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Abstract—This paper analyzes the serial list Viterbi algorithm
(S-LVA) used in conjunction with optimal CRC codes that
minimize probability of undetected error by maximizing the
minimum distance between convolutional codewords that pass
the CRC check, following Lou et al. In particular, the paper
identifies such optimal CRC codes for the 3GPP standard
convolutional code (561,753). As SNR varies and the maximum
list size L ranges from one to its maximum, this paper uses
bounds, approximations, and simulation to characterize decoding
complexity and the trade-off between erasure probability and
undetected error probability. The complexity of S-LVA is cap-
tured by the expected value of the number of decoding attempts
required before a CRC check passes or L codewords have been
examined. For S-LVA with a degree-m CRC and maximum
possible L, which is the cardinality of the set of all possible
convolutional codewords, the expected value of the number of
decoding attempts converges to one as SNR increases and to
2m(1− ε), for a small ε > 0, as SNR decreases. For S-LVA with
the maximum possible L, the erasure probability is zero. As L
decreases from this maximum, the erasure probability increases
and the UE probability decreases to that of L = 1, for which UE
probability is well approximated by a nearest-neighbor bound.

I. INTRODUCTION

Cyclic redundancy check (CRC) codes [1] are commonly
used as the outer error-detection code for an inner error-
correction code. At the receiver, a CRC code is used to protect
against undetected errors (UEs) of the error-correction code.
Koopman and Chakravarty [2] list the commonly used CRC
codes up to degree 16. The designs in [2] as with most
CRC designs, assume that the CRC decoder operates on a
binary symmetric channel (BSC), whereas in reality the CRC
decoder sees message sequences whose likelihoods depend on
the codeword structure of the inner code.

For an inner convolutional code (CC), Lou et al. [3], for
the first time, studied the design of a CRC code specifically
for the inner CC. The authors presented two methods to
obtain an upper bound on the UE probability of any CRC-
CC pair. These methods were called the exclusion method
and the construction method. A greedy CRC code search
algorithm was proposed by using the fact that when the frame
error rate (FER) is low, UEs with the smallest Hamming
distance dominate performance. Using this search algorithm,
the authors in [3] obtained CRC codes that minimize the UE
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probability, PUE. As an example, for a commonly used 64-
state CC with 1024 information bits, the optimized CRC code
typically requires 2 fewer bits to achieve a target PUE or to
reduce the PUE by orders of magnitude (at high SNR) over
the performance of standard CRC codes with the same degree.

The list Viterbi algorithm (LVA) [4] produces an ordered
list of the L most likely transmitted codewords. Parallel LVA
produces these L codewords all at once. Serial LVA (S-LVA)
produces codewords one at a time until the CRC check passes;
see Seshadri and Sundberg [5]. Several implementations of
fast LVAs have appeared in literature [5]–[8]. Soong and
Huang [6] proposed an efficient tree-trellis algorithm (TTA),
which is a serial LVA, initially used for speech recognition.
Roder and Hamzaoui [8] then improved the TTA by using
several unsorted lists to eventually provide the list of L best
sequences, allowing the TTA to achieve linear time complexity
with respect to the list size. Wang et al. [9] proposed using
the parity-check matrix of the CRC generator polynomial to
assist decoding in a convolutionally coded system. If the soft
Viterbi decoding fails, the CRC-CC pair is jointly decoded
iteratively until a codeword passes the CRC check.

In this paper, we consider S-LVA combined with the
optimal CRC code designed using [3] specifically for a given
CC. The paper begins by presenting the optimal 8, 12, and
16-bit CRC codes for a CC in the 3GPP standard [10].

The list size L determines the maximum number of code-
words that S-LVA will check. It ranges from one to |C|,
where |C| is the cardinality of the set C that includes every
possible convolutional codeword. As L ranges from one to
|C|, this paper uses bounds, approximations, and simulations
to characterize the trade-off between two probabilities: the
erasure probability PLNACK, when no codeword passes the
CRC check producing a negative acknowledgement (NACK)
and the UE probability PLUE when an incorrect codeword
passes the CRC. For S-LVA with L = |C|, P|C|NACK = 0. As the
list size L decreases, PLNACK increases and PLUE decreases.

