
Channel Code Analysis and Design using Multiple
Variable-Length Codes in Parallel without Feedback

Haobo Wang and Richard D. Wesel
UCLA Communications Systems Laboratory, Electrical and Computer Engineering Department

University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
Email: {whb12, wesel}@ucla.edu

Abstract—This paper considers a channel coding paradigm
that enables high throughput by using many variable-length
codes in parallel, where each of the parallel codes has a
short average blocklength. The inter-frame coding of Zeineddine
and Mansour provides variable-length codes with incremental
redundancy from a common pool of redundancy in a way that
does not require feedback. A probability-based derivation of a
generalized peeling decoder extends the results of Luby et al.
to the inter-frame scenario. A new expression characterizes the
probability that a variable-length decoder in the inter-frame sys-
tem will fail. Additionally, the three causes for throughput loss as
compared to the original feedback system are identified, yielding
a new, and far simpler, quasi-regular design methodology for
the right degree distribution of the inter-frame code. The inter-
frame paradigm can apply to any communication channel, but
this paper uses the additive white Gaussian noise channel to
demonstrate the concepts.

I. INTRODUCTION

Practical systems and theoretical analysis [1]–[3] show that
using a variable-length (VL) code with incremental trans-
missions controlled by ACK/NACK feedback can approach
capacity with short average blocklengths on the order of
200-500 symbols. This paper studies the analysis and design
of systems that use many variable-length codes in parallel
and without feedback to approach capacity for point-to-point
communication.

As described in [4] a large number of capacity-approaching
VL codes can be decoded in parallel without feedback using
the inter-frame coding approach of Zeineddine and Mansour
[5], where an appropriate number of linear combinations of
incremental redundancy, which we will refer to as a common
pool of redundancy (CPR), are transmitted. This can also
be considered as an example of a doubly generalized LDPC
code [6]. A peeling decoder applied to the CPR provides
incremental redundancy to the VL decoders. Peeling decoders
have been applied in a similar way for multiple access
channels [7]–[10].

The proposed coding system has significant advantages in
high-throughput applications providing both parallelism and
the complexity advantage of short-blocklength decoders. Op-
tical communications and non-volatile memory data storage
are two potential applications for such systems. With an
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additional high-rate code to correct for the occasional VL
code failure, the very low frame error rates required by these
applications can be achieved.

The parallel system has as its conceptual building block
a VL code, which for the examples in this paper is a tail-
biting convolutional code with the reliability output Viterbi
decoding algorithm in [4] and pseudo-random puncturing. The
expected number of increments required by the VL code (with
feedback) determines an upper bound on the throughput of the
proposed system (that does not use feedback), but as shown
below, practical inter-frame coding systems suffer a small loss
in throughput from that bound.

The inter-frame code that generates the CPR is a general-
ization of one stage of the cascaded erasure correction scheme
in [11], which is described by a bipartite graph. The left nodes
in the graph represent the VL codes, and right nodes are the
linear combinations of incremental redundancy that comprise
the common pool of redundancy. Once the VL code has been
specified, the main design question becomes the determination
of the left and right degree distributions.

Zeineddine and Mansour showed in [5] that using a gen-
eralization of the heavy-tail distribution for the left degree
distribution and a mixture of Poisson distributions for the
right distribution can asymptotically achieve the throughput
of the VL code with feedback if the number of increments
required by the VL code follows a geometric distribution.
The generalized heavy-tail distributions of [5] have (asymp-
totically) infinite support, but practical systems will have
finite support. The system studied in this paper is constrained
such that all left nodes have the same degree, which is
the number of increments (four in this paper) produced by
the VL encoder. Furthermore, the distribution describing the
number of increments required to decode is not a geometric
distribution according to analysis in [2] and [12].

In the context of a fixed, regular left degree distribution
and a non-geometric, empirically-obtained distribution on the
number of increments required for successful VL decoding,
this paper seeks to find the most suitable right degree distri-
bution in the context of two main performance goals:

1) Maximizing feedback-free throughput R(FF )
t , which is

upper bounded by the rate R(FB)
t of the feedback system;

2) Guaranteeing that the feedback-free VL decoder failure
rate εFF is below a target value ε∗FF .
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Fig. 1. Encoder structure for an inter-frame coding system

This paper provides a new expression for the probability
εFF that a variable-length decoder will fail in the feedback-
free system and identifies the three primary causes for
throughput loss from the original feedback system. These
analytical tools facilitate a new and far simpler design method-
ology for the right degree distribution of the inter-frame code.

