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Abstract— This paper presents a design criteria for arbi-
trarily low-rate parallel concatenated convolutional codes
(PCCCs). The purpose of this work is to find a family of
turbo codes that work as close to the ultimate low-rate Shan-
non limit Eb/N0 ' −1.59 dB as possible, given a certain con-
straint in the number of states of the constituent trellis codes
and in the interleaver-length. We propose an optimization
criteria and reduce the turbo-design problem to the design
of block codes for the assignment of output sequences to the
trellis branches of the constituent encoders. We show that
BCH codes concatenated with repetition codes are optimal
for labeling. Moreover, we show that for a fixed number of
trellis states these codes achieve arbitrarily low rates, and
hence arbitrarily low SNRs, with practically the same per-
formance in terms of Eb/N0. Simulation results are shown
for 8-state and 16-state turbo codes with rates as low as
1/505, which with an interleaver-length of 8192 provide a
BER ' 10−5 at an SNR ' −27.6 dB (Eb/N0 ' −0.55 dB),
around 1dB away from the ultimate low-rate Shannon limit.

Index Terms— Channel coding, error probability, turbo
code, information rates, low-rates, low-SNR.

I. Introduction

Low-rate codes are of theoretical interest when approach-
ing the ultimate low-rate Shannon limit of Eb/N0 =
ln 2 ' −1.59 dB. They also have important applications
in spread-spectrum multiple-access channels, such as code-
division multiple-access (CDMA) [1]. Other applications
include interleave-division multiple-access (IDMA) [2] and
the deep-space network that require operation at very low
signal-to-noise ratios.

There have been many contributions to the problem of
designing low-rate codes. Recent papers have shown that
turbo-like codes can work near the ultimate low-rate Shan-
non limit. Super-orthogonal turbo-codes [3] combine the
principle of low-rate convolutional coding [1] with parallel
concatenation. In [3], a Hadamard matrix is used to gener-
ate the output sequences of each branch of the constituent
trellis code. Therefore, the output sequences of branches
leaving different states and produced by the same input
are mutually orthogonal. Also, the output sequences of
branches leaving the same state or merging into the same
state are antipodal (see Fig. 1). With m-memory-element
constituent codes, super-orthogonal turbo codes have a rate
of 1/(2m − 1) .

More recently, low-rate turbo-Hadamard codes have
been proposed in [2]. In that work, each constituent code
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consists of a serial concatenation of an (r + 1, r) parity-
check code, a rate-1/2 recursive systematic convolutional
code and a Hadamard code of length 2r. These component
codes are concatenated M times, resulting in a code-rate
of R = r/(r + M(2r − r)). The complexity of the code
increases both with the number of constituent codes M
and with length of the Hadamard code. In [2], a turbo-
Hadamard code with r = 7 and M = 3 and an interleaver
length of 65534 is reported to achieve a performance of
BER< 10−5 at an Eb/N0 = −1.2 dB.

However, both works require increasing complexity as
the rate of the codes decrease. Super-orthogonal codes need
to increase the number of memory elements, and turbo-
Hadamard codes must either increase the number of com-
ponent codes or the Hadamard code size. This work is con-
cerned with the design of constituent trellis codes given a
fixed number of memory elements, for arbitrarily low-rates.

In [4] [5], the effective free distance of turbo codes was
introduced and shown to have a strong influence in their
performance. We propose to use a normalized notion of
the effective free distance as an optimization criteria, that
enables the comparison of codes with different rates. We
present a family of turbo codes of rate 1/(r(2m − 1) + 1),
where m is the number of memory elements of the trellis
code, and r is any integer. We use BCH codes to design
the output sequences of the trellis transitions (or branches).
Simulation results show that given a constraint in the num-
ber of memory elements and an interleaver length, the per-
formance in terms of bit error rate vs. Eb/N0 of these codes
remains practically the same for any value of r.