The complexity of S-LVA is captured by the expected value
of the number NLVA of decoding attempts required before a
CRC check passes or all L codewords identified by S-LVA fail
the CRC check. For a degree-m CRC code and S-LVA with
L = |C|, we show that E[NLVA] → 1 as SNR increases and
E[NLVA]→ 2m(1− ε), for a small ε > 0 as SNR decreases.

The paper is organized as follows: Sec. II briefly describes
the CC-specific CRC design methodology of [3] and presents
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the optimal 8, 12, and 16-bit CRC codes for a CC in the
3GPP standard. Sec. III introduces S-LVA combined with
the CC-optimal CRC code and analyzes its performance
and complexity as SNR varies. Sec. IV studies the trade-off
between PLNACK and PLUE for S-LVA as a function of the list
size L at high SNR values. Sec. V concludes the paper.

II. CONVOLUTIONAL-CODE-SPECIFIC CRC DESIGN

This section presents the design methodology of [3] for
designing the optimal CRC code for CCs. We use this design
method to obtain, as a new result, the optimal 8, 12, and 16-bit
CRC codes for the (561, 753) CC in 3GPP standard.

A. System Model: CC with Soft Viterbi and CRC

A transmitter uses a CC and a CRC code to transmit an
information sequence as follows: Let f(x) denote a k-bit
binary information sequence and p(x) denote a degree-m
CRC generator polynomial. Let r(x) denote the remainder
when xmf(x) is divided by p(x). First, the CRC polynomial
is used to obtain the n = k+m-bit sequence xmf(x)+r(x) =
q(x)p(x). The transmitter then uses a feedforward, rate- 1

N CC
with v memory elements and a generator polynomial c(x) to
encode the n-bit sequence. The output q(x)p(x)c(x) of the
convolutional encoder is transmitted over an additive white
Gaussian noise (AWGN) channel using quadrature phase-shift
keying (QPSK) modulation.

The receiver feeds the noisy received sequence into a soft
Viterbi decoder that identifies the most likely n-bit input
sequence to the convolutional encoder. The CRC decoder
checks the n-bit codeword resulting from Viterbi decoding.
An undetected error occurs when the Viterbi decoder identifies
an incorrect codeword which then passes the CRC check.
Since the CRC decoder only checks one codeword, the UE
probability is exactly P1

UE (the “1” refers to the list size L in
the context of S-LVA, which we will discuss in Sec. III).

B. Undetected Error Probability via Exclusion Method

Assume that a codeword erroneously identified by the
Viterbi decoder is q(x)p(x) + e(x), where e(x) 6= 0 and
is divisible by p(x). The undetected error probability P1

UE

is the probability that such an e(x) occurs with the most
likely codeword identified by standard Viterbi algorithm. The
exclusion method enumerates all possible error patterns of the
CC and excludes those patterns that are detectable by the CRC
decoder (i.e. not divisible by p(x)). Thus, the probability of
selecting one of the remaining undetectable error patterns is
equal to P1

UE, which is upper bounded in [3] via a union
bound on codeword error.

1) Undetectable Single Error: An error event occurs when
the decoded trellis path leaves the encoded trellis path once
and rejoins it once. The undetectable single error probability
P1
UE,1 is upper bounded by the union bound P̂

1

UE,1,

P1
UE,1 ≤

∞∑
d=dfree

ad∑
i=1

1{p(x)|ed,i(x)}·max{0, n+v−ld,i+1}P(d),

(1)

where ad is the number of distinct undetectable single error
events with CC output Hamming distance d, 1{·} is the
indicator function, ed,i is the ith error event with distance d
and length ld,i, and P(d) is the pairwise error probability of
an error event with distance d. For QPSK modulation over the
AWGN channel, P(d) can be computed using the Gaussian
Q-function:

P(d) = Q(
√
dγs) ≤ Q(

√
dfree γs)e

−(d−dfree)γs/2, (2)

where γs = Es/N0 is the signal-to-noise ratio (SNR) of
a QPSK symbol, and Es and N0/2 denote the energy per
transmitted QPSK symbol and one-dimensional noise vari-
ance, respectively1.