Section II describes inter-frame coding. Section III analyzes
inter-frame code convergence, provides a new expression for
εFF , and explains mechanisms that lead to throughput loss.
Section IV examines potential right degree distributions and
studies the trade-off between the number of iterations and the
throughput R(FF )

t . Section V presents our conclusions.

II. INTER-FRAME CODING

An inter-frame coding system [5] consists of two layers: a
VL code layer and an inter-frame code layer. Fig. 1 shows
the encoder structure. At the transmitter, the VL code layer
has nc encoders in parallel. Each VL encoder takes as input
a message Wi of length k bits, and produces an initial
transmission X(i)

0 and m−1 incremental transmissions (a.k.a.
increments) X(i)

j . Transmissions X(i)
0 have length `0 symbols,

and transmissions X(i)
j (j > 0) have length `∆. Overall, there

are m possible transmissions for each VL codeword.
The initial transmissions X

(i)
0 are sent over the point-

to-point channel as usual, but the m − 1 increments X
(i)
j

(j > 0) are not. Instead, the inter-frame code sends ni
incremental transmissions Ii, all of length `∆. Each Ii is
a linear combination (bit-by-bit exclusive-or) of increments
X

(i)
j (j > 0) from distinct VL codewords. Each increment

from a VL codeword is used in one linear combination Ii, with
the exact linear combinations determined by a bipartite graph
describing the inter-frame code. These Ii’s form the CPR that
are sent through the channel. In this paper, the point-to-point
channel is a 2dB additive Gaussian channel.

The decoder of the inter-frame system can also be modeled
as a bipartite graph as in Fig. 2, which corresponds to the inter-
frame layer in Fig. 1 rotated counter-clockwise by 90 degrees.
VL decoders (left nodes) attempt to decode immediately upon
receiving the initial transmissions X(i)

0 distorted by channel
noise n. Some decoders will be able to succeed. The CPR
(Ii+n’s, right nodes) provides increments to the VL decoders
that initially fail, as the increments become available from a
peeling process. That is, each time a VL decoder succeeds in
decoding, it generates its increments X(i)

j ’s and removes them
from the linear combinations of the increments ((Ii + n)’s).
When all but one increment has been removed from a linear
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Fig. 2. Decoder structure for an inter-frame coding system

combination Ii, the remaining increment is available to its
corresponding VL decoder.

The probability mass function

δ = {δ0, . . . , δω, . . . , δm} (1)

represents the probability that the VL decoder requires ω
increments beyond the initial transmission to decode success-
fully1, i.e. ω+1 total transmissions. For 0 ≤ ω ≤ m−1, δ(ω)
is the probability that a codeword is successfully decoded after
ω increments, and δ(m) = εFB is the probability that the VL
decoder will fail even after all m−1 increments are received.
The δ distribution captures the decoding statistics of the VL
code for a given point-to-point channel, and is used in the
analysis of inter-frame code’s decoding performance. As is
in [4], we use the k = 64 1024-state tail-biting convolution
code as the VL code. The maximum number of transmission
is m = 5 and δ = {0.33304, 0.44860, 0.18225, 0.03159,
0.00402, 0.00050} [4].

III. CONVERGENCE, FAILURE RATE, AND THROUGHPUT

This section presents a new convergence analysis for the
peeling decoder that operates on the inter-frame layer. For
the inter-frame layer, the analysis considers an ensemble of
bipartite graphs of infinite length that have a specified degree
distribution. The basic peeling algorithm [11] is used to
correct binary erasures that are left nodes in a bipartite graph.
Following the definitions in [11], define λ(x) =

∑dL
i=1 λix

i−1

as the left edge degree distribution polynomial with maximum
left degree dL and ρ(x) =

∑dR
i=1 ρix

i−1 as the right edge
degree distribution polynomial with maximum right degree
dR. We will explore how the indeterminate x in the degree

1More precisely, δ(ω) is the probability that the decoder requires ω
increments to decode successfully for the first time.



distribution polynomials has an interpretation as a probability
in the context of the peeling decoder.

