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Abstract—This paper designs protograph-based Raptor-like
(PBRL) codes as a class of rate-compatible (RC) LDPC codes
for binary-erasure channels (BEC). Similar to the Raptor Codes,
the RC property is achieved by X-OR operations of the precoded
bits. The additional parity bits, which lower the rate, are selected
such that their connections in the protograph optimize the density
evolution threshold. In order to avoid problematic graphical
objects in the CPEG lifted bipartite graph and guarantee the
linear growth distance property some constraints are imposed in
the threshold optimization algorithm. Simulation results are pre-
sented for information block sizes of k = 1032, and k = 16384.
These results are compared with finite blocklength bounds of
Polyanskiy, Poor, Verdu (PPV) as well as several asymptotic
bounds. The k = 1032 code family operates at various rates
in the range of 8/9 to 8/48 and has an average normalized
threshold gap of 5.56% from capacity. The k = 16384 code
family operates at rates 8/10 to 8/32 and has an average
normalized threshold gap of 3.27% from capacity.

I. INTRODUCTION

THIS paper provides a general technique for construct-
ing families of rate-compatible (RC) low-density parity-

check (LDPC) codes and provides numerical analysis and
simulation results to show their outstanding performance.

Low-Density Parity-Check (LDPC) codes were first intro-
duced by Gallager in his dissertation in 1963 [1]. These
codes are identified by their parity-check matrices. Irregular
LDPC codes have parity-check matrices with various number
of ones (weights) in each column. By optimizing the variable-
nodes’ column weights and check-nodes’ row weights (degree
distribution), Luby et al. [2] showed that irregular LDPC codes
can achieve rates very close to capacity. Richardson et al.
[3] invented an algorithm called density evolution (DE) to
design and analyze the optimal degree distribution of infinitely
long LDPC codes. There are many papers analyzing LDPC
codes over BEC. For examples see [4], [5], [6], [7], [8], [9],
and [10].

Traditionally, rate compatible (RC) codes such as RC punc-
tured convolutional (RCPC) and RC punctured turbo (RCPT)
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codes are designed with optimized puncturing patterns which
result in good error rate performance across the family of rates.
In general, any RC code may be considered as a low-rate
code that is punctured to produce higher rates. However, in
this paper we use the method of extension where the higher-
rate codes are designed first and then the lower-rate codes
are designed based on their higher-rate counterparts. We use
density-evolution/EXIT threshold maximization as the main
design criterion to select the connections between variable and
check nodes.

As in [11], [12], our RC code family is designed by extend-
ing a protograph. After using density evolution to properly
design the protograph, a copy-and-permute operation, often
referred to as “lifting”, is applied to obtain larger graphs of
various sizes, resulting in longer-blocklength LDPC codes. Re-
fer to [13], [14] for a thorough discussion on photographs and
lifting algorithms. Similar to [15], [16], this paper restricts the
code family to have the basic structure of Raptor codes [17].
Constraining the design in this way makes the construction
and optimization manageable while still providing outstanding
performance and extensive rate-compatibility.

This paper considers a class of RC LDPC codes called
protograph-based raptor-like (PBRL) LDPC codes that were
introduced in [15] and [16]. The construction and optimization
of PBRL codes are discussed and simulation results are
presented. The PBRL codes show outstanding performance
while providing extensive rate-compatibility.

In [16] the PBRL approach is applied to the design of
RC LDPC families over AWGN channels. Also, reciprocal
channel approximation (RCA) for AWGN channel replaces
the standard density evolution of [15] to provide a fast and
accurate approximation of the density evolution threshold to
speed up the optimization process. In both [15] and [16] the
circulant progressive edge growth (CPEG) algorithm [18] was
used for lifting.

