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Abstract—To maximize the throughput achieved by variable-
length codes, the length of each incremental redundancy trans-
mission should be optimized. In previous papers, sequential
differential optimization (SDO) provides transmission lengths
that optimize throughput by minimizing average blocklength
for a specified maximum number of feedback transmissions per
message. This paper uses a Lagrangian approach to develop
an alternative SDO that maximizes throughput for a specified
average number of feedback transmissions per message. The
mapping of real-valued SDO solutions to the necessarily integer
transmission lengths is addressed through dithering.

I. INTRODUCTION

This paper optimizes of the lengths of transmissions
of incremental redundancy (IR) controlled by feedback
of acknowledgement (ACK) or negative acknowledgement
(NACK) messages from the receiver to the transmitter. ACK
indicates that reliable decoding has been achieved, which can
be established by a cyclic redundancy check (CRC) [1], [2] or
a direct calculation of the probability of error for the selected
codeword, e.g. by the reliability-output Viterbi algorithm
(ROVA) [3], [4]. Feedback-based incremental redundancy is
sometimes referred to as either an IR-Hybrid automatic repeat
request (HARQ) or a Type-II HARQ, as described in [5], [6].

In an IR-HARQ, a variable-length (VL) code is employed;
the receiver accumulates symbols through a sequence of IR
transmissions until the accumulation concludes either because
reliable decoding is achieved or because the available se-
quence of IR transmissions has been exhausted. More infor-
mative feedback messages than a simple ACK/NACK can be
useful, as explored in works such as [5], [7]–[9], but in this
paper the only role of feedback is to determine whether the
next in a sequence of predetermined IR transmissions should
be sent. This is referred to as "decision feedback" by Forney
[10] or as "stop feedback" by Polyanskiy et al. [11].

The selection of each transmission length as well as the
number of possible IR transmissions is central to the design of
an effective IR-HARQ. As pointed out in [5], the optimization
of these parameters had received relatively little attention in
the literature with notable exceptions such as [8], [9] and [5]
itself, which require more information than the ACK/NACK
of the "stop feedback" systems that are the focus of this paper.

As explained in [5], IR-HARQs have been primarily applied
to applications with fading channels. Indeed, IR-HARQs play

Research supported by National Science Foundation (NSF) grant CCF-
1618272. Any opinions, findings, and conclusions or recommendations are
those of the author(s) and do not necessarily reflect the views of the NSF.

an important role in cellular communications including 3G
[12], 4G [13], and 5G [14]. However, recent theoretical
analysis [11] and practical demonstrations [15], [16] show
that IR-HARQ with simple ACK/NACK feedback can be
useful even on non-fading channels; on these channels they
allow capacity to be closely approached with short average
blocklengths on the order of 200-500 symbols. The examples
in this paper focus on such static channels, specifically a
binary-input AWGN channel, but the analysis and techniques
presented apply to any channel where an IR-HARQ is used.

The technique of sequential differential optimization (SDO)
[16]–[18] provides a sequence of transmission lengths that
optimizes throughput by minimizing the average blocklength.
For a a specified maximum number of feedback transmissions
and a maximum probability that the decoder fails to produce
an ACK even will all possible IR, SDO find the transmission
lengths that minimize average blocklength. SDO requires a
known probability distribution on the probability of ACK at
each cumulative blocklength, but works equally well for the
variety of distributions that arise from different VL codes
operating on different channels [18]–[20].

The original formulation of SDO minimized the average
blocklength for a fixed maximum number of feedback trasns-
missions. This paper re-frames the optimization problem to
provide a closed form expression for the optimal transmission
lengths under a constraint on the average number of feedback
transmissions. Regardless of how feedback is constrained,
SDO produces real-valued transmission lengths rather than
integers. The original implementations in [16], [17] modified
the lengths at each step to take on integer values, introducing
a performance loss. This paper also shows how dithering
can randomize integer-valued transmission lengths to provide
essentially the same performance as SDO’s real values.