In our analysis, the inter-frame layer recovers increments
by using a generalized peeling decoder (GPD). The general-
ization is from a basic peeling decoder as in Luby et al. [11]
where any single recovered edge always recovers the erased
variable node to the generalized scenario where the number
of edges required to recover a variable node is a random
variable that can take on values larger than one. More than
one edge is required when the VL decoder requires more than
one increment to successfully decode. The PMF δ described
in (1) defines the random variable describing the number of
required edges.

For the basic peeling decoder of [11], the left nodes are
initial transmissions of a single bit over the binary erasure
channel (BEC) with erasure probability α. The right nodes
are linear combinations of single bits, The right nodes are
received error free according to [11]. The basic peeling
decoder is a special case of the GPD with PMF δ described
by m = 2, δ0 = 1− α, δ1 = α and δ2 = 0.

For the GPD, the left nodes correspond to multiple-bit
initial transmissions and the right nodes correspond to linear
combinations of multiple-bit increments. Also, unlike [11]
the right nodes are not assumed to be received error-free.
The actual communication channel over which both the initial
transmissions and the increments are transmitted is typically
not an erasure channel. In our examples we will use an
additive white Gaussian (AWGN) channel.

The analysis in subsections A and B below produces
essentially the same results as in [11], [13], [14], and [5], but
the equations are derived from simple probability arguments
rather than differential equations or And/Or trees. Further-
more, this analysis provides the foundation required for the
development in subsections C and D.

A. Basic Peeling Decoder

In this subsection we provide a probabilistic analysis of
the basic peeling decoder of [11]. We begin with a bipartite
graph B with nc left nodes and ni right nodes. Graph B has
E edges. Let G be the graph obtained after the deletion of
the (1− α)nc left nodes that were not erased by the BEC.

At each decoding step, one right node with degree-one is
selected. We refer to this node’s single edge as a right-degree-
one edge. Let Qt be the tth right-degree-one edge used to
remove a left node and all of its incident edges from the graph.
Define Gt as the graph obtained by removing Q1, . . . , Qt as
well as their corresponding left nodes, and the incident edges
of those left nodes.

Define x(t) or simply x as the probability that a randomly
selected edge from B does not belong to the set {Q1, . . . , Qt}.
This x will turn out to be exactly the indeterminate of the
degree distribution polynomials in relevant probability cal-
culations. Because x(t) decreases monotonically and strictly
with t, we will sometimes use x(t) and t interchangeably. That
is, understanding the evolution of a variable or probability as a

function of time t is equivalent to understanding its evolution
as a function of x.

We seek r1(x), which is the fraction as a function of x (or t)
of the total number |E| of edges in graph B that are available
at time t to be used as a selected right-degree-one edge Qt to
recover a left node. Recall that for the basic peeling decoder,
each undecoded left node only requires one edge Qt to be
recovered and hence removed.

We begin the computation of r1(x) by determining the
fraction of edges in B that connect to a degree-i left node
in B whose i−1 other edges are not in the set {Q1, . . . , Qt}.
This is a requirement for the edge to be in Gt. This fraction is
the probability δ1λixi−1 (or αλixi−1) of randomly selecting
such an edge from B. Note that this edge itself may or may
not be in the set {Q1, . . . , Qt} (which would exclude it from
Gt ) and its random selection was independent of whether is
was or was not in {Q1, . . . , Qt}. Summing over all initial left
degrees, the total probability of an edge from B having a left
node in B whose other edges are not in the set {Q1, . . . , Qt}
is `(x) = δ1λ(x).

Now we look independently at the probability that a ran-
domly selected edge from B is connected to a right node
that has all its other edges removed at time t. Consider the
probability that an edge connects to a right node with degree
i in B whose i− 1 other edges have been removed at time t.
This requires that all of the other 1− i edges incident to the
right node have been removed from the graph at time t by
the decoding action of some other left node. This probability
is ρi (1− `(x))

i−1. Summing over all initial right degrees,
the total probability of an edge from B being connected to
a right node that has all its other edges removed at time
t is ρ(1 − `(x)). Note that this includes edges in the set
{Q1, . . . , Qt}.

