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Abstract—Theoretical analysis has long indicated that feedback
improves the error exponent but not the capacity of memoryless
Gaussian channels. Recently, Chen et al. [1] demonstrated that
an incremental redundancy scheme can use noiseless feedback
to help short convolutional codes deliver the bit-error-rate
performance of a long blocklength turbo code, but with much
lower latency. Such a latency improvement is suggested by the
error-exponent analysis, but there is no theoretical work that
estimates how much latency improvement is possible with feed-
back for practical blocklengths and rates. This paper provides
a code-independent analysis that quantifies the latency benefits
possible by using modified incremental redundancy with feedback
(MIRF). A sphere-packing analysis yields the throughput vs.
latency performance of both a baseline ARQ scheme and MIRF.
The sphere-packing analysis matches well with simulations using
turbo and convolutional codes, showing that the analysis has a
practical predictive value.

I. INTRODUCTION

While feedback cannot increase the capacity of a memo-
ryless channel, it can significantly reduce the complexity of
encoding and decoding at rates below capacity, as shown in
[2] and [3] in 1956.

In 1966, Schalkwijk and Kailath [4] presented a feedback
coding scheme for additive white Gaussian noise (AWGN)
channels. They described an algorithm that uses an ideal feed-
back link in a fixed-length block-coding scheme for the infinite
bandwidth AWGN channel for which the probability of error
decreases such that the error exponent is itself exponential in
the code constraint length for rates lower than the capacity.
This work was then extended by Schalkwijk himself, Kramer
and Zigangirov( [5]–[7]).

The error-exponent results of [4]–[7] suggest that feedback
can be used to reduce latency. As a practical demonstration,
[1] showed that using modified incremental redundancy with
feedback (MIRF) allowed short convolutional codes to deliver
bit-error-rate performance comparable to a long blocklength
turbo code, but with lower latency. The demonstration of [1]
qualitatively agrees with the error exponent analysis in [4]–
[7]. However, the error-exponent theory does not provide a
crisp prediction of the quantitative latency benefit possible
with MIRF at a specific throughput.
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This paper provides the needed quantitative, code-
independent analysis of latency vs. throughput that describes
the benefit of MIRF over a baseline system. The baseline
system has a feedback link but uses it only for ARQ. The
MIRF system is similar to the one studied in [1]. The analysis
uses sphere-packing and bounded-distance decoding to model
the behavior of a “good” code in AWGN channels.

While code-independent, the sphere-packing analysis
matches well with simulations using “good” short-blocklength
codes. Specifically, this paper compares the analysis with
simulations of tail-biting convolutional codes and turbo codes
taken from the 3GPP standard [8]. The excellent agreement
between the analysis and simulation results suggests that the
analysis provides an accurate characterization and that the
short-blocklength codes currently available perform similarly
to sphere-packing with bounded-distance decoding.

The rest of the paper is organized as follows: Section II
reviews the sphere-packing approximation of decoding error
for a “good” code. Sections III and IV use the sphere-packing
approximation of Section II to analyze simple ARQ and
MIRF, respectively, and compare with simulations. Section V
concludes the paper. The Appendix in Section VI presents
mathematical derivations that support Section IV.

II. SPHERE-PACKING

This section reviews the sphere-packing analysis in [9] for
a memoryless AWGN channel and shows that the probability
of codeword error for a sphere-packing code with bounded-
distance decoding is the complement of the cdf of a chi-square
distribution.

Consider a (2nRc , n) codebook that maps nRc bits of
information into a length-n codeword with rate Rc. The input
and output of the channel can be written as

Y = X(i) + Z, i ∈ 1, 2, · · · , 2nRc ,

where Y is the received word, X(i) is the codeword of the
i-th message, and Z is a n-dimensional i.i.d. Gaussian vector.

Let the SNR be η and assume without loss of generality that
each noise sample has a unit variance. The average power of
a received word Y is P = n(1 + η). Sphere-packing seeks a
codebook that has 2nRc equally separated codewords within
the n-dimensional sphere with radius router =

√
n(1 + η).