The paper proceeds as follows: Sec. II reviews VL coding
with ACK/NACK feedback, introduces the original SDO
algorithm of [17] but with real-valued lengths, and presents
a baseline example using convolutional codes. Sec. III in-
troduces the average number of feedback transmissions per
message as an alternative constraint and uses a Lagrangian
framework to develop a new version of SDO that jointly
minimizes the average blocklength and the average number of
feedback transmissions. Sec. IV presents a dithering technique
to produce integer transmission lengths that closely approach
the performance of the real-valued transmission lengths pro-
vided by SDO. Sec. V concludes the paper.
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II. BACKGROUND: SDO FOR VL CODING

A. Variable-Length Coding with ACK/NACK Feedback

Consider a system that communicates a k-bit message
by using IR to send up to m possible transmissions in an
accumulation cycle (AC). The transmissions have lengths
of `1, . . . , `m, where sending each additional transmission
depends on ACK/NACK feedback. Each subsequent decoding
attempt in the AC has the advantage of a successively larger
cumulative blocklength of Nf , where Nf =

∑f
j=1 `j .

The decision of whether to send an ACK to terminate the
transmission or to send a NACK to request IR is based on an
indicator of reliable decoding that is available at the receiver.
A decoding error is only possible when the receiver decodes
incorrectly and also determines erroneously that the decoding
is reliable (e.g. because of passing a CRC check despite being
incorrect) and sends an ACK. All such errors are undetected.

The receiver cannot know whether it has truly decoded cor-
rectly, but the mechanism for determining reliable decoding
can guarantee a maximum probability of undetected error PUE
for a specified channel or class of channels. CRCs designed
to match the structure of the encoder have well-defined upper
bounds on PUE that can be made quite small [1]. Similarly, the
ROVA threshold is specifically designed to achieve a desired
target probability of undetected error PUE [4], [21].

Let P (Nf )
ACK and P

(Nf )
NACK be the marginal probabilities of a

decoding “success” or “failure” based on the reliability indi-
cator when the decoder is presented with a received codeword
having blocklength Nf . Note that P (Nf )

ACK + P
(Nf )
NACK = 1. The

SDO approach requires knowledge of P (Nf )
ACK as a function

of Nf for all valid values of f . In Sec. II-C we use a
Gaussian model for P

(Nf )
ACK . Other models or simply the

empirical distribution obtained from simulation can provide
the characterization of P (Nf )

ACK .
Consistent with the previous literature on SDO [16]–[20],

we assume a maximum transmission length Nmax that the
system will not exceed. Nmax might be selected to achieve
the desired value of ACK probability for the AC so that
P

(Nmax)
NACK is below a threshold such as 10−3. A maximum length
Nmax might be required because there is a limited number of
redundancy symbols available from the VL code. Certainly
there exist approaches that have unbounded transmission
length, but this paper restricts attention to the case where the
transmission length of the AC is bounded by Nmax.

While only integer values of Nf make sense in real systems,
it will be useful to model P (Nf )

ACK as a cumulative density
function (c.d.f.) where Nf is treated as a continuous random
variable. Our SDO approach yields real-valued solutions for
Nf . Sec. IV of this paper addresses how to uses integer values
in an actual system and still closely approach the throughput
performance of SDO with real values. This section and Sec. III
focus on how real-valued SDO solutions differ in performance
based on how the cost of the feedback resource is integrated
into the problem formulation.

If decoding is unsuccessful after all m decoding attempts
in the accumulation cycle, the associated k-bit message may
have to be discarded in a delay-sensitive application or the

transmission may be attempted again from scratch in ap-
plications where reliability and completeness are paramount
and latency is a secondary consideration. IR-HARQs with a
fixed maximum number of transmissions are referred to by
Heindlmaier and Soljanin in [22] as a fixed IR scheme, and
as shown in [22] the loss from the infinite IR scheme, where
m =∞, is small when P (Nm)

NACK is low. Even with a relatively
high P

(Nm)
NACK of 10−3, the effect of unsuccessful decoding

attempts on the throughput is negligible.
Let random variable (r.v.) I be the number of successfully

transmitted information bits in an accumulation cycle. Note
that I can only take on the values of k and zero. Let N be
the number of symbols transmitted in an accumulation cycle.
The throughput rate RT is defined as

RT =
E[I]

E[N ]
=
k
(

1− P (m)
NACK − PUE

)
E[N ]

, (1)

where E[N ] is well approximated by

N1P
(N1)
ACK +

m∑
f=2

Nf

[
P

(Nf )

ACK − P
(Nf−1)

ACK

]
+NmP

(Nm)
NACK . (2)

In (2) each cumulative blocklength Nf is multiplied by
the probability that reliable decoding is declared for the first
time at that blocklength. The longest blocklength Nm is also
multiplied by the probability that reliable decoding is never
declared.