A computation-friendly approximation of (1) is given as

P1
UE,1 ≤

∞∑
d=d̃+1

nad P(d)

+

d̃∑
d=dfree

ad∑
i=1

1{p(x)|ed,i(x)} · (n+ v − ld,i + 1)+ P(d), (3)

where (·)+ is the positive part and d̃ is a threshold selected
to approximate (1). See [3] for more details.

2) Undetectable Double Error: An undetectable double
error involves two disjoint error events. The undetectable
double error probability P1

UE,2 can be upper bounded by the

union bound P̂
1

UE,2 derived in [3], equation (4), as well. We
refer the reader to [3] for more details.

3) Undetected Error Probability: In general, the UE prob-
ability P1

UE is upper bounded by the sum of the probability of
arbitrary number of disjoint error event combinations, which
can be generalized as follows:

P1
UE ≤

∞∑
s=1

P̂
1

UE,s , (4)

where P̂
1

UE,s refers to the union bound on the s-tuple unde-
tectable error. The corresponding approximation of (4) given
in [3] uses a maximum search depth threshold of d̃. Due
to this limitation, the exclusion method is only useful when
undetectable errors with distance d ≤ d̃ dominate.

In this paper, all truncated union bounds on UE probability
are plotted by considering only the undetectable errors with
d ≤ d̃ and neglecting the remainder terms.

C. Convolutional-Code-Specific CRC Code Search Algorithm

When FER is low, UE probability is dominated by the
UEs with the smallest distance. Thus, the algorithm to find
an optimal CRC code for a given CC focuses on UEs with
the smallest distance. Since the coefficients of xm and x0 are
both 1, there are 2m−1 candidate degree-m CRC generator
polynomials. The CRC code search starts with d = dfree
and updates the candidate list by keeping only the CRC
generator polynomials with the fewest undetectable errors at

1In [3], there is a typo in the expression for equation (2) that includes
erroneously a factor of two in the square root.



TABLE I
STANDARD CRC CODES VERSUS OPTIMAL CRC CODES FOR CC

G = (561, 753) WITH n = 504 BITS

Name Gen. Poly. Undetected Error Distance Spectrum Ad

d 16 18 20 22 24 26

Standard-8 0x19B 983 4387 19909 105000 672724 3972970
Optimal-8 0x19D 0 979 22349 111304 686314 3830340

Standard-12 0x180F 0 0 969 5815 42893 245211
Optimal-12 0x108B 0 0 0 4793 45795 246729

Standard-16 0x11021 0 0 484 0 1765 14752
Optimal-16 0x1F8FD 0 0 0 0 0 13240

that distance. The search then progressively increases d and
repeats the same procedure until only one polynomial remains
in the candidate list, the polynomial with the best "truncated"
distance spectrum only considering distances up to d̃. Note
that when d ≥ 2 dfree, undetectable double errors also have to
be considered. In [3], the authors point out that the algorithm
usually terminates before d = 3 dfree.

D. Optimal CRC Codes for 3GPP Standard

We now present the optimal CRC codes designed for the
(561, 753) CC that is specified in the 3GPP TS 25.212 version
7.0.0 Release 7 document [10]. The technical specification
document provides 8, 12, and 16-bit CRC codes. These CRC
codes and the corresponding newly designed optimal CRC
codes are given in Table I. The table presents the UE distance
spectrum Ad (the number of distinct UEs at distance d with
positions taken into account) for each CRC. The CRC code
generator polynomials are represented in hexadecimal and d
represents the CC output Hamming distance. Fig. 1 shows the
histogram of UE distance spectrum in Table I. For a degree-
m CRC code in the 3GPP standard, the minimum distance
dCRC at which UEs first occur is always smaller than the
corresponding degree-m optimal CRC code.