One can visualize a large outer sphere that contains 2nRc

“inner spheres”, each with the same radius rinner. The largest
inner sphere radius perfectly packs 2nRc inner spheres into the
outer sphere. With this sphere-packing in mind, a conservation
of volume argument yields the following inequality:

Vol(Inner sphere) = Kn × rninner

≤ Vol(Outer sphere)
2nRc

=
Kn ×

(√
n(1 + η)

)n
2nRc

,

where Kn is the constant of evaluating the volume of the n-
dimensional sphere. Solving for the inner sphere radius yields

rinner ≤
√
n(1 + η)

2Rc
. (1)

Now consider the bounded-distance decoding rule: if the
received word is within rinner of codeword X(i), then declare
the output of the decoder to be message i. If the received word
is not within rinner of any codeword or is within that distance
of multiple codewords, then an error is declared. Nearest-
neighbor decoding outperforms bounded-distance decoding,
but is more difficult to analyze.

The total noise power is a chi-square with n degrees of
freedom. Assuming the largest theoretically possible inner
sphere radius of (1), the probability of decoding error Pe is

Pe = Pr


n∑

i=1

z2i >

(√
n(1 + η)

2Rc

)2


= 1− Fχ2(n)

(
n(1 + η)

22Rc

)
,

where Fχ2(n)(t) is the C.D.F. of the chi-square distribution
with n degrees of freedom. For the rest of our analysis, we
always assume the optimum radius of (1).

III. ANALYSIS OF SIMPLE ARQ

Consider the simple ARQ protocol on an AWGN channel
with noiseless feedback. The transmitter sends the codeword
over the noisy channel and waits for the feedback from the
receiver. The receiver will send an ACK/NACK over the
noiseless feedback channel to the transmitter if the codeword is
decoded successfully/unsuccessfully. If a NACK is received at
the transmitter, the transmitter will resend the same codeword
until an ACK is received. Once an ACK is received, the
transmitter encodes and transmits a new codeword.

In the previous section we computed the probability of
decoding error Pe based on the sphere-packing analysis. With
Pe in hand, the expected number of transmissions τ required to
communicate a single message using the simple ARQ scheme
is as follows:

τ =
1

1− Pe
.

Define the expected throughput Rt as the expected number
of bits transmitted correctly per packet transmission divided
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Fig. 1. Throughput Rt vs. initial code rate Rc for sphere-packing analysis
and 3GPP turbo code simulations for blocklengths 104, 704 and 10,000 at
SNR=2 dB.

by the number of channel uses per packet transmission. For
the simple ARQ scheme, Rt is given by:

Rt = Rc(1− Pe) = RcFχ2(n)(r
2
inner). (2)

Define the latency λ as the number of forward channel uses
required to communicate a message. The expected latency λ
is given by the product of expected number of transmissions
τ and the codeword blocklength n:

λ = nτ =
n

1− Pe
=

n

Fχ2(n)

(
n(1+η)
22Rc

) . (3)

Figure 1 shows throughput vs. initial code rate for the
sphere-packing analysis and 3GPP Turbo code simulations for
blocklengths of 104, 704 and 10, 000 at an SNR of 2 dB. Each
point of a dashed curve represents a different Turbo code with
the same blocklength but different code rate. Higher rates are
obtained by pseudo random puncturing (circular buffer rate
matching [8]). We considered only puncturing patterns that
performed reasonably well.

The sphere-packing analysis uses an optimistic rinner but
sub-optimal bounded-distance decoding; it is a mixture a
optimistic and pessimistic assumptions. Interestingly, after
the initial no-codeword-error section where throughput equals
code rate, the difference between the analytical curves and the
simulated curves for turbo codes is consistently about 0.1 bits
despite the large range of blocklengths considered.

Equations (2) and (3) respectively express expected through-
put and latency as functions of the initial code rate Rc and
blocklength n. Through a computational parametric analysis,
latency can be examined as a function of throughput in the
context of sphere-packing and bounded-distance decoding.

IV. INCREMENTAL REDUNDANCY

This section extends the sphere-packing analysis to examine
the latency vs. throughput curve possible with the incremental
redundancy scheme.



