Efficient Reliable Communication in the Short Blocklength Regime Through List Decoding and Through Feedback

Hengjie Yang Advisor: Richard Wesel

Ph.D. Defense University of California, Los Angeles May 16, 2022

- CRC-Aided List Decoding of Convolutional Codes
- 2 Variable-Length Coding for Binary Channels With Full Feedback
- 3 Variable-Length Coding for Binary-Input Channels With Finite, Stop Feedback
- 4 Summary

May 16, 2022

2 / 69

Outline

CRC-Aided List Decoding of Convolutional Codes

Introduction

- Search for the Optimal CRC Polynomial
- Performance and Complexity Analysis
- Simulation Results

2) Variable-Length Coding for Binary Channels With Full Feedback

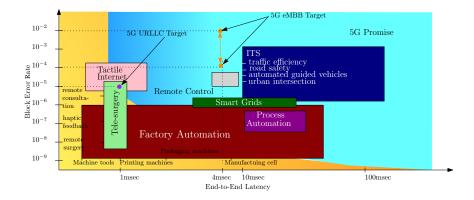
- Introduction
- The Small-Enough-Difference (SED) Coding for BSC
- The Generalized SED Coding for BAC

3 Variable-Length Coding for Binary-Input Channels With Finite, Stop Feedback

- Introduction
- BI-AWGN Channel Case
- BSC Case

Summary

Ultra-Reliable Low-Latency Communication (URLLC) in 5G



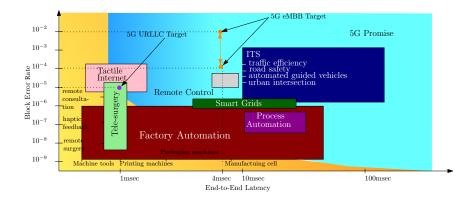
M. Shirvanimoghaddam et al., "Short blocklength codes for ultra-reliable low-latency communications," *IEEE Commun. Mag.*, Feb. 2019. Fig. 1.

Hengjie Yang

Ph.D. Defense

May 16, 2022 3 / 69

Ultra-Reliable Low-Latency Communication (URLLC) in 5G



These stringent requirements call for good short blocklength codes!

M. Shirvanimoghaddam et al., "Short blocklength codes for ultra-reliable low-latency communications," IEEE Commun. Mag., Feb. 2019, Fig. 1.

Hengjie Yang

Ph D Defense

Finite-Blocklength Information Theory

Define

- n: blocklength
- M: message size
- $\epsilon^*(n, M) \triangleq \inf\{\epsilon : \exists an (n, M, \epsilon) \text{ fixed-length code}\}\$

Y. Polyanskiy et al., "Channel coding rate in the finite blocklength regime," IEEE Trans. Inf. Theory, May 2010.

Define

- n: blocklength
- M: message size
- $\epsilon^*(n, M) \triangleq \inf\{\epsilon : \exists an (n, M, \epsilon) \text{ fixed-length code}\}\$

Theorem 1 (Random-coding union (RCU) bound, Polyanskiy *et al.*, 2010) Fix $n \in \mathbb{N}$, $M \in \mathbb{N}$, and a memoryless channel $(\mathcal{X}, \mathcal{Y}, W(Y|X))$.

$$\epsilon^*(n,M) \le \mathbb{E}\left[\min\left\{1, (M-1)\mathbb{P}\left[W^n(Y^n|\bar{X}^n) \ge W^n(Y^n|X^n)\right]\right\}\right]$$
(1)

Y. Polyanskiy et al., "Channel coding rate in the finite blocklength regime," IEEE Trans. Inf. Theory, May 2010.

Define

- n: blocklength
- M: message size
- $\epsilon^*(n, M) \triangleq \inf\{\epsilon : \exists an (n, M, \epsilon) \text{ fixed-length code}\}\$

Theorem 1 (Random-coding union (RCU) bound, Polyanskiy *et al.*, 2010) Fix $n \in \mathbb{N}$, $M \in \mathbb{N}$, and a memoryless channel $(\mathcal{X}, \mathcal{Y}, W(Y|X))$.

$$\epsilon^*(n,M) \le \mathbb{E}\left[\min\left\{1, (M-1)\mathbb{P}\left[W^n(Y^n|\bar{X}^n) \ge W^n(Y^n|X^n)\right]\right\}\right]$$
(1)

Theorem 2 (Meta-converse (MC) bound, Polyanskiy *et al.*, 2010) Fix $n \in \mathbb{N}$, $M \in \mathbb{N}$, and a memoryless channel $(\mathcal{X}, \mathcal{Y}, W(Y|X))$.

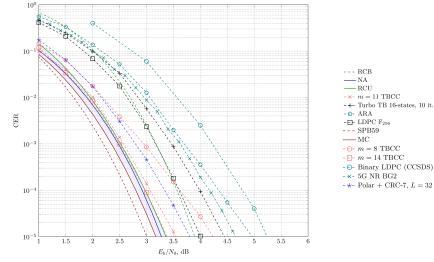
$$\epsilon^*(n,M) \ge \min_{P^n} \max_{Q^n} \left\{ \alpha_{\frac{1}{M}} \left(P^n \times W^n, P^n \times Q^n \right) \right\}$$
(2)

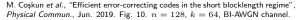
Y. Polyanskiy et al., "Channel coding rate in the finite blocklength regime," *IEEE Trans. Inf. Theory*, May 2010.

Hengjie Yang

Ph.D. Defense

Contemporary Short Blocklength Code Performance





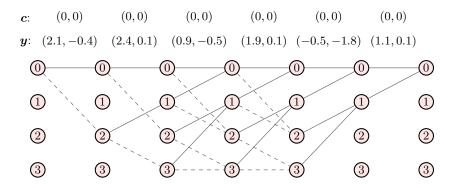
Can we approach the RCU bound at a reasonable complexity?

May 16, 2022

5 / 69

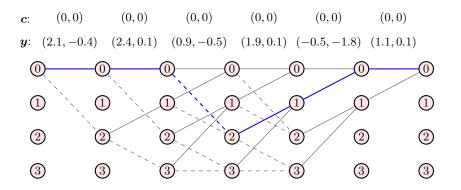
H. Yang, E. Liang, M. Pan, and R. D. Wesel, "CRC-Aided List Decoding of Convolutional Codes in the Short Blocklength Regime," *IEEE Trans. Inf. Theory*, Feb. 2022, early access.

Serial List Viterbi Decoding (SLVD)



Parameters setup:
$$k=2$$
, degree-2 CRC poly. $p(x)=x^2+1$, ZTCC $(5,7)$.

Serial List Viterbi Decoding (SLVD)

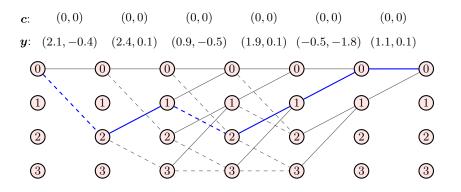


$$L = 1 \iff \frac{\text{No. Metric Check?}}{1 \quad 13.53 \quad \text{No}}$$

$$\text{NACK! (If } \Psi = 1)$$

Parameters setup: k = 2, degree-2 CRC poly. $p(x) = x^2 + 1$, ZTCC (5, 7).

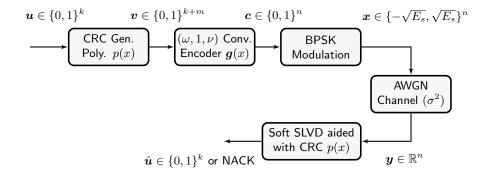
Serial List Viterbi Decoding (SLVD)

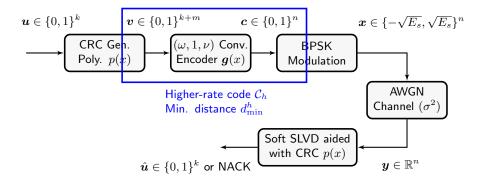


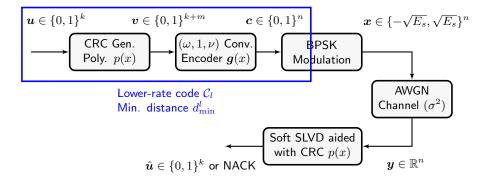
-	No.	Metric	Check?
-	1	13.53	No
$L = 2 \Leftarrow$	2	15.13	Yes

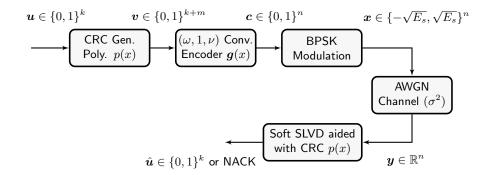
Undetected Error (UE)! (If $\Psi \ge 2$)

Parameters setup: k = 2, degree-2 CRC poly. $p(x) = x^2 + 1$, ZTCC (5, 7).