Fig. 2 shows the nearest neighbor approximations (NNAs)
on P1

UE in (13) for each CRC code as well as the NNA of
(11) on P1

NACK. Also shown is the NNA of the FER of soft
Viterbi decoding with no CRC code. As shown in Sec. III,
these NNAs are tight at high SNR. The figure shows that
considerable improvement in P1

UE can be obtained with CRC
codes designed specifically for the 3GPP (561, 753) CC.

III. S-LVA PERFORMANCE VS. SNR

S-LVA begins by finding the closest codeword c1 to the
received sequence and passing it to the CRC code for verifi-
cation. If the CRC check fails, S-LVA outputs the next closest
codeword c2 and repeats the above procedure until the CRC
check is successful or the best L codewords c1, . . . cL all fail
the CRC check, in which case the decoder declares erasure
and a NACK is generated. The failure rate of S-LVA is

PLF = PLUE +PLNACK . (5)

This section examines S-LVA performance as a function of
SNR (Es/N0), where performance metrics include PLF , PLUE,
PLNACK, and E[NLVA]. The extreme cases of SNR (very low
and very high) and list size (L = 1 and L = |C|) are given
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Fig. 1. Undetected error distance spectrum of standard CRC codes versus
optimal CRC codes for (561, 753) CC with n = 504 bits.

Fig. 2. (AdCRC
, dCRC) nearest neighbor approximation (NNA) on P1

UE
of standard CRC codes versus optimal CRC codes for (561, 753) CC with
n = 504 bits. (Adfree , dfree) NNA on FER of soft Viterbi decoding with
no CRC code for the same CC is also given as a reference.

particular attention as they frame the overall performance
landscape.

In the discussion below, certain sets of codewords are
important to consider. First, C is the set of all convolutional
codewords. Since we consider a finite blocklength system
where there are n message bits and v termination bits (com-
pletely determined by the n = k +m message bits) fed into
the convolutional encoder, the size of C is

|C| = 2n = 2k+m. (6)

Let c∗ denote the transmitted codeword. A superscript of −
indicates a set that excludes c∗. For example C− is the set of
all convolutional codewords except the transmitted codeword
c∗. The set CCRC is the set of all convolutional codewords
whose corresponding input sequences pass the CRC check.
The size of CCRC is

|CCRC| = 2n−m = 2k. (7)

The set CCRC is the set of all convolutional codewords whose
corresponding input sequences do not pass the CRC check.



Fig. 3. Comparison of FER between S-LVA combined with the optimal
degree-6 CRC code 0x43 and soft Viterbi decoding (without a CRC code)
for (13, 17) CC when n = 256 + 6 bits. (261, 6) NNA on soft Viterbi
decoding, truncated union bound at d̃ = 24 on P

|C|
UE, conjecture of 2−6 P1

F,
upper limit of 2−6, and (668, 12) NNA on P1

UE are also provided as a
reference.

The size of this set is

|CCRC| = 2n − 2k. (8)

A. The Case of L = |C|
Consider S-LVA with the largest possible list size L = |C|.

Regardless of SNR, P|C|NACK = 0 always holds because S-LVA
with L = |C| will always find a codeword that passes the CRC
check. Let Ad be the number of distinct UEs of distance d
with positions taken into account. The UE probability P

|C|
UE

is upper bounded by the union bound that some codeword in
C−CRC is pairwise more likely than c∗:

P
|C|
UE ≤

∑
c∈C−CRC

P(d(c, c∗)), (9)

where d(c, c∗) is the distance between c and c∗, and
P(d(c, c∗)) is defined in (2). This is precisely the union bound
of [3] given as an upper bound on P1

UE, which was presented
in Sec. II-B. That it is also a valid upper bound for P

|C|
UE

indicates that, at least at low SNR, this bound will be loose
for L = 1. At very low SNR, P|C|UE converges to |C

−
CRC|
|CCRC| ≈ 1.