B. Sequential Differential Optimization (SDO)

The expression for E[N ] above is an approximation be-
cause it assumes that if an ACK was sent when decoding a
message of length Nj−1, then certainly an ACK would also be
sent when decoding the corresponding longer message with
length Nf . While always true for erasure channels [20] and
observed to be true for the non-binary LDPC codes explored
in [16], this is not true in general and specifically not the case
for the convolutional codes explored in this paper. However,
events where an ACK would be followed by a NACK are
relatively rare, and ignoring this effect simply leads to a slight
underestimate of throughput by under-counting the ACKs that
occur for the first time on the f th attempt.

To further simplify optimization of RT , note that E[I] ≈ k
because P

(m)
NACK and PUE are negligibly small. Furthermore,

these values are fixed by the value of Nm and the mechanism
for determining ACK. Thus, maximizing RT is essentially
equivalent to minimizing E[N ]. Thus, we seek to minimize
E[N ] as approximated by (2).

Over a range of possible initial transmission lengths N1,
SDO [16]–[20] optimizes {N2, . . . , Nm} to minimize E[N ]
for each fixed value of N1. For each j ∈ {2, . . . ,m}, the
optimal value of Nf is found by setting ∂E[N ]

∂Nf−1
= 0, yielding

a sequence of relatively simple computations. In other words,
SDO selects the Nf that makes the previous choice of Nf−1
optimal in retrospect. For example, to find N2 SDO utilizes
the derivative

∂E[N ]

∂N1
= P

(N1)
ACK + (N1 −N2)P

′(N1)
ACK = 0 (3)
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Fig. 1. Throughput RT as a function of the initial transmission length N1

using the cumulative transmission lengths Nf prescribed by (4) and (6) for
Nmax = 164.649 and 192. The triangles show points where the final value
Nm prescribed by (6) is exactly Nmax so that truncation is not needed.

and solves for N2 as

N2 = N1 +
P

(N1)
ACK

P
′(N1)
ACK

. (4)

For j > 2, ∂E[N ]
∂Nj−1

= 0 depends only on {Nj−2, Nj−1, Nj} as
follows:

∂E[N ]

∂Nj−1
= P

(Nj−1)
ACK + (Nj−1−Nf )P

′(Nj−1)
ACK −P (Nj−2)

ACK . (5)

Thus SDO solves for Nf as

Nj = Nj−1 +
P

(Nj−1)
ACK − P (Nj−2)

ACK

P
′(Nj−1)
ACK

. (6)

Equations (4) and (6) provide an infinite sequence of
transmission lengths Nf , but many systems are constrained by
a maximum transmission length Nmax. Thus, SDO computes
Nf values only for indices f ≤ m where m is the first
index for which the transmission length computed by (6)
exceeds Nmax. In general, the transmission length Nm is
truncated to Nmax, but the most useful sequences are those
for which Nm = Nmax according to (4) so that no truncation
is necessary. The transmission lengths Nf provided by (4) and
(6) all increase as N1 increases. Thus for a specified Nmax the
SDO solutions lead to a natural trade-off between throughput
RT and the maximum number of transmissions m in an AC
as shown in the Figs. 1-3 for the tail-biting convolutional code
described in the next subsection.

C. Example: Tail-biting Convolutional Code in AWGN

Examples are presented using the VL coding system with
ACK/NACK feedback explored in [15], [18] transmitting a
message of k = 64 bits using a tail-biting rate-1/3, 1024-
state convolutional code with pseudo-random puncturing. This
system has a natural Nmax of 192 bits. For this system, reliable
decoding (resulting in feedback of an ACK) is declared when
the probability of error computed by the tail-biting ROVA
algorithm of [21] exceeds a threshold. Our examples are
for the binary-input additive white Gaussian noise (AWGN)
channel with SNR of 2 dB. As shown in [18] for this system,
P

(Nf )
ACK is closely approximated by a Gaussian distribution on

rate k/Nf with mean µ = 0.5666 and standard deviation
σ = 0.0573.
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Fig. 2. Throughput RT as a function of the maximum number of transmis-
sions m in an AC, using the cumulative transmission lengths Nf prescribed
by (4) and (6) for Nmax = 164.649 and 192. Only maximum throughput
points (the triangles in Fig. 1) are shown.
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Fig. 3. Cumulative transmission lengths Nf less than 192 prescribed by (4)
and (6) as a function of N1. The blue line indicates the maximum throughput
solution for m = 5, {Nf} = {V,W,X, Y, Z}.

