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Abstract—Theoretical analysis has long indicated that feedback
improves the error exponent but not the capacity of memoryless
Gaussian channels. Chen et al. [1] demonstrated that a modified
incremental redundancy scheme can use noiseless feedback to
help short convolutional codes deliver the bit-error-rate per-
formance of a long blocklength turbo code, but with much
lower latency. This paper presents a code-independent analysis
based on sphere-packing that approximates the throughput-vs.-
latency achievable region possible with feedback and incremental
redundancy for a specified AWGN SNR. Simulation results
indicate that tail-biting convolutional codes employing feedback
and incremental redundancy perform close to the sphere-packing
approximation until the throughput reaches the limit of the
system’s ability to approach the channel capacity.

I. INTRODUCTION

While feedback cannot increase the capacity of a memory-
less channel [2], it can significantly reduce the complexity of
encoding and decoding at rates below capacity, as shown in
the works by Elias [3] and Chang [4] in 1956.

The error-exponent results of [5]–[8] suggest that feedback
can be used to reduce latency. As a practical demonstration,
[1] showed that using modified incremental redundancy with
feedback (MIRF) allowed short convolutional codes to deliver
bit-error-rate performance comparable to a long blocklength
turbo code, but with lower latency. The demonstration of [1]
qualitatively agrees with the error exponent analysis in [5]–
[8]. However, the error-exponent theory does not provide a
crisp prediction of the quantitative latency benefit possible
with MIRF at a specific throughput.

This paper provides the needed quantitative, code-
independent analysis of latency vs. throughput that describes
the benefit of MIRF over a baseline system. The baseline
system has a feedback link but uses it only for ACK/NACK; in
other words, it’s the simple ARQ scheme. The MIRF system
is similar to the one studied in [1]. The analysis uses sphere-
packing and bounded-distance decoding to model the behavior
of a “good” code for the AWGN channel.

While the sphere-packing analysis is code-independent,
it turns out to match well with simulations using “good”
short-blocklength codes. Specifically, this paper compares the

This research was supported by a gift from the Broadcom Foundation. Dr.
Wesel has also consulted for the Broadcom Corporation on matters unrelated
to this research.

analysis with simulations of tail-biting convolutional codes.
The excellent agreement between the analysis and simulation
results indicates both that the analysis provides an accurate
characterization and that the short-blocklength codes currently
available perform similarly to sphere-packing with bounded-
distance decoding.

The rest of the paper is organized as follows: Section II
reviews the sphere-packing approximation of decoding error
for a “good” code. Sections III and IV use the sphere-packing
approximation of Section II to analyze simple ARQ and
MIRF, respectively, and compare with simulations. Section V
concludes the paper.

II. SPHERE-PACKING

This section reviews the sphere-packing analysis in [2] for
a memoryless AWGN channel and shows that the probability
of codeword error of a sphere-packing code with bounded-
distance decoding is the complement of the cdf of a chi-square
distribution.

Consider a (2nRc , n) channel code that encodes nRc bits of
information into a length-n codeword with rate Rc. The input
and output of the channel can be written as

Y = X(i) + Z, i ∈ 1, 2, · · · , 2nRc

where Y is the received word, X(i) is the codeword for the
i-th message, and Z is a n-dimensional i.i.d. Gaussian vector.

Let the SNR be η and assume without loss of generality
that the noise has unit variance. The average power of a
received word Y is P = n(1 + η). Sphere-packing seeks a
codebook that has 2nRc equally separated codewords within
the n-dimensional sphere with radius router =

√
n(1 + η).