For k = 256 bits, Fig. 3 shows P|C|UE as a function of Es/N0

for the (13, 17) CC using soft Viterbi decoding without a CRC
code and S-LVA with L = |C| combined with the optimal
degree-6 CRC code 0x43. The truncated union bound at d̃ =

24 on P
|C|
UE of (9) derived via exclusion method in Sec. II-B

is also shown. It can be seen that the union bound on P
|C|
UE

becomes tight as SNR increases.

B. The Case of L = 1

For L = 1, with the same blocklength n, P1
F is exactly

the FER of the CC under soft Viterbi decoding with no CRC
code. The addition of the CRC code separates the failures
into erasures and UEs, with probabilities P1

NACK and P1
UE,

respectively. Thus we have union bounds, nearest neighbor
approximation (NNA), and a low-SNR upper limit as follows:

P1
NACK ≤

∑
c∈CCRC

P(d(c, c∗)) (10)

≈ Adfree
P(dfree), (11)

P1
UE ≤

∑
c∈C−CRC

P(d(c, c∗)) (12)

≈ AdCRC
P(dCRC), (13)

lim
γs→−∞

P1
UE = 2−m. (14)

Note that (12) is identical to (9), but P1
UE should be signifi-

cantly smaller than P
|C|
UE. Thus we propose an improved bound

on P1
UE as follows: for a randomly chosen degree-m CRC

code and L = 1 we expect an incorrectly chosen convolutional
codeword to pass the CRC check with probability 2−m. This
should be an upper bound on the performance of CRCs
optimized according to [3]. Thus we conjecture that

P1
UE ≤ 2−m P1

F . (15)

This upper bound should be loose for well-designed CRCs at
high SNR. However, at very low SNR we expect this bound to
be tight based on the fact that the upper limit of P1

UE satisfies
(14). Fig. 3 shows that (15) is accurate at very low SNR and
the NNA of P1

UE in (13) is quite accurate at high SNR. The
parameters of the NNA are AdCRC

= 668 and dCRC = 12.

C. Complexity Analysis: E[NLVA] at High and Low SNR

In [8], the authors present tables that compare the time and
space complexity for different implementations of the LVA.
For a fixed blocklength and a specified CC-CRC pair, the
decoding complexity of LVA depends mainly on the number
of decoding trials performed. Denote by NLVA the random
variable indicating the number of decoding trials of S-LVA
for a received codeword randomly drawn according to the
noise distribution. We show that with list size |C|, the expected
value of NLVA, E[NLVA], converges to 1 as SNR increases and
converges to 2m(1− ε), for a small ε > 0 as SNR decreases.

Theorem 1: The expected number of decoding trials
E[NLVA] for S-LVA with list size |C|, used with a degree-
m CRC code, satisfies (i) limγs→∞ E[NLVA] = 1; (ii)
limγs→−∞ E[NLVA] = 2m(1− ε), where ε→ 0 as n→∞.

Proof: Let x̃ni denote the ith output of the S-LVA, which
is the codeword at position i in the list of all possible
codewords sorted according to increasing soft Viterbi metric
(typically Hamming or Euclidean distance) with respect to the
received noisy codeword.

(i) Consider the event Ai , ∩i−1j=1{p(x) - x̃nj }∩{p(x) | x̃ni },
where p(x) is the CRC polynomial. Because of the existence
of codewords that have p(x) as a factor (i.e. that pass the CRC
check), there exists a maximum decoding depth Ñ <∞ such
that Pr{Aj} = 0,∀j > Ñ .