This paper extends the design of raptor-like codes over
binary input AWGN channels [15] and [16] to the binary
erasure channel (BEC). The design of new code families over
the BEC for k = 1032 and k = 16384 code families use
CPEG lifting. The performance of these codes is compared
with finite-length performance bounds and approximations.
Furthermore, we discuss how constraints on the connections
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Punctured Node

Fig. 1. Protograph for a PBRL code with a punctured node and a highest-
rate code (HRC) with rate 4/5 followed by an incremental redundancy code
(IRC) that uses only degree-one variable nodes. The IRC provides lower rates
as more of its variable nodes are included, starting from the top.

is used to sacrifice some threshold performance to avoid
problematic error floors.

The rest of the paper is organized as follows: Sec. II presents
the PBRL code structure. Sec. III provides the design proce-
dure to construct PBRL codes. Sec. IV provides a summary of
existing tight bounds for finite length regime. Sec. V constructs
examples of PBRL code families and presents analysis and
simulation results. Finally Sec. VI concludes the paper.

II. PROTOGRAPH-BASED RAPTOR-LIKE LDPC CODE

This section introduces the structure, encoding, and decod-
ing of PBRL codes. The parity check matrix of a protograph is
called protomatrix which can be presented by a bipartite graph.
Let 0 be the all-zeros matrix and I be the identity matrix, the
protomatrix of PBRL codes has a general form of

H =

[
HHRC 0
HIRC I

]
, (1)

where HRC describes the highest-rate protograph and IRC
corresponds to the incremental redundancy protograph.

Fig. 1 shows the protograph structure of a PBRL code with
HRC part on the left and IRC part on the right. The IRC part
provides lower rates as gradually more of its variable nodes
are transmitted, starting from the first variable node on the top.
The use of the punctured node as shown in the protogaph of
Fig. 1 improves the iterative decoding threshold.

The protomatrix of the protograph shown in Fig. 1 has HRC
and IRC parts of

HHRC =

[
1 1 2 1 2 1
2 2 1 2 1 2

]
(2)

and

HIRC =



1 1 1 1 1 1
1 1 1 0 1 0
0 1 0 0 1 1
1 0 0 1 0 1
0 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0


. (3)

The first column of the above matrices corresponds to the
punctured node. The final protograph determined by HRC and
IRC protographs is lifted to produce the actual code. The
CPEG algorithm uses circulant matrices in the lifting process
while guaranteeing a minimum girth. After lifting, the HRC
code is structurally similar to the precode in a Raptor code.

The IRC is created by the addition of variable nodes that
are exclusively degree-one, which correspond to the identity
matrix in (1). As discussed in [19], there are two main
concerns of low minimum distance and high error floors
associated with using only degree-1 variable nodes in IRC.
Regarding the low minimum distance concern, due to range-
equivalency, the set of valid codewords is not affected by
restricting the IRC to be diagonal instead of being lower
triangular. The other concern that degree-one variable nodes
might introduce high error floors is relieved since IRC is
concentrated with HRC. As observed in [20], [21] the error
floor problem associated with degree-1 variable nodes can be
resolved by concatenation with another code.

The Raptor-like structure is quite restrictive. However, these
structural constraints do not limit the performance of PBRL
codes compared to less-restrictive RC LDPC codes obtained
by extension. One of the main conclusions of our paper is
that we obtain Raptor-like protographs with very good iterative
decoding thresholds despite these constraints. Similar obser-
vations for AWGN channels have been made in [19] where
the resulting finite-length PBRL codes outperform existing RC
LDPC codes that have been designed without the constraint
of a Raptor-like structure.

The PBRL code family always transmits the output symbols
of the HRC and has deterministic connections in the IRC.
These two properties facilitate joint decoding of the HRC and
IRC parts. This idea first appeared in [22] for Raptor codes. In
order to significantly reduce complexity, for high-rate PBRL
codes, the decoder can deactivate those check nodes in the
IRC part for which the neighboring degree-one variable node
is not transmitted.

The simulation results of Sec. V are obtained by using
iterative BP decoding. A more efficient decoder for BEC is the
peeling decoder. If the number of iterations in BP decoder is
high enough, the performance of these two decoding methods
is the same. For BEC, it is also possible to use maximum
likelihood decoding at the expense of higher complexity.