A. An Incremental Redundancy Scheme

Sphere-packing analysis of the MIRF scheme assumes a
long and low-rate mother code. The rate of this code can be
arbitrary low and its blocklength L can be arbitrarily large. We
then pick 2nRc codewords out of the L-dimensional sphere as
described in Section II.

The MIRF scheme starts out by transmitting a punctured
version of the mother codeword with initial blocklength n < L
and initial code rate Rc. If the decoding is not successful, the
transmitter will receive a NACK and will send s extra symbols.
The decoder then attempts to decode again using all received
symbols for the current codeword. The process continues until
the decoding is successful or the maximum codeword length
L is reached.

Let Bi be the vector of the symbols received at the i-th
transmission. B1 ∈ Rn and Bi ∈ Rni where ni = n+s(i−1).
Let the power of the noise in the Bi be Ni.

Define the event ζi = {i-th block cannot be decoded} =

{Ni : Ni > r2i }, where ri =

√
ni(1+η)

2nRc/ni
is the corresponding

inner sphere radius at the i-th transmission. The expected
latency is computed as follows:

λIR = n+ sPr [ζ1] + sPr [ζ1 ∩ ζ2] + · · ·

= n+ s
m∑
i=1

Pr
[∩i

j=1
ζj

]
,

where m is the maximum number of transmissions allowed,
which is constrained by L.

The joint probability can also be expressed as the product
of conditional probabilities. Thus

Pr
[∩i

j=1
ζj

]
=

i∏
j=1

Pe,j , where Pe,i = Pr
[
ζi

∣∣∣∣∩i−1

j=1
ζj

]
.

The sphere-packing analysis gives

Pe,i = Pr

 ni∑
j=1

z2j > r2i

∣∣∣∣∣∣
i−1∩
j=1

ζj

 .

Pe,i is challenging to evaluate since the region of
∩i

j=1 ζj is
difficult to characterize. We will approximate Pe,i as described
below.

B. Approximation of Noise in Successive Decodings

Suppose that the decoder is at the i-th transmission and
trying to decode Bi. There are two important mechanisms at
play. The first mechanism is that since Bi−1 was decoded
unsuccessfully, we know that Bi−1 has a noise power larger
than r2i−1. This increased noise power makes Pe,i larger than
if these n + s(i − 1) symbols were decoded as an initial
transmission.

The second mechanism is that Bi has the advantage of
the s extra symbols received at the i-th transmission, which
will increase the radius ri and thus increase the probability of
successful decoding. In short, the code becomes more powerful
as the number of symbols received increases according to the

second mechanism but decoding becomes more challenging as
the previously transmitted symbols are noisier than originally
hoped according to the first mechanism. The mixture of these
two mechanisms must be captured in our analysis.

An optimistic approximation would be to ignore the first
mechanism and assume that every attempt of decoding sees
a new instance of noisy symbols with longer blocklength but
at the original noise variance. Figures 2 and 3 show plots of
this optimistic approximation to compare with the conditional
analysis presented below.

The difficulty with properly accounting for the first mech-
anism is that conditioned on previous decoding failures, the
noise is no longer i.i.d. Gaussian. However, we can make a
worst-case analysis based on the following two observations.

As shown in [9] and the references therein, the Gaussian
distribution is the worst memoryless noise possible given
a specified noise power. Lapidoth [10] further showed that
irrespective of the noise distribution and even regardless of
whether the noise is i.i.d., the capacity assuming Gaussian
noise is achievable with nearest-neighbor decoding and no
rate above the Gaussian capacity is achievable with random
Gaussian coding and nearest-neighbor decoding. Hence, given
that our sphere-packing analysis is similar in structure to a
Gaussian codebook and that our decoding is similar to nearest
neighbor decoding, modeling the noise as i.i.d. Gaussian
(with an appropriately computed variance) is a reasonable
approximation.

Thus, to account for the first mechanism, we calculate the
conditional expectation of the noise power in Bi−1. We then
model the noise vector of Bi−1 as i.i.d. Gaussian noise with
this conditional expected noise power. To further simplify the
calculation, we further approximate by conditioning on ζi−1

instead of
∩i−1

j=1 ζj . We conjecture that this approximation is
a lower bound of the conditional expectation.