In the previous SDO literature [16]–[20], the real-valued
solutions for {Nf} were not considered valid solutions. These
papers forced each value Nf to take an integer value (either
dNfe or bNfc) and used that integer value in the next
application of (6). This paper departs from that paradigm
by retaining the real-valued Nf values (including N1) as
achievable through dithering as explored in Sec. IV-B. Thus,
Figs. 1-3 are novel from what has been presented in [16]–[20].

Fig. 1 shows how throughput RT varies as a function of N1

when Nmax is set to 192 (the maximum number of symbols
available form the convolutional code) and when Nmax is set
to 164.649, which is the value that achieves P (Nmax)

NACK = 10−3

according to the Gaussian model. The triangles show points
where Nm = Nmax according to (4), which are the highest
throughput points for the associated value of m. The curve
connecting two triangles is the set of truncated solutions
associated with one value of m. Note that the continuous
throughput curve for Nmax = 164.649 dominates that for
Nmax = 192, but it has a larger value of PNmax

NACK.
In Fig. 2, optimal points (triangles) of the RT vs. N1 curve

of Fig. 1 provide a trade-off curve of RT vs. m. Fig. 3 shows
the evolution of the transmission-length sequence {Nf} as a
function of N1 according to (4) and (6) for the two values
of Nmax. The red and blue vertical dotted lines show the
transmission lengths that maximize throughput for m = 5
for Nmax = 164.649 and 192 respectively.



III. LIMITING AVERAGE NUMBER OF ACKS/NACKS

The previous section presented the SDO approach as
practiced in [16]–[20], which seeks to maximize throughput
for a fixed maximum number m of feedback transmissions.
However, the sequence {Nf} can be infinite and there are
practical applications where Nmax is large enough that later IR
transmissions occur with low probability so that the average
number of feedback messages required for an accumulation
cycle may be a better metric for system optimization than m.

Let random variable F be the number of feedback transmis-
sions required for an accumulation cycle. This is the number
of feedback transmissions until an ACK is sent or until the
maximum number of messages m has been sent. Similar to
E[N ], the expected value of F is approximated as follows:

E[F ] ≈ P (N1)
ACK +

m∑
f=2

f
[
P

(Nf )
ACK − P

(Nf−1)
ACK

]
+mP

(Nm)
NACK (7)

= m−
m−1∑
f=1

P
(Nf )
ACK . (8)

This section develops a new SDO formulation that produces
transmission lengths {Nf} that maximize throughput RT for
a specified E[F ].

A. Lagrangian Formulation

Consider a Lagrangian objective function that includes a
cost term for the average number of feedback transmissions
to enforce a constraint that E[F ] ≤ θ:

JF =E[N ] + λ (E[F ]− θ)
=(N1 + λ)P

(N1)
ACK

+

m∑
f=2

(Nf + λf)
[
P

(Nf )
ACK − P

(Nf−1)
ACK

]
+ (Nm + λm)P

(Nm)
NACK − λθ.

Assuming a fixed k and a known distribution for P (Nf )
ACK , λ

is selected to minimize E[N ] while maintaining E[F ] ≤ θ,
i.e. such that E[F ] = θ. We note that this is equivalent to
simply minimizing

Jλ = E[N ] + λE[F ] (9)

for the appropriate λ, and that minimizing (9) over an ap-
propriate range of λ yields the trade-off of E[N ] vs. E[F ]
that system designers can use to guide choices about which
set of transmission lengths to adopt for the IR-HARQ given
the channel conditions as described by the P (Nf )

ACK distribution.
For a given λ, real-valued N1 is varied until the solution is
found that minimizes Jλ for a specified Nmax.

