If the
scaling coefficients are arbitrary real numbers, then the chan-
nels become periodic fading channels. In this case, the optimal
codewords lie on the surface of an ellipsoid. Thus, the SPB lit-
erally becomes an ellipsoid-packing bound, which is extremely
difficult to compute.

3) Numerical Analysis and Simulation Results: In parallel
with the BSC case, we compute the random-coding exponents
for two channels with erasure pattern “ ” and “ ”.
We set the SNR to be for the first pattern and for
the second such that both channels have capacity 0.5 bit. The
random-coding error exponents are plotted in Fig. 3 for various
code rates. Again, the erasure channel is more favorable in terms
of error exponent.

In what follows, we compare the SPB and the RCB to the
simulation results from three different codes: a trellis code, an
LDPC code and a turbo code.

Example 1: A trellis code
The rate- trellis code (in octal) proposed in

[1] as a universal code for periodic erasure channels was sim-
ulated. This code was designed by minimizing the sum of the
residual Euclidean distances and the sum of the SNRs over all
the possible erasure patterns. A Gray-labeled 8-PSK constella-
tion was employed. The block length was 46 symbols. We de-
note the standard AWGN channel by CH1 and the one with era-
sure pattern “ ” by CH2. The EMI for CH1 is (per complex
symbol)

(26)

And the EMI for CH2 is

(27)

Fig. 4. SPB (spb), RCB (rcb), and trellis code simulation results (sim) for
AWGN channel with block length 46. 11–unerased channel, 01–erasure
channel. (a) FER versus SNR. (b) FER versus EMI.

The bounds on FER together with the simulation results are
plotted against SNR in Fig. 4(a) and against EMI in Fig. 4(b).
If only looking at the SNR plot and ignoring the SPB and RCB,
one might assume that the code performance is much worse in
the erasure channel because it needs a larger SNR. However, this
is not correct. The erasure channel inherently requires a larger
SNR than the AWGN channel to provide the same capacity.
Like the BSC case, the erasure channel requires less EMI ac-
cording to both the bounds and the simulation results. Fig. 4
shows that the bounds for the two channels differ considerably
at short block length, meaning that constant EMI is not possible
across both channels. This gap becomes much smaller at longer
block lengths.

Example 2: A low-density parity-check (LDPC) code
As shown in Fig. 5, the difference between the SPB and

RCB becomes negligible as the block length becomes large.
Also shown in Fig. 5 are simulation results of a rate- block
length- binary LDPC code mapped to 5000 16-QAM
symbols. This code was optimized simply for the AWGN
channel. Based on [18], this is not unreasonable as a universal
LDPC code design choice. Its parity-check matrix was gener-
ated according to the following degree distribution:

(28)
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Fig. 5. SPB (spb), RCB (rcb), and LDPC code simulation results (sim)
for block length 5000 on an AWGN channel. 11111–unerased channel,
01110; 01110;01010–three erasure channels. (a) FER versus SNR. (b) FER
versus EMI.

The graph-conditioning methods in [19]–[21] were used to
lower the error floor. Systematic design of LDPC codes for
periodic erasure channel through density evolution can be
found in [22].

Four different channels were considered, including the stan-
dard AWGN channel and three erasure channels. The simula-
tion performance of this code in terms of EMI improves as frac-
tion of erasures increases until the most severe erasure channel,
where the actual rate per unerased symbol grows so large for
the 16-QAM constellation that the effect of non-Gaussian input
distribution becomes appreciable.

Example 3: A turbo code
Performance of the rate- turbo code SC-5 proposed in

[10], [23] is shown in Fig. 6. This code was found through com-
puter search by optimizing the threshold of the constituent codes
over both erasure patterns. The block length was 10000 8-PSK
symbols. The bounds still suggest that the erasure channel re-
quires less EMI, but the simulation result shows the opposite.
This is because the 8-PSK constellation size is simply too small
when half of the symbols are erased. Each 8-PSK symbol in the
erasure channel carries two bits of information. At this rate, the
uniform distributed 8-PSK achieves significantly lower capacity
than the Gaussian distributed input. The same phenomenon was
observed in the previous LDPC example, where the code per-
forms worse in terms of EMI in the most erased channel. How-
ever, it was less severe in that case because of a larger constel-
lation.