Two concatenated codes of interest:

- Zero-terminated convolutional codes (ZTCC) ⇒ CRC-ZTCC
- Tail-biting convolutional codes (TBCC) ⇒ CRC-TBCC

$$\lambda \le |\mathcal{C}_h| - |\mathcal{C}_l| + 1 = 2^{k+m} - 2^k + 1$$

May 16, 2022

9 / 69

$$\lambda \le |\mathcal{C}_h| - |\mathcal{C}_l| + 1 = 2^{k+m} - 2^k + 1$$

Open problem: How to determine λ exactly for a given C_l , C_h ?

May 16, 2022

9 / 69

Hengjie Yang

Ph.D. Defense

$$\lambda \le |\mathcal{C}_h| - |\mathcal{C}_l| + 1 = 2^{k+m} - 2^k + 1$$

Open problem: How to determine λ exactly for a given C_l , C_h ?

$1 \leq L \leq \min\{\lambda,\Psi\}$

May 16, 2022

9 / 69

Problem 1: Given a convolutional code, how to design the optimal CRC gen. poly. p(x)?

Problem 2: What is the performance-complexity trade-off of the resulting code?

Outline

- Introduction
- Search for the Optimal CRC Polynomial
- Performance and Complexity Analysis
- Simulation Results

2) Variable-Length Coding for Binary Channels With Full Feedback

- Introduction
- The Small-Enough-Difference (SED) Coding for BSC
- The Generalized SED Coding for BAC

3 Variable-Length Coding for Binary-Input Channels With Finite, Stop Feedback

- Introduction
- BI-AWGN Channel Case
- BSC Case

4 Summary

May 16, 2022

10 / 69

Problem: For a given ZTCC (or TBCC), CRC degree m, and SNR E_s/σ^2 ,

$$\min_{p(x)} P_{e,\lambda} \tag{3}$$

where

$$p(x) = x^{m} + a_{m-1}x^{m-1} + \dots + a_{2}x^{2} + a_{1}x + 1, \quad a_{i} \in \{0, 1\}$$
(4)

Problem: For a given ZTCC (or TBCC), CRC degree m, and SNR E_s/σ^2 ,

$$\min_{p(x)} P_{e,\lambda} \tag{3}$$

where

$$p(x) = x^{m} + a_{m-1}x^{m-1} + \dots + a_{2}x^{2} + a_{1}x + 1, \quad a_{i} \in \{0, 1\}$$
(4)

Obstacle: $P_{e,\lambda}$ does not admit an analytical expression.

Problem: For a given ZTCC (or TBCC), CRC degree m, and SNR E_s/σ^2 ,

$$\min_{p(x)} P_{e,\lambda} \tag{3}$$

where

$$p(x) = x^{m} + a_{m-1}x^{m-1} + \dots + a_{2}x^{2} + a_{1}x + 1, \quad a_{i} \in \{0, 1\}$$
(4)

Obstacle: $P_{e,\lambda}$ does not admit an analytical expression.

Workaround: Take the union bound of $P_{e,\lambda}$ as the objective function!

$$P_{e,\lambda} \leq \sum_{\boldsymbol{c} \in \mathcal{C}_l \setminus \{\bar{\boldsymbol{c}}\}} \mathbb{P}\left(Z > \frac{1}{2} \|\boldsymbol{x}(\boldsymbol{c}) - \boldsymbol{x}(\bar{\boldsymbol{c}})\| \Big| \boldsymbol{X} = \boldsymbol{x}(\bar{\boldsymbol{c}})\right) = \sum_{d=d_{\min}^l}^n C_d Q\!\left(\sqrt{\frac{dE_s}{\sigma^2}}\right) \quad (5)$$

where $C_{d_{\min}^l}, C_{d_{\min}^l+1}, \dots, C_n$ denotes the distance spectrum of \mathcal{C}_l .

Degree-m DSO CRC polynomial at SNR $\sqrt{E_s/\sigma^2}$: defined as the solution to

$$\min_{p(x)} \quad \sum_{d=d_{\min}^{l}}^{n} C_{d} Q\left(\sqrt{\frac{dE_{s}}{\sigma^{2}}}\right), \tag{6}$$

where

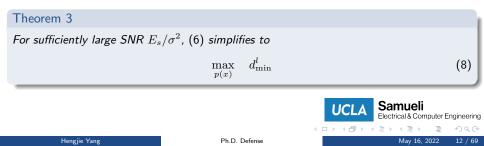
$$p(x) = x^{m} + a_{m-1}x^{m-1} + \dots + a_{2}x^{2} + a_{1}x + 1, \quad \text{with } a_{i} \in \mathbb{F}_{2}$$
(7)

Degree-m DSO CRC polynomial at SNR $\sqrt{E_s/\sigma^2}$: defined as the solution to

$$\min_{p(x)} \quad \sum_{d=d_{\min}^{l}}^{n} C_{d} Q\left(\sqrt{\frac{dE_{s}}{\sigma^{2}}}\right), \tag{6}$$

where

$$p(x) = x^{m} + a_{m-1}x^{m-1} + \dots + a_{2}x^{2} + a_{1}x + 1, \quad \text{with } a_{i} \in \mathbb{F}_{2}$$
(7)



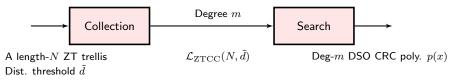
Theorem 4

Fix CRC degree m and a higher-rate distance spectrum $B_{d_{\min}^h}, \ldots, B_n$. Define

$$w^* \triangleq \min\left\{w \in \mathbb{N}_+ : \sum_{d=d_{\min}^h}^w B_d \ge 2^m\right\}.$$
(9)

For any degree-m CRC polynomial, we have $d_{\min}^l \leq 2w^*$.

Lou et al.'s algorithm for ZTCC case

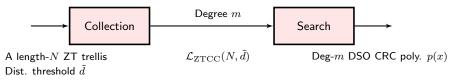


C. Lou et al., "Convolutional-code-specific CRC code design," IEEE Trans. Commun., Oct. 2015.

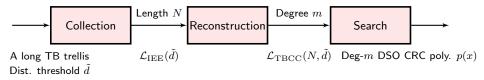
Hengjie Yang

Ph.D. Defense

Lou et al.'s algorithm for ZTCC case



Our algorithm for TBCC case



Contribution: A novel collection step that collects non-catastrophic IEEs.

C. Lou et al., "Convolutional-code-specific CRC code design," IEEE Trans. Commun., Oct. 2015.

ν	ZTCC $\boldsymbol{g}(x)$	DSO CRC Polynomials							
		m = 3	4	5	6	7	8	9	10
3	(13, 17)	9	1B	2D	43	B5	107	313	50B
4	(27, 31)	F	15	33	4F	D3	13F	2AD	709
5	(53, 75)	9	11	25	49	EF	131	23F	73D
6	(133, 171)	F	1B	23	41	8F	113	2EF	629
7	(247, 371)	9	13	3F	5B	E9	17F	2A5	61D
8	(561, 753)	F	11	33	49	8B	19D	27B	4CF
9	(1131, 1537)	D	15	21	51	B7	1D5	20F	50D
10	(2473, 3217)	F	13	3D	5B	BΒ	105	20D	6BB

Parameter setup: k = 64. CRC polynomials are in hexadecimal. Optimum encoders are from [Lin and Costello].