Because the two previously discussed events are indepen-
dent, the probability of an edge from B having both properties
is the product of the two previous probabilities, and hence is
r∗1(x) = `(x)ρ(1− `(x))

Now we must explicitly remove the edges in the set
{Q1, . . . , Qt} from the edges we have identified above. The
probability of an edge in B belonging to {Q1, . . . , Qt} is
1−x by the definition of x, and membership in {Q1, . . . , Qt}
is independent of whether any other edges incident to its left
node are in the set {Q1, . . . , Qt}. Thus the probability of an
edge needing to be removed from the edges already considered
is `(x)(1 − x). Thus the final probability of a randomly
selected edge from B being in Gt and having right degree
one in Gt and thus being available to provide an increment
in the current iteration is

r1(x) = r∗1(x)− `(x)(1− x) (2)
= `(x)[ρ(1− `(x))− (1− x)] (3)
= δ1λ(x)[ρ(1− δ1λ(x))− (1− x)], (4)

where (4) is the expression obtained in [11], but the more
general (3) facilitates the derivation in the next subsection.



B. Generalized Peeling Decoder

In this subsection we generalize the probabilistic analysis
of the basic peeling decoder to the GPD of inter-frame coding.
For the GPD, the edges in {Q1, . . . , Qt} do not always remove
a left node. They provide an increment of redundancy that
facilitates an additional decoding attempt that may allow the
left node to be removed.

With this generalization in mind, we compute the proba-
bility p` that an edge E randomly selected from B has the
property that at time t the set of other edges incident to its
left node does not include enough members of {Q1, . . . , Qt}
(which correspond to increments) to decode successfully.
Recall that the probability that a randomly selected edge from
B is not in {Q1, . . . , Qt} is x.

Consider the case where the the randomly selected edge E
has a left node that requires ω increments to decode and has
initial degree i in B. If ω > i− 1, p`(i, ω) = 1. If ω = i− 1,
p`(i, ω) = 1− (1− x)ω since all ω other edges must provide
increments for successful decoding. If ω < i− 1,

p`(i, ω) = 1−
i−1∑
j=ω

(
i− 1

j

)
(1− x)jxi−1−j (5)

=

ω−1∑
j=0

(
i− 1

j

)
(1− x)jxi−1−j , (6)

which is simply xi−1 for the special case of ω = 1. To
summarize

p`(i, ω) =

min(ω,i)−1∑
j=0

(
i− 1
j

)
(1− x)jxi−1−j . (7)

Summing over all possible pairs (i, ω) for the selected edge
E , the probability that an edge E randomly selected from B
has the property that at time t the other edges incident to its
left node do not induce successful decoding is

`(x) =

m∑
ω=1

δω

dL∑
i=1

λi

min(ω,i)−1∑
j=0

(
i− 1

j

)
(1− x)jxi−1−j .

(8)

Note that the edge E has left degree i with probability λi and
requires ω increments to successfully decode with probability
δω . The term

(
i−1
j

)
(1 − x)jxi−1−j in (8) appears for all δω

for which ω > j. Thus defining γj =
∑m
j+1 δω , `(x) is also

equal to

`(x) =

dL∑
i=1

λi

min(m,i)−1∑
j=0

γj

(
i− 1

j

)
(1− x)jxi−1−j . (9)

In the case of interest where there is a single left degree dL,
the probability is

`(x) =

dL−1∑
j=0

γj

(
dL − 1

j

)
(1− x)jxdL−1−j . (10)

Following similar arguments as for the BEC above, the final
probability of a randomly selected edge from B also being a

right-degree-one edge present in Gt and available to provide
an increment is

r1(x) = `(x)[ρ(1− `(x))− (1− x)] , (11)

which is identical to (3) except `(x) is now as defined in (8).

C. GPD Probability of VL decoding failure εGPD a.k.a. εFF

In [11], r1(x) determines the decodability of the erasure
code given the channel erasure probability α = δ1. Recall
that x represents the probability that a randomly selected edge
from B is not in the set Q = {Q1, . . . , Qt}. At the start the
peeling decoding process (t = 0), x = 1 because Q = ∅. As
more edges are removed from the graph, x decreases. When
there is no right-degree-one edge in the graph, r1(x) = 0, and
decoding will stop. We use x0 to represent x at this point.

For a basic peeling decoder, removal of any edge connected
to a left node will result in the left node being recovered.
Thus r1(x) > 0 not only ensures the ability of the decoding
to continue, but also the continued recovery of left nodes.
The single goal of maintaining r1(x) > 0 guides the design
of degree distributions in [11] that guarantee the recovery of
the overwhelming majority of left nodes. In other words, we
seek degree distributions λ(x) and ρ(x) such that x0 → 0
as blocklength increases, where r1(x) > 0 for x ∈ (x0, 1]. If
x0 > 0, then it could be useful to compute a failure probability
for the basic peeling decoder εBPD. However, εBPD = 0
when x0 → 0, and degree distributions have been identified
in [11] for which x0 → 0. Thus computing εBPD has not
been a focus.