Fig. 6. SPB (spb), RCB (rcb), and turbo code simulation results (sim) for block
length 10000on an AWGN channel. 11–unerased channel, 10–erasure channel.
(a) FER versus SNR. (b) FER versus EMI.

VI. CONCLUSION

This paper begins by reviewing compound-channel coding
theorem. A new proof of the theorem for linear Gaussian chan-
nels is presented. Like most coding theorems, only the asymp-
totic behavior of codes for a compound channel is stated in
the theorem. We investigate the performance limits of universal
codes with finite block lengths by using the RCB and the SPB. It
is shown that although the probability of error approaches zero
uniformly under all the channels in the family, the difference in
performance for different channels can be significant at finite
block lengths.

In particular, we observe that short-black-length channels
with erasures are more EMI-efficient than channels without
erasures. This was also illustrated in [1, Fig. 5], [3, Fig. 6], and
[9, Fig. 3] where the erasure channels (singular channel for [3]
and [9]) were more favorable channels. Once the input block
length is on the order of 5000 bits, the bounds indicate that uni-
form behavior over all channels is a practical goal. However, we
note that a sufficiently large constellation is required to avoid
degradation on erasure channels. Furthermore, LDPC codes
seem well-suited to provide this behavior. It is interesting to
notice that in all three examples, regardless of block length the
codes perform approximately 0.2 bit EMI away from the SPB.
So with careful design, the short-black-length trellis codes can
be as universal as the long-black-length turbo and LDPC codes.
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APPENDIX

PROOF OF THEOREM 1

We start with the case . The result will be gen-
eralized to afterwards. Following [8], we divide the
proof into two steps. We will show the theorem is true when the
set of the channels is finite, then extend the result to uncountably
many channels by bounding the error probability of an arbitrary
channel.

Definition 1: [13] The set of jointly-typical sequences
with respect to the distribution is the set of

-sequences with empirical differential entropies -close to the
true entropies, i.e.,

(29)

where

(30)

For a given covariance matrix , the Gaussian distribution max-
imizes the entropy. thus to prove theorem 1, we only need to
consider gaussian input due to the Gaussianity of the noise.

Lemma 1: Let , where is a deterministic ma-
trix of dimension and and are independent Gaussian
random vectors of dimension with zero mean and covari-
ance matrices and , respectively. Consider independent and
identically distributed (i.i.d.) length- sequence of
dimension drawn according to

(31)

Proof: We bound the probability that the first inequality in
(29) is violated

(32)

where in is a block-diagonal matrix of dimension
with along the diagonal, and is due to the

Chernoff bound and the fact is i.i.d. The variable assumes
positive real values and stands for expectation. The inequality

is because for . We substitute
in and arrive at .

The other direction goes similarly

(33)

where is because for . We
obtain by substituting in . Combining (32) and
(33) we get

(34)
Similarly, we can prove

(35)

(36)

Finally, we arrive at (31) by the union bound.

The following lemma gives bounds on the power of input and
output of the channel.

Lemma 2: With the same setup as in Lemma 1, denote the
total power of vector by . Then for any

(37)

where . Furthermore, if the channel
satisfies the conditions in Theorem 1, for any input complying
with the power constraint , the output satisfies

(38)

where and .
The constants , , are defined in Theorem 1, and is
defined in Lemma 1.

Proof: This is a direct result of the Chernoff bound. For
details, see [8, Lemma 5,8] and [24, Lemma 5 ].

In the following lemma, we prove the existence of universal
codes for a finite set of channels.