Lin and Costello, "Error control coding", USA: Pearson, Table 12.1(c).

ν	TBCC $\boldsymbol{g}(x)$	DSO CRC Polynomials							
		m = 3	4	5	6	7	8	9	10
3	(13, 17)	F	1F	2D	63	ED	107	349	49D
4	(27, 31)	F	11	33	4F	B5	1AB	265	4D1
5	(53, 75)	9	11	3F	63	ΒD	16D	349	41B
6	(133, 171)	F	1B	3D	7F	FF	145	2BD	571
7	(247, 371)	F	11	33	63	EF	145	3A1	5D7
8	(561, 753)	F	11	33	7F	FF	1AB	301	4F5
9	(1131, 1537)	D	15	33	51	C5	1FF	349	583
10	(2473, 3217)	F	1B	33	79	BΒ	199	217	4DD

Parameter setup: k = 64. CRC polynomials are in hexadecimal. Optimum encoders are from [Lin and Costello].

Lin and Costello, "Error control coding", USA: Pearson, Table 12.1(c).

Outline

D CRC-Aided List Decoding of Convolutional Codes

- Introduction
- Search for the Optimal CRC Polynomial
- Performance and Complexity Analysis
- Simulation Results

2) Variable-Length Coding for Binary Channels With Full Feedback

- Introduction
- The Small-Enough-Difference (SED) Coding for BSC
- The Generalized SED Coding for BAC

3 Variable-Length Coding for Binary-Input Channels With Finite, Stop Feedback

- Introduction
- BI-AWGN Channel Case
- BSC Case

4 Summary

May 16, 2022

16 / 69

Performance measures:

- Prob. of correct decoding $P_{c,\Psi}$
- Prob. of UE $P_{e,\Psi}$
- Prob. of NACK $P_{NACK,\Psi}$

Performance measures:

- Prob. of correct decoding $P_{c,\Psi}$
- Prob. of UE $P_{e,\Psi}$
- Prob. of NACK $P_{NACK,\Psi}$

Question: How do these quantities vary with Ψ and SNR E_s/σ^2 ?

Performance measures:

- Prob. of correct decoding $P_{c,\Psi}$
- Prob. of UE P_{e,Ψ}
- Prob. of NACK $P_{NACK,\Psi}$

Question: How do these quantities vary with Ψ and SNR E_s/σ^2 ?

Theorem 5

For a given CRC-aided convolutional code under SLVD at a fixed SNR, $P_{c,\Psi}$ and $P_{e,\Psi}$ are both strictly increasing in Ψ , and will converge to $P_{c,\lambda}$ and $P_{e,\lambda}$, respectively, where $P_{c,\lambda} + P_{e,\lambda} = 1$.

Implication:
$$\min_{\Psi} \left(P_{e,\Psi} + P_{NACK,\Psi} \right) = P_{e,\lambda}$$
 and $\Psi^* \geq \lambda$.

- Higher-rate distance spectrum: $B_{d_{\min}^h}, B_{d_{\min}^h+1}, \dots, B_n$
- Lower-rate distance spectrum: $C_{d_{\min}^l}, C_{d_{\min}^l+1}, \dots, C_n$

- Higher-rate distance spectrum: $B_{d_{\min}^h}, B_{d_{\min}^h+1}, \dots, B_n$
- Lower-rate distance spectrum: $C_{d_{\min}^l}, C_{d_{\min}^l+1}, \dots, C_n$

$$P_{e,1} \le \min\left\{2^{-m}, \sum_{d=d_{\min}^{l}}^{n} C_{d}Q\left(\sqrt{\frac{dE_{s}}{\sigma^{2}}}\right)\right\} \approx \min\left\{2^{-m}, C_{d_{\min}^{l}}Q\left(\sqrt{\frac{d_{\min}^{l}E_{s}}{\sigma^{2}}}\right)\right\}$$

- Higher-rate distance spectrum: $B_{d_{\min}^h}, B_{d_{\min}^h+1}, \ldots, B_n$
- Lower-rate distance spectrum: $C_{d_{\min}^l}, C_{d_{\min}^l+1}, \dots, C_n$

$$P_{e,1} \le \min\left\{2^{-m}, \sum_{d=d_{\min}^l}^n C_d Q\left(\sqrt{\frac{dE_s}{\sigma^2}}\right)\right\} \approx \min\left\{2^{-m}, \ C_{d_{\min}^l} Q\left(\sqrt{\frac{d_{\min}^l E_s}{\sigma^2}}\right)\right\}$$

$$P_{e,\lambda} \le \min\left\{1, \sum_{d=d_{\min}^{l}}^{n} C_{d}Q\left(\sqrt{\frac{dE_{s}}{\sigma^{2}}}\right)\right\} \approx \min\left\{1, \sum_{d=d_{\min}^{l}}^{\tilde{d}} C_{d}Q\left(\sqrt{\frac{dE_{s}}{\sigma^{2}}}\right)\right\}$$

- Higher-rate distance spectrum: B_{d^h_{min}}, B_{d^h_{min}+1}, ..., B_n
- Lower-rate distance spectrum: $C_{d_{\min}^l}, C_{d_{\min}^l+1}, \ldots, C_n$

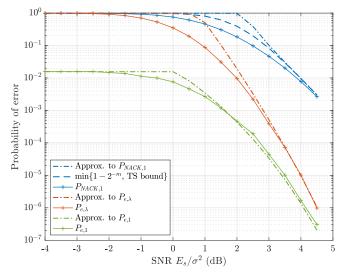
$$P_{e,1} \le \min\left\{2^{-m}, \sum_{d=d_{\min}^l}^n C_d Q\left(\sqrt{\frac{dE_s}{\sigma^2}}\right)\right\} \approx \min\left\{2^{-m}, \ C_{d_{\min}^l} Q\left(\sqrt{\frac{d_{\min}^l E_s}{\sigma^2}}\right)\right\}$$

$$P_{e,\lambda} \le \min\left\{1, \sum_{d=d_{\min}^{l}}^{n} C_{d}Q\left(\sqrt{\frac{dE_{s}}{\sigma^{2}}}\right)\right\} \approx \min\left\{1, \sum_{d=d_{\min}^{l}}^{\tilde{d}} C_{d}Q\left(\sqrt{\frac{dE_{s}}{\sigma^{2}}}\right)\right\}$$

$$P_{NACK,1} \approx \min\left\{1 - 2^{-m}, \sum_{d=d_{\min}^{h}}^{\tilde{d}} B_{d}Q\left(\sqrt{\frac{dE_{s}}{\sigma^{2}}}\right) - C_{d_{\min}^{l}}Q\left(\sqrt{\frac{d_{\min}^{l}E_{s}}{\sigma^{2}}}\right)\right\}$$

$$UCLA \qquad Samueli$$
Electrical & Computer Engineering
$$UCLA \qquad Samueli$$

Example of Approximations



Setting: k = 64, degree-6 DSO CRC poly. 0x43, ZTCC (13, 17), $\tilde{d} = 24$. The tangential-sphere (TS) bound is also shown for $P_{NACK,1}$.