For the GPD, however, εGPD > 0 even when x0 → 0.
When a degree-i left node requires ω > i increments to
decode, even if all the right nodes incident to the left node
have degree 1 (i.e. all available increments have been pro-
vided), the left node will not be able to recover. Hence we
must include the probability of VL decoding failure in the
overall failure probability εGPD. Furthermore, such instances
of VL decoding failure even with all available increments
provided means that some right nodes are never able to
provide increments, leading to x0 > 0 even as blocklength
grows without bound.

Using x0, we can calculate the probability of failure εGPD
for a given code and δ distribution. The probability of failure
is defined as the probability a left node cannot be decoded
when r1(x) = 0 (i.e. when no more degree-one right nodes
exists in the graph). The analysis here is very similar to `(x).
The difference is that we now need to consider all the edges
incident to a left node instead of all-but-one.

Consider the case where a degree-i left node requires ω > 0
increments to decode. If ω > i, the node will not be able
to decode at all. If ω ≤ i, the node will not be able to
decode if the total number of increments received so far
is less than ω, and the resulting probability of failure is



∑ω−1
j=0

(
i
j

)
(1 − x0)jx0

i−j . To summarize, the probability of
failure of a degree i left node requiring ω increments is

εGPD(i, ω) =

min(ω−1,i)∑
j=0

(
i

j

)
(1− x0)jx0

i−j . (12)

As a result, the probability of failure can be calculated as

εGPD =

m∑
ω=1

δω

dL∑
i=1

Λi

min(ω−1,i)∑
j=0

(
i

j

)
(1− x0)jx0

i−j (13)

=

dL∑
i=1

Λi

min(m−1,i)∑
j=0

γj

(
i

j

)
(1− x0)jx0

i−j , (14)

where γj =
∑m
j+1 δω as in `(x), and Λi = λi/i∑dL

j=1
λi/i

is the

left node degree distribution. In this paper, we also refer to
εGPD as εFF , the failure probability of a VL decoder in the
feedback-free system.

D. Throughput and average right degree

In order to support a target failure probability ε∗FF , more
linear combinations of increments must be transmitted than
the number of increments that would have been requested
by a system using ACK/NACK feedback. These additional
transmissions result in a throughput loss for the inter-frame
system as compared to the feedback system. This throughput
loss is caused by three mechanisms in the decoding process
that prevent a linear combination of increments (right node)
from providing an increment to a VL decoder (left node):

1) The degree of the right node of interest (RNOI) never
decreases below two.

2) The degree of the RNOI decreases from two or more to
zero in a single iteration of the peeling decoder so that
it never provides an increment.

3) The degree of the RNOI achieves the value of one during
an iteration so that it provides an increment to a left
node, but other right nodes simultaneously provide the
remaining required increments to that left node making
the RNOI’s increment superfluous.

Assign probabilities η1, η2 and η3 to the mechanisms listed
above respectively. The probability that a right node does not
provide a useful increment to any left node is η = η1+η2+η3.

Even if the probability of η were zero, so that every right
node provides a useful increment to a left node, in order for
the inter-frame code to have the potential to provide the left
nodes with the increments they need, the average number β =
ni/nc of right nodes (combined increments) per left node (VL
decoder) must be at least the expected number of increments
required by a VL decoder using ACK/NACK feedback with
a maximum of m− 1 increments, which is

βFB =

m−1∑
i=1

iδi + (m− 1)δm = E[δ]− δm , (15)

where expectation is with respect to the PMF provided in (1).

2 3 4 5 6 7 8 9 10
Initial right node degree

10-5

10-4

10-3

10-2

10-1

100

P
ro

b.
 o

f 
fa

il
ur

e 
m

ec
ha

ni
sm

1

2

(a) Probabilities of failure mechanisms as a function of right node degree.

2 3 4 5 6 7 8 9 10
Initial right node degree

0.06

0.08

0.1

0.12

0.14

P
ro

b.
 o

f 
fa

il
ur

e 
m

ec
ha

ni
sm

2

1
+

2

(b) Probability of failure mechanism 1 and the sum of the probabilities of
failure mechanisms 1 and 2 as a function of right node degree.