One can visualize a large outer sphere that contains 2nRc

decoding spheres, each with the same radius rinner. An upper
bound on the inner sphere radius perfectly packs 2nRc code
spheres into the outer sphere. With this ideal sphere-packing in
mind, a conservation of volume argument yields the following



inequality:

Vol(Inner sphere) = Kn × rninner

≤ Vol(Outer sphere)
2nRc

=
Kn ×

(√
n(1 + η)

)n
2nRc

where Kn is the spherical volume constant that depends only
on n. Solving for the radius of the code spheres yields

rinner ≤
√
n(1 + η)

2Rc
. (1)

Now consider the bounded-distance decoding rule: if the
received word is within rinner of codeword X(i), then declare
the output of the decoder to be message i. If the received word
is not within rinner of any codeword or is within that distance
of multiple codewords, then an error is declared. Nearest-
neighbor decoding outperforms bounded-distance decoding,
but is more difficult to analyze.

The total noise power is a chi-square with n degrees of
freedom. Assuming the largest theoretically possible code
sphere radius of (1), the probability of decoding error Pe is

Pe = Pr


n∑

i=1

z2i >

(√
n(1 + η)

2Rc

)2


= 1− Fχ2(n)

(
n(1 + η)

22Rc

)
where Fχ2(n)(t) is the C.D.F. of the chi-square distribution
with n degrees of freedom. For the rest of our analysis, we
always assume the radius is equal to the upper bound of (1).

III. ANALYSIS OF SIMPLE ARQ

Consider the simple ARQ protocol on an AWGN channel
with noiseless feedback. The transmitter sends the codeword
over the noisy channel and waits for the feedback from the
receiver. The receiver will send an ACK/NACK over the
noiseless feedback channel to the transmitter if the codeword
is decoded successfully/unsuccessfully. If NACK is received at
the transmitter, the transmitter will resend the same codeword
until an ACK is received. Once an ACK is received, the
transmitter encode and transmit a new codeword.

In the previous section we computed the probability of
decoding error Pe based on the sphere-packing analysis. With
Pe in hand, the expected number of transmissions τ required to
communicate a single message using the simple ARQ scheme
is as follows:

τ =
1

1− Pe
.

Define the throughput as the number of bits transmitted
correctly per channel use. The expected throughput Rt of the
simple ACK/NACK scheme is given by:

Rt =
nRc

nτ
= Rc(1− Pe) = RcFχ2(n)(r

2
inner). (2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
c

R
t

Sphere packing analysis. SNR = 2.0dB, Capacity = 0.6851

 

 
N = 60
N = 120
N = 704
N = 1600
N = 10000
Capacity

Fig. 1. Sphere-packing analysis of throughput vs. initial code rate for simple
ARQ on an AWGN channel with SNR=2 dB and blocklengths ranging from
60 to 10,000.

Define the latency λ as the number of forward channel uses
required to communicate a message. The expected latency λ
is given by the product of expected number of transmissions
τ and the codeword block length n:

λ = nτ =
n

1− Pe
=

n

Fχ2(n)

(
n(1+η)
22Rc

) (3)

Figure 1 shows throughput vs. initial code rate for a sphere-
packing analysis of the simple ARQ with SNR=2 dB and
blocklengths ranging from 60 to 10,000. Figure 2 compares
the sphere-packing analysis of simple ARQ to 64-state tail-
biting convolutional code simulations of the simple ARQ with
block length 64. This short block length is where the 64-state
convolutional code is most effective relative to the sphere-
packing limit of performance.

Pseudo-random puncturing (circular buffer rate matching
[9]) provides the high rate codes in these simulations. As
shown in Figure 3, the encoder generates a rate-1/3 codeword.
Then the output of each constituent encoder passes through a
“sub-block” interleaver. The interleaved bits of each encoder
are collected in a buffer and a proper number of coded bits is
sent to the transmitter.

Our analysis and simulations fix the initial coded block-
length and vary the code rate. Hence the initial blocklength
remains constant and the number of information bits per block
increases as the initial rate grows. Therefore, the blocklength
of the rate-1/3 mother code increases as the initial rate grows.
The power of the convolutional code, however, remains the
same as the blocklength of the mother code increases. (We’ll
discuss this further in section IV-C). This practical restriction
differs from our assumption of sphere-packing in which the
code becomes more powerful as the blocklength (number of
symbols received) increases. This accounts for the disagree-
ment in the high-rate regime of Figure 2.