Hengjie Yang

Theorem 6

For a given CRC-aided convolutional code decoded with SLVD,

$$\lim_{\frac{E}{\sigma^2} \to 0} \mathbb{E}[L] = \mathbb{E}[L|\mathbf{X} = \mathbf{O}].$$
(10)

May 16, 2022

20 / 69

Theorem 6

For a given CRC-aided convolutional code decoded with SLVD,

$$\lim_{\frac{d}{\sigma^2} \to 0} \mathbb{E}[L] = \mathbb{E}[L|\boldsymbol{X} = \boldsymbol{O}].$$
(10)

Lemma 1

There exists a possibly nonlinear lower-rate code C_l with

 $\mathbb{E}[L|\boldsymbol{X}=\boldsymbol{O},\mathcal{C}_l] \leq 2^m.$

Theorem 7 (Parametric Approximation)

Define $\bar{L} \triangleq \mathbb{E}[L|\mathbf{X} = \mathbf{O}]$. For a CRC-aided convolutional code with corresponding parameters \bar{L} and $P_{e,\lambda}$,

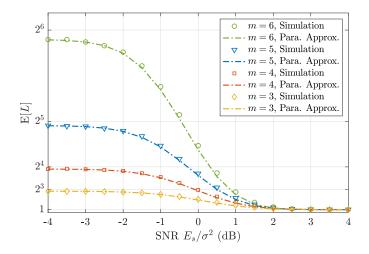
$$\mathbb{E}[L] \approx 1 - P_{e,\lambda} + P_{e,\lambda}\bar{L}.$$
(11)

Theorem 7 (Parametric Approximation)

Define $\bar{L} \triangleq \mathbb{E}[L|\mathbf{X} = \mathbf{O}]$. For a CRC-aided convolutional code with corresponding parameters \bar{L} and $P_{e,\lambda}$,

$$\mathbb{E}[L] \approx 1 - P_{e,\lambda} + P_{e,\lambda}\bar{L}.$$
(11)

Remarks: Assume a target error prob. P_e^* and $\bar{L} \approx 2^m$ (true for CRC-ZTCC), $m \leq -\log(P_e^*)$ is sufficient to maintain $\mathbb{E}[L] \leq 2$.



Setting: k = 64, degree-m DSO CRC polynomials for ZTCC (13, 17).

Hengjie Yang

Ph.D. Defense

For our specific implementation of SLVD, three components comprise the average complexity of SLVD:

$$C_{\mathsf{SLVD}} = C_{\mathsf{SSV}} + C_{\mathsf{trace}} + C_{\mathsf{list}}.$$
 (12)

Variable	CRC-ZTCC	CRC-TBCC
C_{SSV}	$(2^{\nu+1}-2) + 1.5(2^{\nu+1}-2) +$	$1.5(k+m)2^{\nu+1}+2^{\nu}+3.5c_1(k+m)$
	$1.5(k+m-\nu)2^{\nu+1} + c_1[2(k+\nu)] + c_2[2(k+\nu)] + c_2[2(k+$	m)
	$(m+\nu) + 1.5(k+m)]$	
C_{trace}	$c_1(\mathbb{E}[L] - 1)[2(k + m + \nu) +$	$3.5c_1(\mathbb{E}[L]-1)(k+m)$
Utrace	1.5(k+m)]	
C_{list}	$c_2\mathbb{E}[I]\log(\mathbb{E}[I])$	
	(i). c_1 and c_2 are computer-specific constants.	
Notes	(ii). $\mathbb{E}[I]$ denotes the average number of insertions	
	(iii). For CRC-TBCC codes, $\mathbb{E}[I] \leq (k+m)\mathbb{E}[L] + 2^{ u} - 1$	

Outline

CRC-Aided List Decoding of Convolutional Codes

- Introduction
- Search for the Optimal CRC Polynomial
- Performance and Complexity Analysis
- Simulation Results

2) Variable-Length Coding for Binary Channels With Full Feedback

- Introduction
- The Small-Enough-Difference (SED) Coding for BSC
- The Generalized SED Coding for BAC

3 Variable-Length Coding for Binary-Input Channels With Finite, Stop Feedback

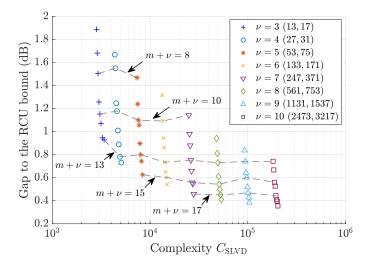
- Introduction
- BI-AWGN Channel Case
- BSC Case

4 Summary

May 16, 2022

23 / 69

Performance-Complexity Trade-off for CRC-ZTCCs



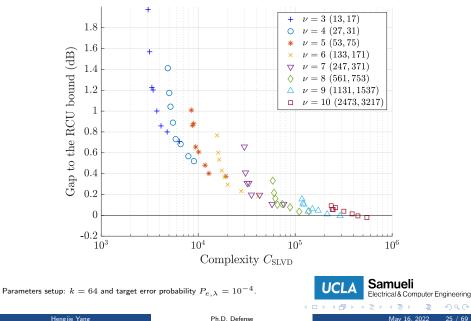
Parameters setup: k = 64 and target error probability $P_{e,\lambda} = 10^{-4}$.

Electrical & Computer Engineering

Samueli

UCL

Performance-Complexity Trade-off for CRC-TBCCs



25 / 69

Outline

1 CRC-Aided List Decoding of Convolutional Codes

- Introduction
- Search for the Optimal CRC Polynomial
- Performance and Complexity Analysis
- Simulation Results

Variable-Length Coding for Binary Channels With Full Feedback Introduction

- The Small-Enough-Difference (SED) Coding for BSC
- The Generalized SED Coding for BAC

3 Variable-Length Coding for Binary-Input Channels With Finite, Stop Feedback

- Introduction
- BI-AWGN Channel Case
- BSC Case

4 Summary

- **H. Yang** and R. D. Wesel, "Finite-Blocklength Performance of Sequential Transmission Over BSC With Noiseless Feedback," in *Proc. IEEE Int. Sym. Inf. Theory (ISIT)*, Los Angeles, CA, USA, June 2020.
- **H. Yang**, M. Pan, A. Antonini, and R. D. Wesel, "Sequential Transmission Over Binary Asymmetric Channels With Feedback," accepted for publication in the *IEEE Trans. Inf. Theory*, May 2022.

Variable-length transmission:

• Simplify coding schemes: e.g., Horstein scheme, posterior matching.

Variable-length transmission:

- Simplify coding schemes: e.g., Horstein scheme, posterior matching.
- Achieve better error exponents: [Burnashev, 1976]. For any $R \in [0, C]$,

$$E(R) \triangleq \lim_{\epsilon \to 0} \frac{\log \frac{1}{\epsilon}}{\mathbb{E}[\tau_{\epsilon}^*]} = C_1 \left(1 - \frac{R}{C}\right).$$
(13)

Variable-length transmission:

- Simplify coding schemes: e.g., Horstein scheme, posterior matching.
- Achieve better error exponents: [Burnashev, 1976]. For any $R \in [0, C]$,

$$E(R) \triangleq \lim_{\epsilon \to 0} \frac{\log \frac{1}{\epsilon}}{\mathbb{E}[\tau_{\epsilon}^*]} = C_1 \left(1 - \frac{R}{C}\right).$$
(13)

• Achieve universality: LT codes (or fountain codes) [Luby, 2002]

Variable-length transmission:

- Simplify coding schemes: e.g., Horstein scheme, posterior matching.
- Achieve better error exponents: [Burnashev, 1976]. For any $R \in [0, C]$,

$$E(R) \triangleq \lim_{\epsilon \to 0} \frac{\log \frac{1}{\epsilon}}{\mathbb{E}[\tau_{\epsilon}^*]} = C_1 \left(1 - \frac{R}{C}\right).$$
(13)

- Achieve universality: LT codes (or fountain codes) [Luby, 2002]
- Improve first- and second-order coding rates: [Polyanskiy *et al.*, 2011] (for $\epsilon < 1/2$)

Variable-length transmission:

- Simplify coding schemes: e.g., Horstein scheme, posterior matching.
- Achieve better error exponents: [Burnashev, 1976]. For any $R \in [0, C]$,

$$E(R) \triangleq \lim_{\epsilon \to 0} \frac{\log \frac{1}{\epsilon}}{\mathbb{E}[\tau_{\epsilon}^*]} = C_1 \left(1 - \frac{R}{C} \right).$$
(13)

- Achieve universality: LT codes (or fountain codes) [Luby, 2002]
- Improve first- and second-order coding rates: [Polyanskiy et al., 2011] (for $\epsilon < 1/2$)

Fixed-length transmission:

• Achieve better error exponents: e.g., Schalkwijk-Kailath scheme

Variable-length transmission:

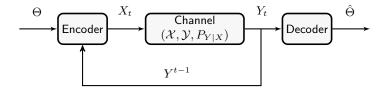
- Simplify coding schemes: e.g., Horstein scheme, posterior matching.
- Achieve better error exponents: [Burnashev, 1976]. For any $R \in [0, C]$,

$$E(R) \triangleq \lim_{\epsilon \to 0} \frac{\log \frac{1}{\epsilon}}{\mathbb{E}[\tau_{\epsilon}^*]} = C_1 \left(1 - \frac{R}{C} \right).$$
(13)

- Achieve universality: LT codes (or fountain codes) [Luby, 2002]
- Improve first- and second-order coding rates: [Polyanskiy et al., 2011] (for $\epsilon < 1/2$)

Fixed-length transmission:

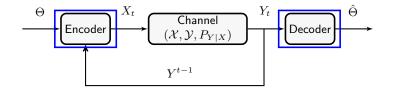
- Achieve better error exponents: e.g., Schalkwijk-Kailath scheme
- Improve second-order coding rate for compound-dispersion DMCs: [Wagner, 2020].