Encoding of PBRL codes is as efficient as that of Raptor
codes: after encoding the HRC, the encoding of the IRC part
only involves XOR operations on the precode output symbols.
For efficient encoding of the precode, see the discussion in [14]
on efficient encoding of protograph codes.

III. OPTIMIZATION OF PBRL LDPC CODES

This section presents optimization procedures for finding the
HRC and IRC components that comprise a good PBRL code
family for the BEC. The optimization criteria for both long
and short blocklengths is primarily based on maximizing the
iterative decoding threshold (channel erasure probability) over



the BEC at each rate while enforcing constraints on the con-
nections to avoid problematic error floors. These constraints
are more stringent for short blocklength designs than for long
blocklength designs.

For the iterative decoding threshold computations, we use
the reciprocal channel approximation (RCA) algorithm. After
presenting the RCA in subsection III-A, subsection III-D
describes the design of the HRC and subsection III-E describes
the design of the IRC.

A. Density Evolution with Reciprocal Channel Approximation

The asymptotic iterative decoding threshold [23] character-
izes the performance of the ensemble of LDPC codes with
the same protograph. This threshold for BEC indicates the
maximum channel erasure probability pit to have the expected
bit error rate go to zero as the blocklength grows to infinity.

The RCA (reciprocal-channel approximation) algorithm,
originally proposed in [24] for regular LDPC codes, is a fast
and accurate alternative to density evolution. RCA uses of a
single parameter to approximately characterize the distribution
of messages exchanged between variable and check nodes over
a channel such as AWGN or BEC.

B. Density Evolution in Protographs for the Erasure Channel

For the erasure channel a single real-valued parameter, the
probability of erasure p, serves as a stand-in for full density
evolution. Alternatively, we can use the RCA algorithm and
track the self-information of an erasure, s = − ln p, which
is additive at variable nodes. The reciprocal parameter, r =
− ln(1− p), the self-information of a non-erasure, is additive
at the check nodes. The parameter r satisfies C(s)+C(r) = 1,
which implies e−s + e−r = 1 where C is the capacity of the
channel. We note that r = R(s) and s = R(r) are related
to each other by the self-inverting function R(s) = C−1(1−
C(s)) = − ln (1− e−s) where C−1 is inverse of C. With the
above definitions for the BEC, the RCA represents the exact
one-dimensional density evolution.

To apply density evolution to a protograph we first identify
all transmitted variable nodes and select a target channel
erasure probability pch = e−sch . As shown in Fig. 2 messages
⇀
se are passed along edges leaving variable nodes (⇀se = sch
from transmitted nodes and ⇀

se = 0 from punctured nodes).
The transformation R(

⇀
se) is applied and an extrinsic return

message, ↼
r e, is determined by computing the sum of all

incoming messages save the one along edge e. Transformation
R(·) is then reapplied to produce ↼

se. The process continues
and the iterative decoding threshold pit = e−sch is determined
by the smallest value of sch for which unbounded growth of
all messages ⇀

se can be achieved.
Algorithm 1 (RCA): Let ev (ec ) be the set of edges con-

nected to the variable node v (check node c). For iterations
n = 0, . . . , N , and for all edges e in the protograph, the RCA
computes the messages as follows:

0) For edges e connected to punctured variable nodes,

set ⇀
s
(0)

e = 0. For all other edges set ⇀
s
(0)

e = sch =

s e = schan + s e'
e' Dev\ e

-

r e = r e'
e 'Dec \ e

-

s e = R(r e)

r e = R(s e)

e

v

c

Fig. 2. Density evolution in protographs for the BEC.

− ln(pch).
1) For n = 1, . . . , N , compute the following:

⇀
r
(n−1)
e = R

(
⇀
s
(n−1)
e′

)
(4)

↼
r
(n)

e =
∑

e′∈ec\e

⇀
r
(n−1)
e′ , (5)

↼
s
(n)

e = R

(
↼
r
(n)

e′

)
(6)

⇀
s
(n)

e =
⇀
s
(0)

e +
∑

e′∈ev\e

↼
s
(n)

e′ , (7)

2) When n = N compute S(N)
v for all variable nodes v

S(N)
v =

∑
e∈ev

↼
s
(N)

e , (8)

For large enough N , and some large T , the maximum pch
that produces S(N)

v > T for all variable nodes represents the
iterative decoding threshold pit for BEC.