Fig. 3. Probability of failure mechanisms of right nodes for ρ(x) from [4].

In this paper, the degree of left nodes will always be the
maximum possible value of m− 1 to guarantee that each VL
decoder has the possibility to receive the maximum number
of increments. Throughout this paper, we consider an example
where m = 5, dL = m− 1 = 4, and therefore λ(x) = x3.

With constant left degree dL, β = dL/aR, where aR is
the average right degree. The requirement that β > βFB
implies that dL/aR > βFB which yields an upper bound on
the average right degree: aR < dL/βFB . For the VL code
in our example from [4], βFB = 0.92598, and so we require
aR < 4.31975. For the irregular ρ(x) in [4], aR = 3.69242.

For a constant value of dL, the actual average right degree
can be approximated using βFB and the probability η that
a right node does not provide a useful increment as follows:
aR = dLnc

ni
≈ dL(1−η)

βFB
.

Fig. 3 shows the fraction of right nodes of each possible
degree that suffer from the first two failure mechanisms for the
irregular ρ(x) in [4] according to density evolution analysis.
Fig. 3a shows that η1 is two or more orders of magnitude
smaller than η2 for this degree distribution. Fig. 3b show that
the sum of η1 and η2 is very similar to the curve for η2 alone.
The probability of mechanism 3 is difficult to quantify, but
should be extremely small for codes with good throughput.

As shown in Fig. 3, both high and low right degrees turn
out to be undesirable because they are more likely to decrease
directly from degree two-or-more to degree zero in a single
iteration. This observation leads to the new design method in
the next section, where the right degree distribution is quasi-
regular.



TABLE I
PERFORMANCE CHARACTERISTICS OF SOME CANDIDATE RIGHT DEGREE

DISTRIBUTIONS. λ(x) = x3 IN ALL CASES.

ρ(x) aR β iter. % R
(FB)
t εFF

ρ(x) = x2 from [4] 3 1.33333 15 93.52% 7.09×10−4

Irregular ρ(x) from [4] 3.69242 1.08330 32 96.48% 9.24×10−4

Poisson ρ(x) from [11] 3.57594 1.11859 38 96.04% 1.00×10−3

IV. RIGHT DEGREE DISTRIBUTION DESIGN

This section uses the analytical tools discussed above to
explore possible right degree distributions ρ(x) in terms of
the induced available right-degree-one edges r1(x) as defined
in (11) with `(x) as defined in (10) and the induced failure
rate εFF according to (14). For this paper we set a target
failure rate of ε∗FF = 10−3 and seek right degree distributions
that would achieve the lowest possible value of β (highest
possible aR) with the least possible number of iterations. The
designs in this section are for a 2dB binary-input additive
Gaussian channel, and the reference VL system is the same
as in [4] with feed-back throughput RFBt = 0.528756. The
corresponding δ is shown in Sec. II.

The lowest possible value of β is sought because this will
allow the system to achieve the highest possible percentage of
the throughput R(FB)

t of the original feedback system. From
the analysis in [4] we can express throughput of the baseline
feedback system as

R
(FB)
t =

k(1− εFB)

`0 + βFB`∆
, (16)

where `0 is the length of the initial transmission, `∆ is the
length of the increments, k is the number of message symbols,
and εFB is the failure probability of the feedback system.

The feedback-free throughput R(FF )
t is computed as

R
(FF )
t =

k(1− εFF )

`0 + β`∆
. (17)

The number of iterations is determined through an exact
density evolution analysis that was found to agree with our
actual simulation results as is shown in [4].

We begin by revisiting the two right-degree distributions
considered in [4] and a Poisson right degree distribution as
suggested in [11]. As shown in Table I the regular distribution
had a relatively high β of 4/3, which achieved 93.53% of
R

(FB)
t . The irregular distribution from [4] was found by

differential evolution and included right degrees from 1 to
10, with details in [4]. This lowered β to 1.08330 to achieve
96.48% of R(FB)

t but required 32 iterations to complete.
Following [11], we considered a Poisson ρ(x), which we

truncated to degrees between 1 and 20. The Poisson dis-
tribution’s parameter was chosen to minimize β while still
achieving εFF ≤ 10−3. The Poisson distribution performed
well, achieving 96.04% of R(FB)

t with β = 1.11859 in 38
iterations, but did not outperform the irregular distribution
from [4], which was concentrated primarily on degrees 3, 4,
and 5.
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Fig. 4. r1(x) vs. x for the three choices of ρ(x) in Table I. The curves
are generated using (11). Circles indicate iteration points determined through
density evolution. The circles at x = 1 represent the first iteration.
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Fig. 5. Probability of failure vs. iterations for ρ(x) distributions in Table I.
The curves are generated using density evolution.