Given $M \in \mathbb{N}_+$, l > 0, $\epsilon \in (0, 1)$, we want to specify an (l, M, ϵ) variable-length feedback (VLF) code.

Hengjie Yang

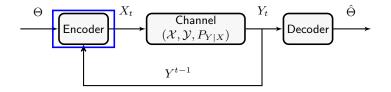
Ph.D. Defense



Codebook $U \in \mathcal{U}$: can be designed "on the fly" with full feedback

Hengjie Yang

Ph.D. Defense

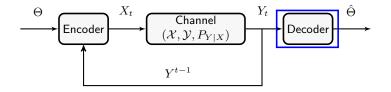


 $[M] \triangleq \{1, 2, \dots, M\}.$

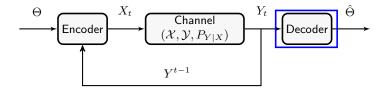
Encoding function $e_t : \mathcal{U} \times [M] \times \mathcal{Y}^{t-1} \to \mathcal{X}$:

$$X_t = e_t(U, \Theta, Y^{t-1}), \quad t \in \mathbb{N}_+$$

where $\Theta \sim \text{Unif}([M])$.



Decoding function $g_t : \mathcal{U} \times \mathcal{Y}^t \to [M]$: providing the best estimate of Θ at time $t, t \in \mathbb{N}_+$.

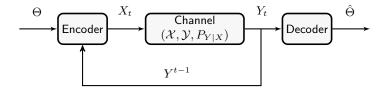


Stopping time $\tau \in \mathbb{N}$: a function of filtration $\mathcal{F}_t = \sigma\{U, Y^t\}$ and must satisfy $\mathbb{E}[\tau] \leq l$.

Final decision: $\hat{\Theta} = g_{\tau}(Y^{\tau})$

 τ also needs to satisfy

$$P_e \triangleq \mathbb{P}[\Theta \neq \hat{\Theta}] \le \epsilon.$$



Goal: Determine $l^*(M, \epsilon) \triangleq \min\{l : \exists (l, M, \epsilon) \text{ VLF code}\}\$

Hengjie Yang

Ph.D. Defense

Outline

1 CRC-Aided List Decoding of Convolutional Codes

- Introduction
- Search for the Optimal CRC Polynomial
- Performance and Complexity Analysis
- Simulation Results

2 Variable-Length Coding for Binary Channels With Full Feedback

- Introduction
- The Small-Enough-Difference (SED) Coding for BSC
- The Generalized SED Coding for BAC

3 Variable-Length Coding for Binary-Input Channels With Finite, Stop Feedback

- Introduction
- BI-AWGN Channel Case
- BSC Case

For symmetric binary-input channels, Naghshvar *et al.* constructed a particular deterministic VLF code.

M. Naghshvar et al., "Optimal reliability over a class of binary-input channels with feedback," *IEEE Inf. Theory Workshop*, Sep. 2012.

For symmetric binary-input channels, Naghshvar *et al.* constructed a particular deterministic VLF code.

Belief state vector $\rho(t)$:

$$\boldsymbol{\rho}(t) \triangleq \begin{bmatrix} \rho_1(t) & \rho_2(t) & \cdots & \rho_M(t) \end{bmatrix}$$
 (14)

where $\rho_i(t) \triangleq \mathbb{P}[\Theta = i | Y^t], i \in [M], t \in \mathbb{N}$. By default, $\rho_i(0) = 1/M, i \in [M]$.

M. Naghshvar et al., "Optimal reliability over a class of binary-input channels with feedback," IEEE Inf. Theory Workshop, Sep. 2012.

Ph.D. Defense

For symmetric binary-input channels, Naghshvar *et al.* constructed a particular deterministic VLF code.

Belief state vector $\rho(t)$:

$$\boldsymbol{\rho}(t) \triangleq \begin{bmatrix} \rho_1(t) & \rho_2(t) & \cdots & \rho_M(t) \end{bmatrix}$$
 (14)

where $\rho_i(t) \triangleq \mathbb{P}[\Theta = i | Y^t]$, $i \in [M]$, $t \in \mathbb{N}$. By default, $\rho_i(0) = 1/M$, $i \in [M]$.

Bayes' update of $\rho(t)$: Upon receiving $Y_{t+1} = y_{t+1}$,

$$\rho_i(t+1) = \frac{\rho_i(t) P_{Y|X}(y_{t+1}|x_{t+1,i})}{\sum_{j \in [M]} \rho_j(t) P_{Y|X}(y_{t+1}|x_{t+1,j})}, \quad i \in [M],$$
(15)

where $x_{t+1,i} \in \mathcal{X}$ denotes the input symbol for $i \in [M]$ at time t+1.

M. Naghshvar et al., "Optimal reliability over a class of binary-input channels with feedback," IEEE Inf. Theory Workshop, Sep. 2012.

The SED bipartition (defining codebook U) : Let $S_0(t)$ and $S_1(t)$ be a bipartition of [M]. Define

$$\pi_x(t) \triangleq \sum_{i \in S_x(t)} \rho_i(t), \quad x \in \{0, 1\}.$$
 (16)

At time t + 1, upon obtaining $\rho(t)$, partition [M] into $S_0(t)$ and $S_1(t)$ s.t.

$$0 \le \pi_0(t) - \pi_1(t) \le \min_{i \in S_0(t)} \rho_i(t).$$
(17)

May 16, 2022

30 / 69

The SED bipartition (defining codebook U) : Let $S_0(t)$ and $S_1(t)$ be a bipartition of [M]. Define

$$\pi_x(t) \triangleq \sum_{i \in S_x(t)} \rho_i(t), \quad x \in \{0, 1\}.$$
 (16)

At time t + 1, upon obtaining $\rho(t)$, partition [M] into $S_0(t)$ and $S_1(t)$ s.t.

$$0 \le \pi_0(t) - \pi_1(t) \le \min_{i \in S_0(t)} \rho_i(t).$$
(17)

Encoder: After SED bipartition of [M] into $S_0(t), S_1(t)$,

$$X_{t+1} = \begin{cases} 0, & \text{if } \Theta \in S_0(t) \\ 1, & \text{if } \Theta \in S_1(t) \end{cases}$$
(18)

The SED bipartition (defining codebook U) : Let $S_0(t)$ and $S_1(t)$ be a bipartition of [M]. Define

$$\pi_x(t) \triangleq \sum_{i \in S_x(t)} \rho_i(t), \quad x \in \{0, 1\}.$$
 (16)

At time t+1, upon obtaining $\rho(t)$, partition [M] into $S_0(t)$ and $S_1(t)$ s.t.

$$0 \le \pi_0(t) - \pi_1(t) \le \min_{i \in S_0(t)} \rho_i(t).$$
(17)

Encoder: After SED bipartition of [M] into $S_0(t), S_1(t)$,

$$X_{t+1} = \begin{cases} 0, & \text{if } \Theta \in S_0(t) \\ 1, & \text{if } \Theta \in S_1(t) \end{cases}$$
(18)

• A straightforward algo.: $O(k2^k)$

The SED bipartition (defining codebook U) : Let $S_0(t)$ and $S_1(t)$ be a bipartition of [M]. Define

$$\pi_x(t) \triangleq \sum_{i \in S_x(t)} \rho_i(t), \quad x \in \{0, 1\}.$$
 (16)

At time t+1, upon obtaining ${\pmb \rho}(t),$ partition [M] into $S_0(t)$ and $S_1(t)$ s.t.

$$0 \le \pi_0(t) - \pi_1(t) \le \min_{i \in S_0(t)} \rho_i(t).$$
(17)

Encoder: After SED bipartition of [M] into $S_0(t), S_1(t)$,

$$X_{t+1} = \begin{cases} 0, & \text{if } \Theta \in S_0(t) \\ 1, & \text{if } \Theta \in S_1(t) \end{cases}$$
(18)

- A straightforward algo.: $O(k2^k)$
- A type-based algo. for relaxed SED bipartition [Antonini *et al.*, 2020]: $O(k^2)$

A. Antonini *et al.*, "Low complexity algorithms for transmission of short blocks over the BSC with full feedback," *IEEE Int. Sym. Inf. Theory (ISIT)*, Jun. 2020.