C. Maximum a posteriori probability (MAP) threshold of
Protographs for the Erasure Channel

To compute an upper bound to the maximum a posteriori
probability (MAP) threshold we use the area theorem [25].
To do so we use the results in the final step of RCA algo-
rithm described in the previous subsection for binary erasure
channel by computing S

(N)
v for each transmitted variable

node for range of pch ∈ [pit, 1]. Starting with pch = 1 and
decreasing it, for each value of pch, we compute hBP (pch) =

1
|v|−|vp|

∑
v′∈v\vp e

−S(N)

v′ where the hBP (pch) is the output
extrinsic erasure probability when the input channel erasure
probability is pch, where v is the set of all variable nodes
in the photograph and vp is the set of punctured variable
nodes. Using the area theorem we can obtain the solution to
( [26], [10], [9], [4])

Rc =

∫ 1

p∗MAP

hBP (pch)dpch (9)

Then the p∗MAP is an upper bound to the MAP threshold
pMAP . For some ensembles (e.g. regular LDPC), hBP (pch) =
hMAP (pch) for pMAP ≤ pch ≤ 1 in such case p∗MAP =
pMAP ( [26], [10]). Let pcap = 1−Rc, where Rc is the code



rate, then pit ≤ pMAP ≤ pcap.

D. Optimizing the Highest-Rate Code of a PBRL Family

Primarily, the HRC photograph is simply the protograph of
a good code at the desired rate. Our design follows the work of
Divsalar et al. [14, Sec.III], with some additional optimization
through RCA analysis and LDPC code simulation.

The main conclusions of [14] are that protograph ensembles
with a minimum variable-node degree of 3 or higher are
guaranteed to have linear minimum distance growth with the
blocklength. Furthermore, as explained in [14], puncturing a
node in the HRC can improve the threshold performance.
The HRC protographs designed in Secs. V-A and V-B ensure
the linear minimum distance growth property and have a
punctured node.

E. Optimizing the IRC Protograph of a PBRL Family

The IRC part is optimized by using the RCA algorithm
of Sec. III-B and choosing the new rows that optimize the
iterative thresholds. The other considerations that are taken
into account are the linear minimum distance growth and low
error-floor properties enforced by the additional constraints.

PBRL code families retain linear minimum distance growth
by requiring that each new row in HIRC has at least two
nonzero values. As long as the HRC has linear minimum
distance growth, ensuring non-trivial connections for each new
check node in the IRC in this way preserves linear minimum
distance growth for all rates.

There are two key features that dramatically improve pro-
tograph thresholds at low rates. The first is that parallel edges
improve the threshold and the second is that the punctured
node of the precode should connect to all (or almost all) of
check nodes in the IRC part with at least a single edge.

IV. UPPER AND LOWER BOUNDS FOR BEC

Gallager [1] proposed an upper bound on the probability
of error for discrete memoryless channels. The upper bound
can be expressed in terms of Kullback-Leibler distance. The
relative entropy of p∗ with respect to p, also called the
Kullback-Leibler distance, is defined by

D(p∗, p)
4
= p∗ ln

p∗

p
+ (1− p∗) ln

1− p∗

1− p
. (10)

If p∗ = pcap = 1−Rc, which is maximum erasure probability
at capacity of BEC, and p < p∗ is the channel erasure
probability, the FER for a random (n, k) code with code rate
Rc = k

n is given by

Pe ≤ e−nD(pcap,p). (11)

The PPV [27] achievable upper bound on the probability of
error is

P̄e ≤ 1−
n∑

j=0

(
n

j

)
(1− p)jpn−j

2nR−1∑
m=0

1

m+ 1

(
2nR−1

m

)
×2−jm(1− 2−j)2

nR−1−m. (12)