Fig. 4 shows the r1(x) vs. x performance for these three
cases and also confirms that (11) matches the performance
observed through density evolution. Fig. 5 shows how the
probability of failure decreased with the number of iterations.

The derivations in [11] and [5] argue that their proposed
heavy-tail Poisson distributions are one way to allow β to
approach βFB . However, there may be other distributions that
provide good performance in practice. Motivated by [15] and
Sec. III-D, we considered the simplest possible distributions:
quasi-regular right degree distributions. We first used a quasi-
regular right degree distribution of ρ(x) = αx2 + (1 − α)x3

(degree 3 and 4) to explore β values in between these two
points, where α is a design parameter. As shown in Table
II and Figs. 6 and 7 these distributions did quite well. For
example, the α = 0.244 distribution outperformed both the
irregular distribution from [4] and the Poisson distribution
suggested by [11]. If more iterations are possible, over 97%
of R(FB)

t can be achieved by α = 0.108 with 100 iterations.
We explored even more iterations and three consecutive

degrees, as shown in Table III, but even with thousands of
iterations, negligible improvement over the 97.08% of R(FB)

t

achieved by α = 0.108 was seen.
The key difference to note between the ρ(x) found by

differential evolution in [4] and the results here is the design
complexity. The complexity of finding degree distributions
through differential evolution in [4] is very high. The complex-
ity of designing degree distributions based on the quasi-regular



TABLE II
PERFORMANCE CHARACTERISTICS OF QUASI-REGULAR
ρ(x) = αx2 + (1− α)x3 . λ(x) = x3 IN ALL CASES.

α aR β iter. % R
(FB)
t εFF

1 3 1.33333 15 93.52% 7.09×10−4

0.531 3.39847 1.17700 20 95.36% 7.82×10−4

0.244 3.69914 1.08133 30 96.52% 8.35×10−4

0.168 3.78788 1.05600 40 96.83% 8.50×10−4

0.139 3.82287 1.04633 50 96.94% 8.56×10−4

0.108 3.86100 1.03600 100 97.08% 8.63×10−4
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Fig. 6. r1(x) vs. x for Table II. The curves are generated using (11). Circles
indicate iteration points determined through density evolution.
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Fig. 7. Probability of failure vs. iterations for ρ(x) distributions in Table II.
The curves are generated using density evolution.

heuristic is very low as there is only a single design parameter
α for the case with two degrees. This low complexity enables
the brute force identification of the exact value of α that
achieves a target εFF with the minimum number of iterations.
In Table II and the second row of Table III, the resolution of
degree distribution coefficients is 0.001. And in the first row
of Table III, the resolution is 0.0001.

V. CONCLUSION

This paper considers channel codes that use an inter-
frame code to transform a capacity-approaching code that
uses incremental redundancy with feedback into a feedback-
free system that achieves similar throughput and error perfor-
mance. Results included an alternative derivation for the right-
degree-one process r1(x), a new expression for the failure
probability εFF , and analysis of the mechanisms that lower the
throughput of a feedback-free system with respect to the origi-
nal feedback system. For the practically interesting case where

TABLE III
PERFORMANCE CHARACTERISTICS OF LOWEST-β QUASI-REGULAR RIGHT

DEGREE DISTRIBUTIONS. λ(x) = x3 IN ALL CASES.

ρ(x) aR β iter. % R
(FB)
t εFF

0.0998x2+0.9002x3 3.87122 1.03327 1648 97.11% 8.65×10−4

0.409x2+0.052x3+
0.539x4

3.88903 1.02853 3748 97.16% 9.16×10−4

the left degree distribution is regular, we showed that quasi-
regular right degree distributions work well in an absolute
sense and better than any alternative considered. This simple
construction achieves 97% of the feedback throughput rate
while achieving the target failure probability of εFF < 10−3.
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