Lemma 3: With the same setup up as Theorem 1, denote
, the cardinality of the index set . Assume to be

finite, any rate is achievable.
Proof: We will use the same idea as in [13], namely,

random codes and joint typical-set decoding. We generate i.i.d.
codewords according to the distribution of . The codewords
are denoted by , . The receiver looks
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for codewords that are jointly typical with the received vector
given knowledge of the channel index at the receiver. If a
single codeword is found, it is declared to be the transmitted
codeword. Otherwise, an error is declared. The receiver also
declares an error if the chosen codeword does not satisfy
the power constraint. Without loss of generality, assume that
codeword is sent. Define the following events:

(39)

(40)

Let be the sum of error probabilities of individual channels
when codeword is sent

as

(41)

where is due to the union bound, is the probability of
an error event under the th channel. The first two terms of
are due to Lemmas 1 and 2; the third term (which also appears
in (8)) upper-bounds the probability that a wrong codeword is
jointly typical with the transmitted codeword. Its proof is dis-
cussed in [13]. Since , we can
select small positive to satisfy , which results in

. Thus, for any individual channel in the compound channel,
the error probability also approaches zero. By deleting the worst
half of the codewords we obtain a code with low maximal prob-
ability of error.

To extend the result to arbitrary set , we need to form a
dense finite subset and establish the relationship of the error
probabilities between an arbitrary channel and its neighbor in
the subset. The following lemma reveals the relationship.

Lemma 4: Let , and , be two channels
satisfying the constraints in Theorem 1. Denote and to
be the input and output -sequence of -dimensional vectors,
respectively. Let and
be the -variate probability densities for the output signal se-
quence given , for the -extension of the two channels

, and , , respectively. Then for those sat-
isfying and satisfying

(42)

where

(43)

(44)

The variables , , the numbers
and are defined in Theorem 1.

Proof: See [8, Lemma 7].

Now we are ready to prove the theorem. Define the -neigh-
borhood of the channel to be the set of channels

satisfying and .
The conditions in Theorem 1 guarantee that the channel space
is compact. We can select a finite subset such that for an
arbitrary channel in , in its neighborhood there exists at least
one channel belonging to . We denote to be to empha-
size its relationship with .

For any , by Lemma 3, we can find a
sequence of codes whose probability of error over vanishes
as the block length grows. The code can be applied to the whole
channel space in the following manner. If the channel is in ,
then the receiver uses its own typical set decoder described in
Lemma 3, otherwise, the receiver uses the typical set decoder
from its neighbor that is in . The probability of error when
the receiver uses its neighbor’s decoder can be bounded. To be
specific, let and satisfy
and ; by Lemma 4 we get

(45)

where is the event that the receiver makes an error, is de-
fined in (39), and is the event that violates the power
constraints.

Using Taylor expansion of at we can show that
, where is a polynomial

with . Then, (45) becomes

(46)

The last inequality is due to Lemma 3. Since and
approach zero when goes zero and is independent

of , we can select sufficiently small to ensure the overall
exponent in the last expression to be negative. Then as goes
to zero, vanishes. Now we use the union
bound

(47)
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According to Lemma 2, the first two terms vanish as the block
length approaches infinity, thus the code works for any channel
in . The converse is due to the fact that there exists a channel
in whose mutual information is less than . So any rate
greater than will not be achievable for that channel.

To extend it to , let . We can
expand to be of dimension by padding zero columns
or rows. Simultaneously, we expand and by appending zeros
when or expand when . If a code works for
the expanded compound channel, it also works for the original
compound channel.

Remark 1: With proper modification, the proof can be ex-
tended to the complex case where the input and noise are circu-
larly symmetric Gaussian random vectors.

Remark 2: The above proof simplifies the error proba-
bility computation by using typical set decoding. This requires
channel side information at the receiver. The original proof in
[8] is stronger since it does not have this assumption. One could,
however, argue that the rate loss due to channel estimation is
negligible when the block length goes to infinity.
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