With that approximation, we are able to calculate the
conditional decoding error and analyze the throughput and
latency of the MIRF scheme. The conditional expected noise
power in Bi−1, denoted as N i−1, is

N i−1 = E

ni−1∑
j=1

z2j

∣∣∣∣∣∣ζi−1

 =
Ini−1(ri−1)

1− Fχ2(ni−1)(r
2
i−1)

,

where In(r) is the integral of the product of the noise power
and the probability density over the complement of the n-
dimensional sphere of radius r centered at the origin. The
details of calculating In(r) are in the Appendix (Section V).

Applying Lapidoth [10], the error probability of the code
conditioned on

∩i
j=1 ζj is approximated by the error proba-

bility of the same code in the face of i.i.d. Gaussian noise
with the noise vector Z ′ = [z′1, z

′
2, . . . , z

′
ni
], z′i ∼ N(0, σ2

c ),
where σ2

c = Ni−1+s
ni

. The decoding radius of the code is

ri =

√
ni(1+η)

2nRc/ni
.

Normalizing the noise to have unit variance and considering

a code with decoding radius r′i =

√
ni(1+η′)

2nRc/ni
, where η′ =

niη

s+Ni−1
has the same error probability as the original scenario.



This normalization allows calculation of the probability of
error using a chi-square C.D.F.

We summarize the procedure of computing the conditional
error probability for each transmission as follows

1) Calculate the expected noise power of the block Bi−1

conditioned that Bi−1 cannot be decoded and denote it
as N i−1.

2) Update the new total noise power by N i−1 + s.
3) Normalize the noise variance to unit variance and update

new SNR η′ = niη

s+Ni−1
.

4) Update the equivalent inner sphere r′i according to the
new SNR η′.

5) Approximate the conditional probability as

Pe,i = 1− Fχ2(ni)(r
′2
i ), where r′i =

√
ni(1+η′)

2nRc/ni
.

C. Comparison with Simulations

Figures 2 and 3 show throughput vs. initial code rate
and latency vs. throughput, respectively, for both the sphere-
packing analysis and simulations of tail-biting convolutional
codes from [11] and turbo codes from [8].

The agreement between the analysis and the tail-biting
convolutional code simulations in the low rate regime is
striking. In the high-rate regime, the convolutional codes fall
short of the analysis because the throughput has reached the
limit of the system’s ability to approach the channel capacity.
(See details in [12]).

Comparing systems with an initial blocklength of 64, Fig-
ures 2 and 3 show that for latencies near 70 channel uses,
simple ARQ achieves a throughput of less than 0.5 while
incremental redundancy achieves throughput above 0.6.

These figures also show that the turbo code we simulated
saturates at a lower throughput than both 64-state and 1024-
state length-64 convolutional codes, even with longer block-
length. We expect that turbo codes with better performance at
short blocklengths can be found. Still, the convolutional code
performance is quite good in this short-blocklength regime.

As expected, the initial code rate should be higher when
using incremental redundancy than when using simple ARQ.
Figure 2 indicates how much higher the initial code rate should
be and Figure 3 indicates the corresponding latency tradeoff.

Figure 3 shows that incremental redundancy allows latency
to remain low for throughputs where simple ARQ does not.

V. CONCLUSION

It is not surprising that incremental redundancy with feed-
back can reduce latency. The key result of this paper is a
code-independent analysis that is able to accurately determine
how much latency reduction and throughput improvement is
possible with incremental redundancy of various step sizes.
This is a useful tool in system design that was not previously
available.

This paper presents a sphere-packing analysis of latency vs.
throughput for a baseline ARQ scheme and a modified incre-
mental redundancy scheme. This powerful analysis quantifies
the latency benefit possible with incremental redundancy and
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closely predicts the performance of the modified incremental
redundancy scheme studied in [1], validating it as an extremely
efficient use of incremental redundancy.

The simulated throughput vs. latency curves for turbo codes
do not match the analysis as closely as the simulated convo-
lutional codes [12], indicating that despite their proximity to
the ultimate capacity with a long blocklength, they are not
as close to the short-blocklenght sphere-packing bound as the
simulated convolutional codes. The gaps between the turbo
codes simulations and the analytic curves using simple ARQ,
however, are consistently close to 0.1 bit.