Through a computational parametric analysis, latency can
be examined as a function of throughput in the context of
sphere-packing and bounded-distance decoding. Equations (2)
and (3) respectively express expected throughput and latency
as functions of the initial code rate Rc and block length n.
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Fig. 2. Throughput Rt vs. initial code rate Rc for sphere-packing analysis
and 64-state, 1024-state convolutional code simulations at blocklength 64,
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Fig. 3. Pseudo-random puncturing (or circular buffer rate matching) of
convolutional code. At the bit selection block, a proper amount of coded
bit is selected to match the desired code rate.

IV. INCREMENTAL REDUNDANCY WITH FEEDBACK

This section extends the sphere-packing analysis to examine
the latency vs. throughput curve possible with the MIRF
scheme of [1] for using incremental redundancy and feedback.

A. An Incremental Redundancy Scheme

Sphere-packing analysis of the MIRF scheme assumes a
long and low-rate mother code. The rate of this code can be
arbitrary low and its blocklength L can be arbitrarily large. We
then pick 2nRc codewords out of the L-dimensional sphere
described in Section II.

The MIRF scheme transmits an initial block length n < L
with initial code rate Rc. If the decoding is not successful, the
transmitter will receive a NACK and will send s extra symbols.
The decoder then attempts to decode again using all received
symbols for the current codeword. The process continues until
the decoding is successful or the maximum codeword length
L is reached. The MIRF scheme can also be interpreted as a
rateless coding scheme; the transmitter can send out additional
redundancy bits continuously until it receives a ACK message
from the receiver.

Let Bi be the vector of the symbols received at the i-th
transmission, B1 ∈ Rn and Bi ∈ Rni where ni = n+s(i−1).
Let the power of the noise in the Bi be Ni. Define the event
ζi = {i-th block cannot be decoded} = {Ni : Ni > r2i },

where ri =

√
ni(1+η)

2nRc/ni
is the corresponding inner sphere radius

at the i-th transmission. The expected latency is computed as

follows:

λIR = n+ sPr [ζ1] + sPr [ζ1 ∩ ζ2] + · · ·

= n+ s
m∑
i=1

Pr
[∩i

j=1
ζj

]
where m is the maximum number of transmissions allowed,
which is constrained by L.

The joint probability can also be expressed as the product
of conditional probabilities. Thus

Pr
[∩i

j=1
ζj

]
=

i∏
j=1

Pe,j , where Pe,i = Pr
[
ζi

∣∣∣∣∩i−1

j=1
ζj

]
The sphere-packing analysis gives

Pe,i = Pr

 ni∑
j=1

z2j > r2i

∣∣∣∣∣∣
i−1∩
j=1

ζj

 .

Pe,i is challenging to evaluate since the region of
∩i

j=1 ζj is
difficult to characterize. We will approximate Pe,i as described
below.

B. Approximation of Noise in Successive Decodings

Suppose that the decoder is at the i-th transmission and
trying to decode Bi. There are two important mechanisms at
play. The first mechanism is that since Bi−1 was decoded
unsuccessfully, we know that Bi−1 has a noise power larger
than r2i−1. This increased noise power makes Pe,i larger than
if these n + s(i − 1) symbols were decoded as an initial
transmission.

The second mechanism is that Bi has the advantage of
the s extra symbols received at the i-th transmission, which
will increase the radius ri and thus increase the probability of
successful decoding. In short, the code becomes more powerful
as the number of symbols received increases according to the
second mechanism but decoding becomes more challenging as
the previously transmitted symbols are discovered to be noisier
than originally hoped according to the first mechanism. The
mixture of these two mechanisms must be captured in our
analysis.

An optimistic approximation ignores the first mechanism
and assumes that every attempt of decoding sees a new
instance of noisy symbols with longer blocklength but at
the original noise variance. Figures 4 and 5 show plots of
this optimistic approximation to compare with the conditional
analysis presented below.