Note that when γs → ∞, Pr{A1} → 1 and∑Ñ
i=2 Pr{Ai} → 0. Thus,

lim
γs→∞

E[NLVA] = lim
γs→∞

[
1 · Pr{A1}+

∞∑
i=2

iPr{Ai}

]

= lim
γs→∞

1 · Pr{A1}+
Ñ∑
i=2

iPr{Ai}


≤ lim
γs→∞

1 · Pr{A1}+ Ñ

Ñ∑
i=2

Pr{Ai}


= 1. (16)

Since NLVA ≥ 1, E[NLVA] ≥ 1. It follows that
limγs→∞ E[NLVA] = 1.

(ii) When γs → −∞, the SNR is low enough such that with
high probability the received sequence y is far away from
the entire constellation of all possible sequences that can be
transmitted in Rn. This implies that with very high probability
y is almost equidistant from all possible convolutional code-
words that can be transmitted. For those received sequences
almost equidistant from all convolutional codewords, the S-
LVA decoding process can be modeled as follows: In a basket
of "blue" balls (codewords that pass the CRC check) and "red"
balls (codewords that do not pass the CRC check), the S-
LVA chooses balls at random without replacement with the
objective of stopping when it successfully picks a blue ball.
Thus, E[NLVA] can be computed using a standard result in
combinatorics as follows. For a decoded sequence with n
message and parity-check bits and v trailing zero bits, the
total number of balls in the basket is N = 2n and the number
of blue balls in the basket is M = 2n−m:

lim
γs→−∞

E[NLVA] = 1 +
N −M
M + 1

=
N + 1

M + 1

= 2m
[
1− 2m − 1

2m + 2n

]
= 2m(1− ε), (17)

where ε = 2m−1
2m+2n > 0. When m is fixed, limn→∞ E[NLVA] =

2m.
Fig. 4 shows empirical E[NLVA] for the (13, 17) CC with

the optimal CRC codes with degrees ranging from 1 to 6 when
k = 256 bits. The curves verify Theorem 1; E[NLVA]→ 1 as
the SNR increases and E[NLVA] ≈ 2m as the SNR decreases
to very low values. While the result we have obtained in
Theorem 1 for the case of γs → −∞ requires very low SNR
values for the arguments made to hold, it is interesting to
see from the figure that S-LVA behaves similar to random
guessing as soon as the SNR value is below the Shannon
limit, shown as a vertical line for m = 1. (The limits for the
other values of m are very close to the limit for m = 1).

Theorem 1 studies the limit of E[NLVA] in the limit of
extremely high and low SNR regimes. In practice, SNRs
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Fig. 4. E[NLVA] vs. Es/N0 of degree 1−6 optimal CRC codes for (13, 17)
CC, with k = 256.

ranging between 0.5 dB and 4 dB above the Shannon limit are
of particular interest. As shown in Fig. 4, E[NLVA] traverses
its full range from ≈ 2m to 1 in this range of practical interest.

IV. S-LVA PERFORMANCE VS. L

As we learned in Sec. III-A, the “complete” S-LVA al-
gorithm with L = |C| achieves P

|C|
NACK = 0 and P

|C|
UE is

well approximated by truncating the union bound of (9) at
a reasonable d̃. In the context of a feedback communication
system, it is often preferable to retransmit a codeword or
to lower the rate of the transmission through incremental
redundancy rather than to accept undetectable errors. Thus
the full complexity L = |C| may actually lead to detrimental
results in certain cases, especially at very low SNRs where
P
|C|
UE approaches 1.
Sec. III-B showed how the other extreme of L = 1 signifi-

cantly lowers the UE probability with P1
UE well approximated

by the minimum between the upper bound of (15) and the
NNA of (13). The reduction in PUE comes at the cost of
a significantly increased P1

NACK, which is approximately the
FER of the CC decoded by soft Viterbi without a CRC code.