Decoder: Upon receiving y_{t+1} , the decoder obtains $\rho(t+1)$ with Bayes' rule. The decoder adopts

$$\tau \triangleq \min\left\{t \in \mathbb{N} : \max_{i \in [M]} \rho_i(t) \ge 1 - \epsilon\right\}.$$

$$\hat{\Theta} \triangleq \operatorname*{arg\,max}_{i \in [M]} \rho_i(\tau).$$
(20)

Decoder: Upon receiving y_{t+1} , the decoder obtains $\rho(t+1)$ with Bayes' rule. The decoder adopts

$$\tau \triangleq \min\left\{t \in \mathbb{N} : \max_{i \in [M]} \rho_i(t) \ge 1 - \epsilon\right\}.$$

$$\hat{\Theta} \triangleq \operatorname*{arg\,max}_{i \in [M]} \rho_i(\tau).$$
(19)
(20)

Error probability: $P_e = \mathbb{E} \left[1 - \max_{i \in [M]} \rho_i(\tau) \right] \leq \epsilon.$

Why is the SED coding rule interesting?

Log-likelihood ratio $U_j(t)$:

$$U_j(t) \triangleq \log \frac{\rho_j(t)}{1 - \rho_j(t)}, \quad j \in [M]$$
(21)

Why is the SED coding rule interesting?

Log-likelihood ratio $U_j(t)$:

$$U_j(t) \triangleq \log \frac{\rho_j(t)}{1 - \rho_j(t)}, \quad j \in [M]$$
(21)

Theorem 8 (Naghshvar et al., 2012)

For symmetric binary-input channels, the SED bipartition yields a two-stage submartingale $\{U_i(t)\}_{t=0}^{\infty}$:

$$\mathbb{E}[U_i(t+1)|\mathcal{F}_t, \Theta = i] \ge U_i(t) + C, \quad \text{if } U_i(t) < 0 \tag{22a}$$

$$\mathbb{E}[U_i(t+1)|\mathcal{F}_t, \Theta = i] = U_i(t) + C_1 \quad \text{if } U_i(t) \ge 0$$
(22b)

$$|U_i(t+1) - U_i(t)| \le C_2,$$
(22c)

where $C = \max_{P_X} I(X; Y)$,

$$C_1 \triangleq \max_{x,x' \in \mathcal{X}} D\Big(P_{Y|X=x} \| P_{Y|X=x'}\Big)$$
(23)

$$C_2 \triangleq \max_{y \in \mathcal{Y}} \log \frac{\max_{x \in \mathcal{X}} P_{Y|X}(y|x)}{\min_{x \in \mathcal{X}} P_{Y|X}(y|x)}.$$
(24)

UCLA

イロト イヨト イヨト イヨ

Electrical & Computer Engineering

Samueli

Why is the SED coding rule interesting?

Log-likelihood ratio $U_j(t)$:

$$U_j(t) \triangleq \log \frac{\rho_j(t)}{1 - \rho_j(t)}, \quad j \in [M]$$
(21)

Theorem 8 (Naghshvar et al., 2012)

For symmetric binary-input channels, the SED bipartition yields a two-stage submartingale $\{U_i(t)\}_{t=0}^{\infty}$:

$$\mathbb{E}[U_i(t+1)|\mathcal{F}_t, \Theta = i] \ge U_i(t) + C, \quad \text{if } U_i(t) < 0 \tag{22a}$$

$$\mathbb{E}[U_i(t+1)|\mathcal{F}_t, \Theta = i] = U_i(t) + C_1 \quad \text{if } U_i(t) \ge 0$$
(22b)

$$|U_i(t+1) - U_i(t)| \le C_2,$$
(22c)

where $C = \max_{P_X} I(X;Y)$,

$$C_1 \triangleq \max_{x,x' \in \mathcal{X}} D\Big(P_{Y|X=x} \| P_{Y|X=x'}\Big)$$
(23)

$$C_2 \triangleq \max_{y \in \mathcal{Y}} \log \frac{\max_{x \in \mathcal{X}} P_{Y|X}(y|x)}{\min_{x \in \mathcal{X}} P_{Y|X}(y|x)}.$$
(24)

UCLA

イロト イヨト イヨト イヨ

For typical DMC, $0 < C \leq C_1 \leq C_2 < \infty$.

Electrical & Computer Engineering

Samueli

Theorem 9 (Naghshvar et al., 2015)

Fix $M \in \mathbb{N}_+$ and $\epsilon \in (0, 1/2)$. The (l, M, ϵ) VLF code constructed from the SED coding rule for BSC satisfies

$$l \le \frac{\log M + \log \log \frac{M}{\epsilon}}{C} + \frac{\log \frac{1}{\epsilon} + 1}{C_1} + \frac{96 \cdot 2^{2C_2}}{CC_1}$$

$$(25)$$

M. Naghshvar et al., "Extrinsic Jensen-Shannon divergence: applications to variable-length coding," IEEE Trans. Inf. Theory, Apr. 2015.

Theorem 9 (Naghshvar et al., 2015)

Fix $M \in \mathbb{N}_+$ and $\epsilon \in (0, 1/2)$. The (l, M, ϵ) VLF code constructed from the SED coding rule for BSC satisfies

$$l \le \frac{\log M + \log \log \frac{M}{\epsilon}}{C} + \frac{\log \frac{1}{\epsilon} + 1}{C_1} + \frac{96 \cdot 2^{2C_2}}{CC_1}$$

$$(25)$$

M. Naghshvar et al., "Extrinsic Jensen-Shannon divergence: applications to variable-length coding," IEEE Trans. Inf. Theory, Apr. 2015.

Theorem 10 (Polyanskiy et al., 2011)

Fix $M \in \mathbb{N}_+$ and $\epsilon \in (0, 1/2)$. There exists an (l, M, ϵ) variable-length stop-feedback (VLSF) code for DMC with bounded information density with

$$l \le \frac{\log(M-1)}{C} + \frac{\log\frac{1}{\epsilon}}{C} + \frac{a_0}{C}$$

$$\tag{26}$$

where $a_0 \triangleq \sup_{x \in \mathcal{X}, y \in \mathcal{Y}} \iota(x; y)$.

Y. Polyanskiy et al., "Feedback in the non-asymptotic regime," IEEE Trans. Inf. Theory, Aug. 2011.

May 16, 2022

33 / 69

Issue: Even with full feedback, Naghshvar's result is much looser than Polyanskiy's.

Issue: Even with full feedback, Naghshvar's result is much looser than Polyanskiy's.

Numerical example: For BSC(0.11) with C = 0.5 and $\epsilon = 10^{-3}$,

$$l \leq \frac{\log M + \log \log M}{0.5} + 5352.67 \quad \text{(Naghshvar's bound for VLF code)}$$
(27)
$$l \leq \frac{\log(M-1)}{0.5} + 21.93 \quad \text{(Polyanskiy's bound for VLSF code)}$$
(28)

Issue: Even with full feedback, Naghshvar's result is much looser than Polyanskiy's.