The difficulty with properly accounting for the first mech-
anism is that conditioned on previous decoding failures, the
noise is no longer i.i.d. Gaussian. However, we can make a
worst-case analysis based on the following two observations.

As shown in [2] and the references therein, the Gaussian
distribution is the worst memoryless noise possible given
a specified noise power. Lapidoth [10] further showed that
irrespective of the noise distribution and even regardless of
whether the noise is i.i.d., the capacity assuming i.i.d. Gaussian
noise is achievable with nearest-neighbor decoding and no rate



above the i.i.d. Gaussian capacity is achievable with random
Gaussian coding and nearest-neighbor decoding. Hence, given
that our sphere-packing analysis is similar in structure to a
Gaussian codebook and that our decoding is similar to nearest
neighbor decoding, modeling the noise as i.i.d. Gaussian
(with an appropriately computed variance) is a reasonable
approximation.

Thus, to account for the first mechanism, we calculate
the conditional expectation of the noise power in Bi−1. We
then model the noise vector of Bi−1 as i.i.d. Gaussian noise
with this conditional expected noise power. To simplify the
calculation, we further approximate by conditioning on ζi−1

instead of
∩i−1

j=1 ζj .
With that approximation, we are able to calculate the

conditional decoding error and analyze the throughput and
latency of the MIRF scheme. When the step size is large
enough (s ≥ N/10), the approximation matches well with
the simulations on modified MIRF scheme using tail-biting
convolutional codes and ML decoding.

Let In(r) be the integral of the product of the noise power
and the probability density over the complement of the n-
dimensional sphere with radius r. The new expected noise
power in Bi−1, denoted as N i−1, is

E

ni−1∑
j=1

z2j

∣∣∣∣∣∣ζi−1

 = N i, i = 2, 3 . . .

=
Ini−1(ri−1)

1− Fχ2(ni−1)(r
2
i−1)

.

The details of calculating In(r) can be found in [11].
The error probability of the code conditioned on

∩i
j=1 ζj is

approximated by the error probability of the same code but
with a new noise vector Z ′ = [z′1, z

′
2, . . . , z

′
ni
], z′i ∼ N(0, σ2

c ),

where σ2
c = Ni−1+s

ni
. The radius of the code is ri =

√
ni(1+η)

2nRc/ni

This error probability is the same if we normalize the
noise to unit variance and consider a code with radius r′i =√

ni(1+η′)

2nRc/ni
, where η′ = niη

s+Ni−1
. This normalization allows us

to calculate the probability with chi-square C.D.F.
We summarize the procedure of computing the conditional

error probability for each transmission as follows
1) Calculate the expected noise power of the block Bi−1

conditioned that Bi−1 cannot be decoded and denote it
as N i−1.

2) Update the new total noise power by N i−1 + s.
3) Normalize the noise variance to unit variance and update

new SNR η′ = niη

s+Ni−1
.

4) Update the equivalent inner sphere r′i according to the
new SNR η′.

5) The conditional probability is approximated by Pe,i =

1− Fχ2(ni)(r
′2
i ) where r′i =

√
ni(1+η′)

2nRc/ni
.

C. Analytic Depth of Convolutional Code
This section explains the performance degradation of the

simulation at the high rate regime in terms of the decision
depth (or traceback depth) of convolutional code.

The analytic decision depth [12] [13] is the pathlength
at which the survivor path incident on the zero state has
a path metric that is the unique minimum distance over
all survivor path metrics (excluding the all zero path). The
optimal decision depth of finite traceback Viterbi algorithm is
usually determined by simulation. The analytic decision depth,
however, gives a good lower bound on the decision depth. For
example, the analytic decision depth of the standard rate 1/2,
64-state feedforward convolutional encoder is 28. Simulation
results show that a decision depth of 35 gives a noticeable
performance improvement over 28, and decision depth larger
than 35 give only negligible improvement.