We expect the best choice of L for many systems to be in
between these two extremes. The rest of this section explores
how PLUE and PLNACK vary with L. In general, with SNR
fixed, PLNACK and PLUE have the following properties: PLNACK

is a decreasing function of L with limL→|C| P
L
NACK = 0, and

PLUE is an increasing function of L with limL→|C| P
L
UE =

P
|C|
UE, which is well approximated by (9).
Therefore, one could ask what the optimal list size L∗ is

such that, for example, PLNACK ≤ P∗NACK and PLUE ≤ P∗UE,
where P∗NACK and P∗UE are target erasure and UE probabil-
ities, respectively. We present useful bounds on PLNACK and
PLUE to further explore the concept of an optimal list size L∗.

Corollary 1 (Markov bound on PLNACK): The erasure prob-
ability PLNACK satisfies PLNACK ≤ 1

L if γs →∞.
Proof: The result is a direct consequence of Markov

inequality. The erasure probability with a list size L is
given as PLNACK = Pr{NLVA > L}, where NLVA is the
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Fig. 5. FER vs. Es/N0 of degree 1 − 6 optimal CRC codes for (13, 17)
CC with k = 256.

random variable representing the decoding trial at which the
CRC check first passes. By applying Markov inequality for
γs →∞, we have

PLNACK = Pr{NLVA > L} ≤ E[NLVA]

L
=

1

L
. (18)

A more useful Chebyshev bound on PLNACK could be
obtained if one knows the variance var(NLVA) at high SNR.

Corollary 2 (Chebyshev bound on PLNACK): Given
var(NLVA) at γs � 0, PLNACK satisfies PLNACK ≤

var(NLVA)
(L−1)2 ,

where L ≥ 2.
Proof: The result is a direct consequence of Chebyshev

inequality. Since γs � 0, E[NLVA] → 1. From Chebyshev
inequality, we have

PLNACK = Pr{NLVA > L}
= Pr{NLVA ≥ L+ 1}
≤ Pr{|NLVA − E[NLVA]| ≥ L− E[NLVA] + 1}

≤ var(NLVA)

(L− (E[NLVA]− 1))2

≤ var(NLVA)

(L− 1)2
. (19)

We study the trade-off between PLNACK and PLUE for the
(13, 17) CC. Assume at γs = 3.7 dB, P∗NACK = 10−3 and
P∗UE = 8× 10−4. In Fig. 5, the FER of degree 1− 6 optimal
CRC codes is plotted. Here we use the optimal degree-5 CRC
code with the (13, 17) CC to illustrate how to find the optimal
list size L∗. Fig. 6 shows the trade-off between PLNACK and
PLUE when k = 256 at 3.7 dB. It can be seen that L∗ = 8
satisfies PLNACK ≤ P∗NACK and PLUE ≤ P∗UE.

If P∗NACK = 10−3, P∗UE = 10−3 and empirical
var(NLVA) = 0.2823 is known, since PLUE ≤ P∗UE always
holds, one can directly apply the empirical Chebyshev bound
to obtain L∗ ≥ 18 without knowing the true PLNACK curve.

V. CONCLUSION

This paper first applied Lou et al.’s CC-specific CRC
code design algorithm to identify the optimal CRC codes for
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Fig. 6. Trade-off between PL
NACK and PL

UE for the optimal degree-5 CRC
code 0x2D and (13, 17) CC when k = 256, γs = 3.7 dB.

the 3GPP CC (561, 753). The performance and the analysis
of the optimal CRC codes showed that the current 3GPP
standard CRC codes still leave much room for improvement
in terms of their UE probability. We then studied S-LVA
with a list size L and a degree-m CRC code as SNR varies
and as L ranges from one to its maximum possible value.
We characterized the decoding complexity of S-LVA and the
trade-off between the erasure probability PLNACK and the
undetected error probability PLUE. In particular, the paper
showed that the expected number of decoding attempts of
S-LVA converges to 1 as SNR increases and to 2m(1− ε), for
a small ε > 0 as SNR decreases. For S-LVA with L = |C|,
P
|C|
NACK = 0. Here, P|C|UE is minimized by Lou et al.’s CRC

design which focuses on the union bound. As the list size
L decreases, PLNACK increases and PLUE decreases to P1

UE,
which is well approximated by a nearest-neighbor bound.
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