Numerical example: For BSC(0.11) with C = 0.5 and $\epsilon = 10^{-3}$,

$$l \leq \frac{\log M + \log \log M}{0.5} + 5352.67 \quad \text{(Naghshvar's bound for VLF code)}$$
(27)
$$l \leq \frac{\log(M-1)}{0.5} + 21.93 \quad \text{(Polyanskiy's bound for VLSF code)}$$
(28)

Our goal: Seek a new upper bound for SED coding rule better than Polyanskiy's bound!

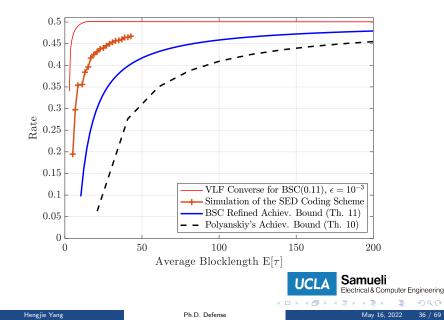
Ph.D. Defense

Theorem 11

Fix M and $\epsilon \in (0, 1/2)$. The (l, M, ϵ) VLF code constructed from the SED coding scheme for BSC(p), $p \in (0, 1/2)$, satisfies

$$l < \frac{\log M + \frac{1}{q} \log 2q}{C} + \frac{\log \frac{1-\epsilon}{\epsilon} + C_2}{C_1} + 2^{-C_2} C_2 \left(\frac{1}{C} - \frac{1}{C_1} + \frac{\frac{1}{q} \log 2q}{CC_2}\right) \frac{1 - \frac{\epsilon}{1-\epsilon} 2^{-C_2}}{1 - 2^{-C_2}}.$$
(29)

Ph.D. Defense



Outline

1 CRC-Aided List Decoding of Convolutional Codes

- Introduction
- Search for the Optimal CRC Polynomial
- Performance and Complexity Analysis
- Simulation Results

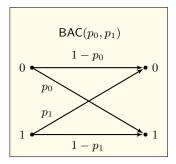
2 Variable-Length Coding for Binary Channels With Full Feedback

- Introduction
- The Small-Enough-Difference (SED) Coding for BSC
- The Generalized SED Coding for BAC

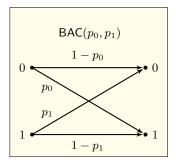
3 Variable-Length Coding for Binary-Input Channels With Finite, Stop Feedback

- Introduction
- BI-AWGN Channel Case
- BSC Case

Binary Asymmetric Channel (BAC)

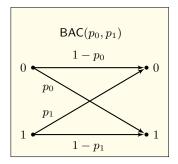


Binary Asymmetric Channel (BAC)



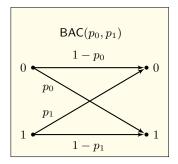
Special cases:

• Regularized BAC: $p_0 \in (0, 1/2)$ and $p_0 \le p_1 \le 1 - p_0$.



Special cases:

- Regularized BAC: $p_0 \in (0, 1/2)$ and $p_0 \le p_1 \le 1 p_0$.
- BSC: $p_0 = p_1 \in (0, 1/2)$.



Special cases:

- Regularized BAC: $p_0 \in (0, 1/2)$ and $p_0 \le p_1 \le 1 p_0$.
- BSC: $p_0 = p_1 \in (0, 1/2)$.

Every BAC can be transformed into an equivalent regularized BAC.

Some Useful Facts

Fact 1: Consider a BAC (p_0, p_1) . Define $z \triangleq 2^{\frac{h(p_0)-h(p_1)}{1-p_0-p_1}}$. Then,

$$C = \frac{p_0 h(p_1)}{1 - p_0 - p_1} - \frac{(1 - p_1) h(p_0)}{1 - p_0 - p_1} + \log(1 + z),$$
(30)

$$\pi_0^* = \frac{1 - p_1(1+z)}{(1 - p_0 - p_1)(1+z)},\tag{31}$$

$$\pi_1^* = \frac{(1-p_0)(1+z)-1}{(1-p_0-p_1)(1+z)}.$$
(32)

Further ,for regularized BAC (p_0, p_1) , $0 < \pi_1^* \le \pi_0^* < 1$.

Some Useful Facts

Fact 1: Consider a BAC (p_0, p_1) . Define $z \triangleq 2^{\frac{h(p_0)-h(p_1)}{1-p_0-p_1}}$. Then,

$$C = \frac{p_0 h(p_1)}{1 - p_0 - p_1} - \frac{(1 - p_1)h(p_0)}{1 - p_0 - p_1} + \log(1 + z),$$
(30)

$$\pi_0^* = \frac{1 - p_1(1+z)}{(1 - p_0 - p_1)(1+z)},\tag{31}$$

$$\pi_1^* = \frac{(1-p_0)(1+z)-1}{(1-p_0-p_1)(1+z)}.$$
(32)

Further ,for regularized BAC (p_0, p_1) , $0 < \pi_1^* \le \pi_0^* < 1$.

Fact 2: For a regularized BAC (p_0, p_1) ,

$$C_1 = D\Big(P_{Y|X=1} \| P_{Y|X=0}\Big),$$
(33)

$$C_2 = \log \frac{P_{Y|X}(1|1)}{P_{Y|X}(1|0)} = \log \frac{1-p_1}{p_0}.$$
(34)

Posterior matching principle: we want to have

$$[\pi_0(t), \pi_1(t)] \approx [\pi_0^*, \pi_1^*], \quad \forall t \in \mathbb{N}$$
(35)

Posterior matching principle: we want to have

$$[\pi_0(t), \pi_1(t)] \approx [\pi_0^*, \pi_1^*], \quad \forall t \in \mathbb{N}$$
(35)

Generalized SED bipartition: At time t + 1, let $\hat{i} \triangleq \arg \max_{j \in [M]} \rho_j(t)$.

• If $\rho_{\hat{i}}(t) < \pi_1^*$, partition [M] into $S_0(t)$ and $S_1(t)$ s.t.

$$-\frac{\min_{i\in S_1(t)}\rho_i(t)}{\pi_1^*} \le \frac{\pi_0(t)}{\pi_0^*} - \frac{\pi_1(t)}{\pi_1^*} \le \frac{\min_{i\in S_0(t)}\rho_i(t)}{\pi_0^*}.$$
(36)

• If $\rho_{\hat{i}}(t) \ge \pi_1^*$, exclusively assign $S_0(t) = [M] \setminus {\{\hat{i}\}}, S_1(t) = {\{\hat{i}\}}.$

Posterior matching principle: we want to have

$$[\pi_0(t), \pi_1(t)] \approx [\pi_0^*, \pi_1^*], \quad \forall t \in \mathbb{N}$$
(35)

Generalized SED bipartition: At time t + 1, let $\hat{i} \triangleq \arg \max_{j \in [M]} \rho_j(t)$.