Section II defines the general structure of the codes, and
introduces a normalized notion of the effective free dis-
tance of turbo codes as an optimization criteria. Section
III shows that optimality under this criteria is reached for a
family of rates by using BCH codes to produce the output
sequences. Section IV shows the performance of 8-state
and 16-state turbo codes on the AWGN channel. Section
V delivers the conclusions.

II. Code structure and optimization criteria

It is well-known that recursive (or feedback) constituent
encoders outperform feed-forward constituent encoders in
parallel concatenated codes [6]. The effective free distance
of a constituent recursive convolutional code is defined
as the minimum (Hamming) distance of error events pro-
duced by input sequences with Hamming distance equal
to 2, which we will call weight-2 error events. A common
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Fig. 1. Example of antipodal labeling of a group of two trellis states.
Branches splitting from a state or merging into a state are the
complement of each other.

0s 1s 2ms − 1ms −

2mf −
0f

systematic bit

( ), 1  - coden m − n parity bits
n

1mf −

Fig. 2. General structure of 2m-state rate 1/(n+1) systematic trellis
code.

approach to the design of constituent codes is to maxi-
mize this parameter [4],[5]. Fig. 2 shows a rate 1/(n + 1)
systematic feedback encoder with m memory elements
{s0, · · · , sm−1}, where f0, · · · , fm−1 ∈ {0, 1} represent the
polynomial coefficients controlling the feedback into s0.

For feedback encoders, in any trellis error event, two
branches departing from a same state (i.e. a split) are
produced by a different input, and any two branches merg-
ing into a state (i.e. a merge) are produced by a different
input. Hence, weight-2 error events are produced by input
sequences that differ in one symbol at the beginning of the
error event (when the trellis paths split) and one symbol at
the end of the error event (when the trellis paths merge),
and are equal in every other trellis section. To maximize
the effective free distance, such error events should traverse
as many trellis sections as possible. For a given memory
size m, and appropriately chosen {f0, · · · , fm−1}, such er-
ror events can have a minimum length of 2m trellis sections,
including the split and the merge. For example, Table I
shows feedback values that produce weight-2 error events
of length 2m for m = 2, 3, 4, 5. This is also an application of
the well-known concept of maximal length shift registers.

Since every error event contains a split and a merge,
we force the output sequences of branches splitting from a
state or merging to a state to be the compliment of each
other, as shown in Fig. 1. This same idea is used in super-
orthogonal turbo codes [3]. Thus, only one output sequence
and its complement are needed per two states of the trellis.
As shown in Fig. 2 this can be done by forcing fm−1 to
be 1, assigning an output sequence to each sub-set of two
states defined by {s0, · · · , sm−2}, and XORing the output
with the input bit and sm−1.

Given a certain number of parity bits n of the system-
atic trellis code, the output sequences of the 2m−1 pairs of

TABLE I

Feedback vectors f0, · · · , fm−1 that maximize the minimum

length of weight-2 error events, for different number of

memory elements m

m f0 · · · fm−1

2 11
3 011
4 0011
5 00101

states must be designed. Since the objective is to maxi-
mize the effective free distance, our goal is to maximize the
minimum distance between the 2m−1 output labels, which
not only maximizes the effective free distance but it also
increases the distance spectrum of the code. This can be
seen as the design of an (n,m− 1) block code maximizing
its minimum distance dmin. Using the structure of Fig. 2
and the feedback vectors of Table II, the resulting effec-
tive free distance deff,free of the constituent code is lower
bounded by

deff,free ≥ (2m − 2)dmin + 2(n + 1). (1)

As mentioned in Section I, the rate of the code is a param-
eter to be designed in order to provide the best possible
performance in terms of BER vs. Eb/N0. Considering a
certain (n, k) code, on an AWGN channel the error proba-
bility is given by:

Pe ≈ Q
(√

2dminEs/N0

)
= Q

(√
2dmin(k/n)Eb/N0

)
, (2)

where k/n is the rate of the code. Hence, the performance
of the code is driven by the term dmin ·SNR = (k/n) ·dmin ·
Eb/N0.