The PPV [27] lower bound using meta converse is given by

Pe ≥
n∑

e=[n−k]+1

(
n

e

)
(1− p)n−epe(1− 2n−k−e). (13)

The following theorem is also due to PPV [27].
Theorem 2: For the BEC with erasure probability p,

nRc = n(1− p)−
√
np(1− p)Q−1(ε) +O(1), (14)

or ε ≈ Q((1 − p − Rc)
√

n
p(1−p) ), regardless of whether ε is

maximal or average probability of error.
The above PPV approximation is used to compare with the
simulation results for k = 1032 and k = 16384 raptor-like
codes for various code rates in Fig. 4 and Fig. 5.

V. DESIGN EXAMPLES

This section presents two families of RC PBRL codes.
Subsection V-A presents the design procedure for a short-
blocklength codes (k = 1032) and subsection V-B presents the
design procedure for a long blocklength code (k = 16384).

A. Short-Blocklength PBRL Design Example

This subsection provides an example PBRL protograph
family designed for information blocklength k = 1032. The
HRC uses the protograph

H
(1032)
HRC =

[
3 3 3 1 1 1 3 1 2 1
1 1 1 3 3 3 1 2 1 2

]
. (15)

The IRC adds up to 39 degree-one variable nodes to provide
a range of rates of the form 8/(9 + i) from 8/9 to 8/48. The
first variable node in HRC part is always punctured. The HIRC
obtained from optimizing the threshold is given by (16).

Consistent with [14], [19], the degrees of the variable nodes
in HRC protograph are either three or four. Chen et al. in
[19] address the trade-off between the threshold performance
and error floor over BIAWGN channel by varying the number
of degree-4 nodes in the HRC photograph and conclude that
high error floors are unavoidable with fewer than 6 degree-4
variable nodes.

After the design of the HRC protomatrix, IRC protomatrix
is obtained by optimizing the threshold for each successive
rate in a greedy fashion under the constraints on edges to
ensure low error floor. For the protomatrices of (15) and (16),
Table I shows pit, p∗MAP , and pcap. pit is the highest channel
erasure probability that an iterative BP decoder can support as
the blocklength of the LDPC code grows to infinity. p∗MAP is
the highest channel erasure probability that an MAP decoder
supports asymptotically. pcap = 1 − Rc is the maximum
erasure probability at capacity of BEC. The “Gap” column
of Table I shows the gap between the iterative threshold and
the capacity in normalized number of bits. For k = 1032 code
family the average gap is 0.0556.

Fig. 3 shows an example of EXIT function using RCA
to compute the iterative decoding threshold pit. p∗MAP is
calculated using the area theorem as an upper bound on MAP
threshold. The shaded region under the iterative BP curve has
an area equal to the code rate Rc.



H
(1032)
IRC =



2 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 1 0
2 1 1 0 0 1 1 0 1 0
1 1 1 0 0 0 1 0 1 1
2 1 1 0 0 1 1 0 1 0
1 0 1 0 0 1 1 0 0 1
2 0 1 0 0 0 1 1 0 0
1 0 1 0 0 0 1 1 0 0
1 0 1 0 1 0 1 0 0 0
1 1 1 0 0 0 1 0 0 0
1 1 0 0 1 0 0 0 0 0
1 0 1 1 0 0 1 0 0 0
1 1 1 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 1
1 0 1 1 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0 0 0
1 0 1 0 0 1 1 0 0 0
1 1 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 1
1 0 0 0 1 1 0 0 0 0
1 1 1 0 1 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0
1 1 0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 1 1 0 0
1 0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 1 0
1 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1


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Fig. 3. EXIT function using RCA for the rate-1/2 code of (15) and (16).