For the MIRF scheme, approximations on the conditional
probability simplified the analyses. Simulations of the MIRF
scheme using convolutional codes show that the approxima-
tions are not too far away from practice.

VI. APPENDIX: DERIVATION OF In(r)

In this section we present the derivation of In(r).



A. Hyper-spherical coordinates
We first briefly introduce some preliminaries on hyper-

spherical coordinates, which will be helpful in our analysis. A
n+1 dimensional sphere, or n-sphere with radius r is defined
as

Sn(r) =
{
x ∈ Rn+1 : ∥x∥2 = r

}
.

Let x1, x2, . . . , xn be the Cartesian coordinates and
R,ϕ1, ϕ2, . . . , ϕn−1 be the spherical coordinates. The volume
element of a sphere in n-dimensional Cartesian space can be
converted to spherical coordinates as follows:

dV = dx1dx2 · · · dxn

= rn−1 sinn−2 ϕ1 sin
n−3 ϕ2 · · · sinϕn−2dRdϕ1 · · · dϕn−1

= dSn−1V.

Note that the relation R2 = x2
1 + x2

2 + · · ·+ x2
n also holds.

B. Integration Over Sc
n−1

Denote the region outside of Sn−1 as Sc
n−1, then In(r) is

given by the following integration:∫∫
Sc
n−1(r)

· · ·
∫ ( n∑

i=1

z2i

)
fZ(z1, z2, . . . , zn)dz1dz2 · · · dzn,

where fZ(z1, . . . , zn) is the P.D.F. of n-variate i.i.d Gaussian
with unit variance. By a change of the coordinates we have

fZ (z1, z2, . . . , zn) =
e−

z21+z22+···+z2n
2(√

2π
)n

=
e−

R2

2(√
2π
)n = fZ (R) .

Let Sc
n−1 be the volume outside of the (n−1)-sphere. Hence

the integral over Sc
n−1 becomes the following integral:∫∫

Sc
n−1(r)

· · ·
∫

Rn+1fZ(R) sinn−2 ϕ1 · · · sinϕn−2

dRdϕ1 · · · dϕN−1 .

The P.D.F. in spherical coordinates does not depend on
the variables ϕ1, ϕ2, · · ·ϕn−1 and thus the integrations can be
done separately. We separate the integral into two parts: the
part with the variable R and the part without the variable R.

1) Integration of variable R: We focus on the P.D.F. which
depends only on R in this part, and leave the other variable
to the second part. We get the following equation using
integration by parts:∫ ∞

r

Rn+1 e−
R2

2(√
2π
)n dR

=



e
−r2

2

(2π)
n
2

[
rn + nrn−2 + · · ·+ n(n− 2)(n− 4) · · · 2

]
if n is even

e
−r2

2

(2π)
n
2

[ (
rn + nrn−2 + · · ·+ n(n− 2) · · · 3r

)
+ n(n− 2)(n− 4) · · · 3

√
2πQ (r) e

r2

2

]
if n is odd,

where Q(x) is the Q-function.
2) Integration of variables ϕ1 · · ·ϕn−1: Let Γ(x) be the

gamma function, the integral is given by
π∫

0

π∫
0

· · ·
2π∫
0

sinn−2 ϕ1 · · · sinϕn−2dϕ1 · · · dϕn−1

=


2πn/2

(n
2 −1)!

if n is even
nπn/2

Γ(n
2 +1)

if n is odd.

Combining the two parts, we get the integral over Sc
n−1:

In(r)

=



e
−r2

2

2
n−2
2 (n

2 −1)!

[
rn + nrn−2 + · · ·+ n(n− 2) · · · 2

]
if n is even

ne
−r2

2

2
n
2 Γ(n

2 +1)

[ (
rn + nrn−2 + · · ·+ n(n− 2) · · · 3r

)
+ n(n− 2)(n− 4) · · · 3

√
2πQ (r) e

r2

2

]
if n is odd.
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