We apply the same criteria to the distance between
branches to make a fair comparison between constituent
encoders of different rates. Therefore, we reduce the label-
ing design and the decision on the optimal rate of the turbo
code to the following optimization problem: Given a fixed
number of labels (or codewords) M = 2k (where k = m−1),
find the number of parity bits n, and an (n, k) code that
maximizes the normalized minimum distance dmin/n.

III. Binary BCH codes for labeling

In this section we show that BCH codes with the appro-
priately chosen blocklength n are optimal under the criteria
presented in Section II. We first introduce an upper bound
to the normalized minimum distance in the following the-
orem:

Theorem III.1: Every (n, k) code must satisfy:

dmin

n
≤ 2k−1

2k − 1
(3)

and equality holds if and only if for every pair of codewords
(ci, cj)

dH(ci, cj) = dmin, ∀i, j ∈ 0, · · · , 2k − 1. (4)



Proof:
Consider any (n, k) code. Without loss of generality,

suppose the all-zero word is a valid codeword, and denote
it c0. Suppose the code provides equally likely ones and
zeros. Then the sum of the Hamming weights of all the
codewords is half the number of codewords multiplied by
their length

2k−1∑

i=0

WH(ci) =
2k · n

2
= 2k−1 · n. (5)

Now consider the sum of the Hamming distances between
the all-zero codeword and the other 2k−1 codewords. Using
(5), and the fact that WH(c0) = 0, then

(2k − 1)dmin ≤
2k−1∑

i=1

dH(c0, ci) = 2k−1 · n. (6)

Rearranging terms in (6), we obtain (3). Also, from
(6), equality holds only when dH(c0, ci) = dmin for all
i = 1, · · · , 2k−1. It is easy to see that with a proper trans-
formation, any codeword can be the all-zero codeword in
an equivalent code. Hence, equality holds if and only if (4)
is satisfied.

If the codeword doesn’t provide equally likely ones and
zeros, we can assume without loss of generality that

2k−1∑

i=0

WH(ci) < 2k−1 · n. (7)

and the proof still holds. Moreover, equality on (3) can
never be reached with unequal output probabilities.

We prove now that the bound on (3) can be achieved
with equality if one chooses n as a multiple of 2k−1, using
binary BCH codes. First, we design a (n, k) binary BCH
code with n = 2k−1 as follows: Use the Galois Field GF(2)
as the ground field and GF(2k) as the extended field. There
exists an order-k element α of GF(2k). Denote as Mα(x)
the minimal polynomial of α (a primitive polynomial) over
GF(2), and define the generator polynomial of the BCH
code as

g(x) =
x2k−1 − 1
Mα(x)

. (8)

Since the degree of Mα(x) is k, the degree of g(x) is 2k −
1− k. Thus, this is a (2k − 1, k) binary BCH code.

Now,

Mα(x) =
k−1∏

i=0

(x− α2i

) = (x− α)(x− α2) · · · (x− α2(k−1)
).

(9)
Hence, g(x) can be described as the Lowest Common Mul-
tiple (LCM) of the (2k − 1)− 2(k−1) consecutive powers of
α as follows:

g(x) = LCM(M
α2(k−1)+1 ,Mα2(k−1)+2 , · · · ,Mα2k−2 ,Mα2k−1),

(10)
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Fig. 3. Constituent code: 2m-state rate 1/(r(2m−1−1)+1) system-
atic convolutional code.

where obviously α2k−1 = α0. Thus, using the BCH bound,
by design:

dmin ≥ (2k − 1)− 2(k−1) + 1 = 2k−1, (11)

and
dmin

n
=

dmin

2k − 1
≥ 2k−1

2k − 1
. (12)

Using Theorem III.1 and (12), then (3) is satisfied with
equality.

Also, for n = r · (2k− 1) the bound can be achieved with
equality by repeating r times the output of the (2k − 1, k)
binary BCH code.