As with the original SDO, the optimal values of Ni for i >
1 can be determined for a given value of N1 by solving a set
of differential equations. Sequentially setting the derivatives
of Jλ with respect to Ni to zero as described in Sec. II-B. To
find N2 we compute the derivative

∂JF
∂N1

= P
(N1)
ACK + (N1 −N2 − λ)P

′(N1)
ACK = 0 (10)
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Fig. 4. Throughput RT vs. E[F ] for solutions prescribed by (4)-(6) and
(11)-(13) for Nmax = 164.649 and 192.
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Fig. 5. The N1 value that maximizes Jλ as a function of λ for Nmax =
164.649 and 192.

and solve for N2 as

N2 = N1 − λ+
P

(N1)
ACK

P
′(N1)
ACK

(11)

For f > 2, ∂E[N ]
∂Nf−1

= 0 depends only on {Nf−2, Nf−1, Nf}:

∂E[N ]

∂Nf−1
= P

(Nf−1)
ACK + (Nf−1 −Nf − λ)P

′(Nf−1)
ACK −P (Nf−2)

ACK .

(12)
Thus

Nf = Nf−1 − λ+
P

(Nf−1)
ACK − P (Nf−2)

ACK

P
′(Nf−1)
ACK

. (13)

Note from (11) and (13) that the only difference from
the original SDO of (4) and (6) is that λ appears explicitly
as linear term reducing the transmission lengths that would
have been obtained without the cost factor. The net effect
for a fixed value of m and Nmax is to increase the values of
N1, . . . Nm−1 resulting in larger values of PACK that reduce
the expected number of feedback transmissions at the cost of
larger expected blocklength and lower throughput. The larger
λ becomes, the more E[F ] is reduced and E[N ] is increased.

Fig. 4 shows the throughput RT as a function of the
expected number of feedback messages E[F ] obtained using
(11) and (13) with λ ranging from 10−2 to 102 for Nmax =
164.649 and 192. For each value of λ there is a specific value
of N∗1 that minimizes Jλ. Fig. 5 shows N∗1 as a function of λ
for Nmax = 164.649 and 192. The values of N∗1 are slightly
higher for Nmax = 192 but the difference is not visible in
Fig. 5. Fig. 6 shows the evolution of the transmission-length
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Fig. 6. Cumulative transmission lengths Nf less than 192 prescribed by (11)
and (13) as a function of N1.

sequence {Nf} as a function of N1 according to (11) and
(13) using the λ for which that N1 is optimal.

For a given λ, the range of N1 values that can be considered
is lower bounded; if N1 is too small the application of (11)
or (13) can produce a value of Nf that is smaller than Nf−1,
which is not meaningful. The optimal N∗1 is very close to this
bound, and for the experiments presented here we used the
smallest N1 above this bound for which a transmission length
Nf was exactly equal to Nmax.

IV. INTEGER TRANSMISSION LENGTHS

The SDO equations produce real-valued transmission
lengths which cannot be used in actual systems. The previous
work on SDO has introduced the integer constraint as part of
the SDO algorithm itself. In this paper, we have retained real
values for the SDO implementation. In this section we review
the previous approaches and present a dithering approach
that uses integer transmission lengths but still approaches the
performance of the real-valued SDO solution.

A. Integer N1; Floor, Ceiling, and Rounding for Nf
Because the transmission lengths ultimately need to be

integers, the previous work on SDO always begins with an
integer value for N1. In [20] the integer constraint is included
in application of (4) and (6) by replacing the real-valued result
with its ceiling and using that integer as the input for the next
application of (6).

Recognizing that forcing the real-valued solution to an
integer affects the later computations in unpredictable ways,
in [16]–[19] a tree-search explores all possible sequences of
transmission lengths possible by taking the floor and ceiling
at each stage and considering what happens when either is
used as input to the subsequent application of (6). Thus
2m−1 sequences of potential blocklengths N1, . . . , Nm are
computed for each candidate (integer) value of N1 that is
considered. This algorithm has exponential complexity in m
(since 2m−1 sets {Nf} must be checked for each potential
N1) and has been found in practice to take significant time to
execute. Finally, from among these possibilities, the sequence
of potential blocklengths N1, . . . , Nm that minimizes E[N ]
(or E[N ]+λE[F ] in the formulation of this paper) is selected.

In [18], this tree search was found to achieve a higher
throughput than simply rounding the real-valued solution
obtained by starting with an integer N1.