Table I shows the profiles of some convolutional codes with
different number of states. ν is the number of memory element,
dfree is the free distance and Ddecision is the analytic decision
depth. Suppose the system is operating under SNR of 2dB
and starts out with a 1024-state convolutional code, initial
blocklength 128 and initial code rate 0.9 (information bits).
To get the overall code rate below the capacity (0.6851), say
0.6, the decoding blocklength have to increase up to 174. This
blocklength far exceeds the analytic decision depth of 31 for
the 1024-state convolutional code. Once the blocklength is
far greater than the analytic decision depth, performance does
not improve, unlike the steady improvement provided by our
sphere packing assumption.

Table II is the RCPC code profile when pseudo-random
puncturing is used to obtain high rate codes. As the rate
increases, the dfree decreases and the Ddecision increases. The
performance of the convolutional code will also degrade if
the block length cannot support the minimum decision depth
required. For example, a blocklength 64 convolutional code
with initial code rate 0.9 cannot support the needed decision
depth of 182.

The above two restrictions on the practical coding system
are two causes of the disagreement at the high rate regime for
both simple ARQ and MIRF.

TABLE I
PROFILE OF DIFFERENT RATE 1/3 CONV. CODES

ν Encoder (Octal) dfree Ddecision
6 (133, 171, 165) 15 20
7 (365, 353, 227) 16 25
8 (561, 325, 747) 17 23
9 (1735, 1063, 1257) 20 28
10 (3645, 2133, 3347) 21 31

TABLE II
PROFILE OF RATE COMPATIBLE CONV. CODES

Mother Code: ν = 10 (3645, 2133, 3347)
Rate dfree Ddecision
0.4 16 32
0.5 12 48
0.6 11 62
0.7 8 66
0.8 6 90
0.9 5 182
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Fig. 4. Throughput versus code rate for a MIRF scheme for step size = 10
bits.
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Fig. 5. Latency versus throughput for step size = 10 bits.

D. Comparison with Simulations

Figure 4 shows throughput vs. initial code rate, and Fig-
ure 5 shows latency vs. throughput. Both figures show results
for sphere-packing analysis and simulations of a tail-biting
convolutional code from the [9] and [14]. The lowest code
rate for each simulation is 1/3.

The agreement between analysis and simulation in the low-
rate regime is striking. In the high-rate regime, the convolu-
tional codes fall short of the analysis because the throughput
has reached the limit of the system’s ability to approach the
channel capacity. Figure 4 shows that maximum throughput
increases from below 0.5 with simple ARQ to above 0.5 with
incremental redundancy. Figure 4 also shows that the initial
code rate should be higher when using incremental redundancy
than when using simple ARQ. Qualitatively, this is obvious.
However, Figure 4 indicates how much higher the initial code
rate should be. Figure 5 shows that incremental redundancy
allows latency to remain low even in the throughput range
between 0.4 and 0.5, where simple ARQ does not.

V. CONCLUSION

It is not surprising that incremental redundancy with feed-
back can reduce latency. The key result of this paper is a
code-independent analysis that is able to accurately determine
how much latency reduction and throughput improvement is
possible with incremental redundancy of various step sizes.
This is a useful tool in system design that was not previously
available.

This paper presents a sphere-packing analysis of latency
vs. throughput for a baseline simple ARQ scheme and a
modified incremental redundancy scheme. This powerful anal-
ysis quantifies the latency benefit possible with incremental
redundancy and closely predicts the performance of Chen’s
modified incremental redundancy scheme, validating it as an
extremely efficient use of incremental redundancy.

For the simple ARQ scheme, the throughput curves based on
the sphere-packing analysis match up well with the simulation
results of the convolutional codes when an ML decoder is
used. The simulated throughput curves for convolutional codes
are match well with the analysis. The suboptimal decoder in
our analysis accounts for the disagreement at the maximum
throughput region, and inadequate strength of convolutional
code when the blocklength increases explains the disagreement
at high rate regime.

For the MIRF scheme, further approximations on the con-
ditional probability were made to simplify the analyses. Sim-
ulations of the MIRF scheme using convolutional codes show
that the approximations are not too far away from practice.
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