After obtaining the HRC and IRC parts, two-step CPEG
lifting as in [14] is used to lift the lowest rate code with a
required girth of six for the k = 1032 family. The pre-lifting
step has a lifting number of 3 to remove the parallel edges.
The lifting number in the second stage is 43, resulting in an

TABLE I
THRESHOLDS OF THE PBRL CODE FAMILY FOR K=1032

Rate Threshold Threshold Capacity Gap
pit p∗MAP pcap

(1−pit−Rc)
(1−pit)

8/9 0.069 0.111 0.111 0.045
8/10 0.167 0.200 0.200 0.040
8/11 0.223 0.264 0.273 0.064
8/12 0.287 0.327 0.333 0.065
8/13 0.343 0.380 0.385 0.064
8/14 0.401 0.427 0.429 0.047
8/15 0.437 0.465 0.467 0.053
8/16 0.469 0.499 0.500 0.058
8/17 0.503 0.528 0.529 0.053
8/18 0.524 0.554 0.556 0.066
8/19 0.556 0.578 0.579 0.052
8/20 0.577 0.598 0.600 0.054
8/21 0.592 0.617 0.619 0.066
8/22 0.617 0.635 0.636 0.050
8/23 0.634 0.651 0.652 0.051
8/24 0.648 0.665 0.667 0.052
8/25 0.663 0.678 0.680 0.051
8/26 0.676 0.691 0.692 0.051
8/27 0.688 0.702 0.704 0.051
8/28 0.699 0.713 0.714 0.051
8/29 0.709 0.723 0.724 0.052
8/30 0.719 0.732 0.733 0.052
8/31 0.728 0.741 0.742 0.052
8/32 0.736 0.749 0.750 0.053
8/33 0.744 0.757 0.758 0.054
8/34 0.751 0.764 0.765 0.054
8/35 0.758 0.771 0.771 0.055
8/36 0.764 0.777 0.778 0.057
8/37 0.770 0.783 0.784 0.058
8/38 0.776 0.789 0.790 0.059
8/39 0.782 0.794 0.795 0.060
8/40 0.787 0.799 0.800 0.061
8/41 0.792 0.804 0.805 0.063
8/42 0.797 0.809 0.810 0.063
8/43 0.802 0.813 0.814 0.060
8/44 0.807 0.817 0.818 0.058
8/45 0.811 0.821 0.822 0.059
8/46 0.815 0.825 0.826 0.060
8/47 0.819 0.829 0.830 0.060
8/48 0.823 0.832 0.833 0.058

information blocklength of k = 1032.
Fig. 4 shows the FER performance of the PBRL codes

constructed in this section for k = 1032. These simulations
use floating-point iterative decoders with a flooding schedule
for message-passing. Decoding terminates early if all parity
checks are satisfied before reaching the maximum number
(300) of iterations (as mentioned above, if the number of
iterations in BP decoding is large enough then its performance
approaches the peeling decoder for BEC). It is surprising that
a greedy threshold optimization algorithm alone can produce
a family with an outstanding performance.

B. A Long-Blocklength PBRL Design Example

This subsection designs a PBRL code family with block-
length k = 16384. The protograph family provides a range of
rates of the form 8/(10 + i) from 8/10 to 8/32. The HRC
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Fig. 4. Frame error rates of PBRL codes with k = 1032. The protograph
for the PBRL code is based on (15) and (16). The PPV approximation is also
shown for several rates.

protograph for the k = 16384 PBRL code is

H
(16384)

HRC =

3 2 1 1 1 1 1 1 0 0 1
1 1 2 2 2 2 2 2 2 1 1
2 0 0 0 0 0 0 0 1 2 0

 . (17)

Similar to design of k = 1032 code family, RCA algorithm
optimizes the threshold corresponding to the connections of
the IRC check nodes to the variable nodes of the HRC part
of (18). In the optimization process each connection to the
punctured node may have zero, one, or two edges leading
to the 0, 1, and 2 values in the first column of (18). Each
connection to a non-punctured node may have zero, or one
edge leading to the 0, and 1, values in the other columns of
(18). Table II shows pit, p∗MAP , and pcap for the k = 16384
code family with an average gap of 0.0327 across various rates.