The BCH code can be expressed with a k × (2k − 1)
generator matrix G where the 2k − 1 columns of G are
all the non-zero vectors of length k. Each of the columns
{g(0,i), · · · , g(k−1,i)} represent the connections between the
k input bits and the ith output bit of the code. Hence,
the structure of the 2m-state turbo code that achieves op-
timality under the criteria defined in Section II can be con-
structed as shown in Fig. 3. Moreover, the BCH code is
equivalent to the code produced by the upper half of a
2m × 2m Hadamard matrix, with the first bit punctured,
which is the labeling proposed for super-orthogonal turbo-
codes in [3].

As mentioned before, given the proper selection of the
feedback polynomial ~f , the effective free distance of the
code is lower bounded by (1). The structure we propose
gives a dmin = 2m−1 between parity labels of branches pro-
duced by a same input. Hence, the effective distance of the
proposed structure is

deff,free = 2 + 2r(4m−1 − 1). (13)

The effective free distance increases exponentially with the
number of memory elements m. It also increases linearly
with r but the rate decreases also linearly with r. In fact,
if one considers only the parity bits, adding the repetition
code does not change the code performance with respect to
Eb/N0, it only decreases its rate. The presence of a system-
atic bit produces two opposite effects. The systematic bit
has a stronger negative impact on the overall rate (it de-
creases it) as r decreases. This favors the idea of using very



TABLE II

Parameters of simulated turbo codes.

m r n rate dmin dmin/n deff,free

3 1 3 1/7 2 2/3 32
3 8 24 1/49 16 2/3 242
4 1 7 1/15 4 4/7 128
4 9 63 1/127 36 4/7 1136
4 36 252 1/505 144 4/7 4538
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Fig. 4. BER vs. Eb/N0 of low-rate turbo codes for a number of mem-
ory elements m = 3, 4, and interleaver lengths N = 1024, 8192,
and different rates.

low rates (large r). However, the systematic bit is used by
both SISO decoders, and the smaller r is, the more reliable
the systematic bit is. As will be shown in Section IV, these
two effects cancel each other, and the performance of the
turbo-code vs. Eb/N0 is the same for different values of r.
Thus, the turbo-code performance is driven by the num-
ber of states of the constituent codes, and the interleaver
length.

IV. Results

We have simulated 8-state and 16-state turbo codes for
various rates, ranging from 1/7 to 1/505 and interleaver
lengths of 1024 and 8192. Table II shows a full descrip-
tion of the turbo codes considered. In all simulations, 12
iterations are used in the decoding. Also, the interleavers
have been designed using the semi-random interleaver de-
sign criteria presented in [7].

Fig. 4 shows the BER performance of these codes vs.
Eb/N0 on an AWGN channel. It can be observed that
their performance is driven by the number of states in the
constituent encoders and interleaver length, and it is in-
variant for different rates. Fig. 5 shows their performance
vs. the signal-to-noise ratio. The 16-state turbo code with
a rate of 1/505, and an interleaver-length of 8192 provide
a BER ' 10−5 at an SNR' −27.58 dB (Eb/N0 = −0.55
dB), around 1dB away from the ultimate low-rate Shannon
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Fig. 5. BER vs. SNR of low-rate turbo codes for a number of
memory elements m = 3, 4, interleaver lengths N = 1024, 8192,
and different rates.

limit.

V. Conclusions

This work has presented a design criteria for arbitrar-
ily low-rate turbo-codes for a certain constrain in decod-
ing complexity, driven by the number of states of the con-
stituent codes and the interleaver length. These codes are
of special interest in spread-spectrum or very low signal-
to-noise ratio applications. We present a design criteria,
based on the notion of effective free distance, with a nor-
malization that makes comparable turbo codes of different
rates at the design stage. We prove that the concatenation
of a BCH code with a repetition code to label the output
sequences of the trellis transitions leads to optimal perfor-
mance under this criteria. Without repetition, these codes
are equivalent to the super-orthogonal turbo codes. Sim-
ulation results show that these turbo-codes can approach
arbitrarily low SNRs with the same complexity and the
same BER performance vs. Eb/N0.
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