B. Dithering

As described in [23] for the application of image process-
ing, the idea of dithering is to create the illusion of a value
(or color) in between the available quantization points by
randomly using quantized values above and below the desired
value for the pixels where the unavailable hue is desired. We
apply this principle to create the “illusion” of a real-valued Nf
by randomly using the integer values just above and just below
the desired Nf . Thus when SDO identifies a non-integer NSDO

f

the dithered implementation treats Nf as an integer-valued
random variable that takes on two possible values

Nf = bNSDO
f c = N−f (14)

Nf = dNSDO
f e = N+

f , (15)

so that E[Nf ] = NSDO
f . Defining

∆+
f = N+

f −N
SDO
f (16)

∆−f = NSDO
f −N−f (17)

so that

N+
f = NSDO

f + ∆+
f (18)

N−f = NSDO
f −∆−f , (19)

Nf has probability mass function (p.m.f.)

PNf
(N−f ) = ∆+

f (20)

PNf
(N+

f ) = ∆−f . (21)

Thus, as expected,

E[Nf ] = N−f ∆+
f +N+

f ∆−f = NSDO
f (22)

The expected blocklength obtained using dithered Nf val-
ues is different from (but extremely close to) the analytical
expression of (2) with the real-valued lengths NSDO

f . Specif-
ically, with the real-valued transmission lengths NSDO

f , the
expected blocklength E[Nreal] is

NSDO
1 P

(NSDO
1 )

ACK +

m∑
f=2

NSDO
f

[
P

(NSDO
f )

ACK − P
(NSDO

f−1)

ACK

]
+NSDO

m P
(NSDO

m )

NACK .

(23)
Defining

P
(N dither

f )

ACK = ∆+
f P

(N−
f )

ACK + ∆−f P
(N+

f )

ACK , (24)

with dithering, the expected blocklength E[Ndither] is

∆+
1 N
−
1 P

(N−
1 )

ACK + ∆−1 N
+
1 P

(N+
1 )

ACK (25)

+

m∑
f=2

∆+
f N
−
f

[
P

(N−
f )

ACK − P (N dither
f−1)

ACK

]
(26)

+

m∑
f=2

∆−f N
+
f

[
P

(N+
f )

ACK − P (N dither
f−1)

ACK

]
(27)

+∆+
f N
−
mP

(N−
m)

NACK + ∆−mN
+
mP

(N+
m)

NACK . (28)



Expected Number of Feedback Transmissions E[F]
1 1.5 2 2.5 3 3.5 4 4.5 5

Th
ro

ug
hp

ut
 R

T

0.48

0.5

0.52

0.54

E[N] + λ E[F] SDO with Nmax=192

Dithering
Tree-Based

Fig. 7. Throughput RT vs. expected number of feedback transmissions E[F ]
for the Lagrangian SDO with real-valued {Nf} computed using (4) and (6)
and for two techniques to produce integer transmission values: dithering and
the exhaustive integer tree search of [18].

For dithering, the expected number of feedback messages is

E[Fdither] = m−
m−1∑
f=1

P
(N dither

f )

ACK . (29)

Fig. 7 shows that E[Ndither] provides E[N ] vs. E[F ] per-
formance using integer transmission lengths that is indistin-
guishable from that the analytical E[Nreal] computed using
hypothetical real-valued transmission lengths. Moreover, for
1 < E[F ] < 2, E[Ndither] significantly outperforms the
extremely complex tree search of all floors and ceilings
applied at each step of (4) and (6) starting with an integer
N1. The tree search results are only presented for E[F ] < 2,
which corresponds to m = 30, because after that, the
compution time was prohibitive. Note that the computational
complexity of computing the dithering solution using (20)-
(21) is comparatively negligible regardless of E[F ] or m.

V. CONCLUSION

Vakilinia’s seminal work in [16], [17] revealed sequential
differential optimization (SDO) as a general approach to
provide transmission lengths that optimize the throughput
of IR-HARQs. This paper takes a fresh look at SDO by
reconsidering the real-valued solutions provided by the basic
SDO equations and introduced a new set of SDO equations
that consider, as a cost, the average number of feedback
messages rather than the maximum allowable number of
feedback messages. Not surprisingly, explicitly considering
the average number of feedback messages as a cost produces
a better performance of throughput vs. that cost. Perhaps more
surprising was the result that the throughput performance of
the original real-valued solution of the SDO equations can be
closely approached with integer valued transmission lengths
through random dithering of each length, as long as all real
values of the initial transmission length N1 are considered.
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