Two step CPEG lifting which guarantees a girth of eight

H
(16384)
IRC =



2 1 1 1 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 1 1 0
2 1 1 0 0 1 0 0 0 0 0
2 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 0 1 0 1 0
2 1 0 0 1 0 0 0 0 0 0
2 0 1 0 0 1 0 0 0 0 0
2 0 0 0 1 0 0 1 0 0 0
1 0 1 0 0 0 1 0 0 0 0
2 0 0 0 1 0 1 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0
2 0 1 0 0 0 0 1 0 0 0
2 0 0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0
1 0 0 1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0



(18)

TABLE II
THRESHOLDS OF THE PBRL CODE FAMILY

Rate Threshold Threshold Capacity Gap
pit p∗MAP pcap

(1−pit−Rc)
(1−pit)

8/10 0.167 0.200 0.200 0.040
8/11 0.256 0.273 0.273 0.022
8/12 0.319 0.332 0.333 0.021
8/13 0.370 0.384 0.385 0.023
8/14 0.414 0.428 0.429 0.025
8/15 0.452 0.466 0.467 0.027
8/16 0.487 0.499 0.500 0.025
8/17 0.517 0.529 0.529 0.026
8/18 0.542 0.555 0.556 0.030
8/19 0.565 0.578 0.579 0.032
8/20 0.587 0.599 0.600 0.031
8/21 0.606 0.618 0.619 0.033
8/22 0.623 0.636 0.636 0.035
8/23 0.638 0.651 0.652 0.039
8/24 0.655 0.666 0.667 0.034
8/25 0.668 0.679 0.680 0.036
8/26 0.681 0.691 0.692 0.035
8/27 0.692 0.703 0.704 0.038
8/28 0.703 0.713 0.714 0.038
8/29 0.713 0.723 0.724 0.039
8/30 0.722 0.732 0.733 0.041
8/31 0.731 0.741 0.742 0.041
8/32 0.739 0.749 0.750 0.042
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Fig. 5. Frame error rates for the protographs defined by (17)-(18). The lifting
number is 2048, resulting in k = 16384.

is used to lift the lowest rate code. The pre-lifting step has
a lifting number of 4 to remove the parallel edges. The
lifting number in the second stage is 512, giving information
blocklength of k = 16384.

Fig. 5 shows the FER performance of the PBRL codes
constructed in this section for k = 16384. This figure also
shows the finite blocklength analysis of PPV [27].

Fig. 6 illustrates the η values for each rate in Table II. A
pair (dACE, η) implies that every cycle consisting of up to
dACE variable nodes, i.e. every cycle of length up to 2dACE,
is connected to at least η extrinsic check nodes. For ACE
algorithm see [28]. For example, all the cycles with length 10
or less in k = 1032 code have at least 6 extrinsic connections
for the rate-1/2 code. Similarly, all the cycles with length 12
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Fig. 6. ACE value (η) versus rate for the long blocklength k = 16384 code.

or less in k = 16384 code have at least 7 extrinsic connections
for the rate-1/2 code.

VI. CONCLUDING REMARKS

This paper studies the construction and optimization of
protograph-based Raptor-like (PBRL) LDPC codes over the
BEC. This paper designs PBRL codes by designing a highest-
rate code (HRC) and sequentially adding degree-one variable
nodes whose neighboring check node is connected to the
variable nodes of the HRC so as to maximize the density
evolution threshold (erasure probability). The new connections
must obey constraints that control the error floor. Puncturing
a single variable node in the HRC improves the threshold
performance of PBRL codes.

Instead of the original density evolution, the RCA algorithm
(which is exact for BEC) is used to obtain a fast and accurate
thresholds of PBRL codes to result in reasonable code-design
complexity.

Controlling the error floor is especially important for short-
blocklength PBRL code families. For an example short-
blocklength PBRL code family designed for k = 1032 we sac-
rificed threshold in order to improve error floor performance
by increasing the number of degree-4 variable nodes in the
HRC.

In summary, this paper provides a complete design pro-
cedure for constructing rate-compatible LDPC code families
that perform uniformly close to the capacity for the finite
blocklength performance limits for both short (k = 1032) and
long (k = 16384) blocklengths.
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