• If $\rho_{\hat{i}}(t) < \pi_1^*$, partition [M] into $S_0(t)$ and $S_1(t)$ s.t.

$$-\frac{\min_{i\in S_1(t)}\rho_i(t)}{\pi_1^*} \le \frac{\pi_0(t)}{\pi_0^*} - \frac{\pi_1(t)}{\pi_1^*} \le \frac{\min_{i\in S_0(t)}\rho_i(t)}{\pi_0^*}.$$
(36)

• If $\rho_{\hat{i}}(t) \ge \pi_1^*$, exclusively assign $S_0(t) = [M] \setminus {\{\hat{i}\}}, S_1(t) = {\{\hat{i}\}}.$

Encoder & Decoder: same as the BSC case

Lemma 2

Fix a regularized $BAC(p_0, p_1)$. The generalized SED coding rule induces the following submartingale

$$\begin{split} \mathbb{E}[U_i(t+1)|\mathcal{F}_t, \Theta = i] &\geq U_i(t) + C, \quad \text{if } U_i(t) < 0 \quad (37a) \\ \mathbb{E}[U_i(t+1)|\mathcal{F}_t, \Theta = i] &\geq U_i(t) + C_1 \quad \text{if } U_i(t) \geq 0 \quad (37b) \\ |U_i(t+1) - U_i(t)| &\leq C_2 \quad (37c) \end{split}$$

Ph.D. Defense

Theorem 12

Fix a regularized BAC(p_0, p_1). Let $\lambda \triangleq \pi_1^* / \pi_0^* \in (0, 1]$. For $\boldsymbol{\rho} = [\rho_1, \rho_2, \dots, \rho_M]$ satisfying $\max_{i \in [M]} \rho_i < \pi_1^*$, define function $f : 2^{[M]} \to \mathbb{R}$:

$$f(S) \triangleq \lambda \big(\pi_1(S) - \lambda \pi_0(S) \big) \mathbf{1}_{\{\pi_1(S) \ge \lambda \pi_0(S)\}} + \big(\lambda \pi_0(S) - \pi_1(S) \big) \mathbf{1}_{\{\pi_1(S) < \lambda \pi_0(S)\}}, \quad (38)$$

where

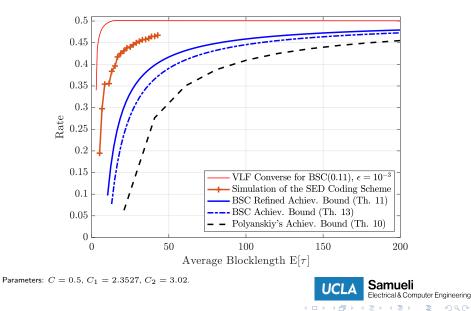
$$\pi_0(S) \triangleq \sum_{i \in S} \rho_i, \quad \pi_1(S) \triangleq \sum_{i \in [M] \setminus S} \rho_i$$
(39)

If $S_0^* \subseteq [M]$ minimizes (38), then, the partition $(S_0^*, [M] \setminus S_0^*)$ satisfies (36).

Theorem 13

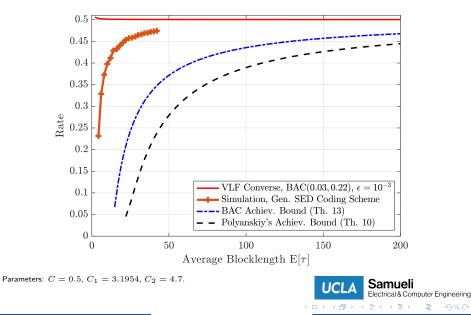
Fix $M \in \mathbb{N}_+$ and $\epsilon \in (0, 1/2)$. The (l, M, ϵ) VLF code constructed from the generalized SED coding scheme for regularized BAC (p_0, p_1) satisfies

$$l < \frac{\log M}{C} + \frac{\log \frac{1-\epsilon}{\epsilon} + C_2}{C_1} + C_2 \left(\frac{1}{C} - \frac{1}{C_1}\right) \frac{1 - \frac{\epsilon}{1-\epsilon} 2^{-C_2}}{1 - 2^{-C_2}}.$$
 (40)



May 16, 2022

43 / 69



Outline

1 CRC-Aided List Decoding of Convolutional Codes

- Introduction
- Search for the Optimal CRC Polynomial
- Performance and Complexity Analysis
- Simulation Results

2 Variable-Length Coding for Binary Channels With Full Feedback

- Introduction
- The Small-Enough-Difference (SED) Coding for BSC
- The Generalized SED Coding for BAC

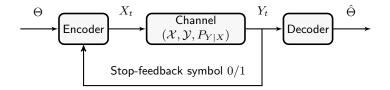
3 Variable-Length Coding for Binary-Input Channels With Finite, Stop Feedback

- Introduction
- BI-AWGN Channel Case
- BSC Case

Summary

H. Yang, R. C. Yavas, V. Kostina, and R. D. Wesel, "Variable-Length Stop-Feedback Codes With Finite Optimal Decoding Times for BI-AWGN Channels," accepted for presentation at *IEEE Int. Sym. Inf. Theory (ISIT)*, Espoo, Finland, June 2022.

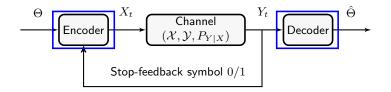
H. Yang, R. C. Yavas, V. Kostina, and R. D. Wesel, "Variable-Length Coding for Binary-Input Channels With Finite Stop Feedback," to be submitted to *IEEE Trans. Inf. Theory*.



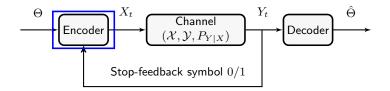
Given l > 0, $n_1^m \in \mathbb{N}_+^m$ with $n_1 < n_2 < \cdots < n_m$, $M \in \mathbb{N}_+$, $\epsilon \in (0, 1)$, we want to specify an (l, n_1^m, M, ϵ) VLSF code.

Hengjie Yang

Ph.D. Defense



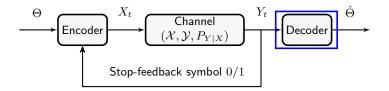
Codebook $U \in \mathcal{U}$: designed and fixed before transmission



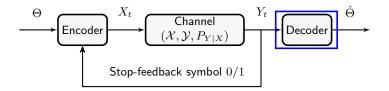
Encoding function $e_t : \mathcal{U} \times [M] \to \mathcal{X}$:

$$X_t = e_t(U, \Theta), \quad t \in \mathbb{N}_+$$

where $\Theta \sim \text{Unif}([M])$.



Decoding function $g_t : \mathcal{U} \times \mathcal{Y}^t \to [M]$: providing the best estimate of Θ at time $t, t \in \{n_1, n_2, \dots, n_m\}$.

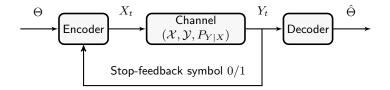


Stopping time $\tau \in \{n_i\}_{i=1}^m$: a function of filtration generated by $\{U, Y^{n_i}\}_{i=1}^m$ and must satisfy $\mathbb{E}[\tau] \leq l$.

Final decision: $\hat{\Theta} = g_{\tau}(Y^{\tau})$

 τ also needs to satisfy

$$P_e \triangleq \mathbb{P}[\Theta \neq \hat{\Theta}] \le \epsilon.$$



Goal: Determine $l^*(m, M, \epsilon) \triangleq \min\{l : \exists (l, n_1^m, M, \epsilon) \text{ VLSF code}\}\$

$$\iota(x^{n}; y^{n}) \triangleq \log \frac{\mathsf{P}_{Y^{n}|X^{n}}(y^{n}|x^{n})}{\mathsf{P}_{Y^{n}}(y^{n})}$$
(41)

Y. Polyanskiy et al., "Channel coding rate in the finite blocklength regime," IEEE Trans. Inf. Theory, Apr. 2010.

Hengjie Yang

$$\iota(x^n; y^n) \triangleq \log \frac{\mathsf{P}_{Y^n | X^n}(y^n | x^n)}{\mathsf{P}_{Y^n}(y^n)}$$
(41)

• If $\mathsf{P}_{X^n} = \prod_{i=1}^n \mathsf{P}_{X_i}$ and the channel is memoryless, $\iota(x^n; y^n) = \sum_{i=1}^n \iota(x_i; y_i)$.

Y. Polyanskiy et al., "Channel coding rate in the finite blocklength regime," IEEE Trans. Inf. Theory, Apr. 2010.

$$\iota(x^{n}; y^{n}) \triangleq \log \frac{\mathsf{P}_{Y^{n}|X^{n}}(y^{n}|x^{n})}{\mathsf{P}_{Y^{n}}(y^{n})}$$
(41)

• If $\mathsf{P}_{X^n} = \prod_{i=1}^n \mathsf{P}_{X_i}$ and the channel is memoryless, $\iota(x^n; y^n) = \sum_{i=1}^n \iota(x_i; y_i)$.

• If $P_X = P_X^*$, define channel capacity and dispersion by

$$C \triangleq \mathbb{E}_{\mathsf{P}_X^* \mathsf{P}_{Y|X}}[\iota(X;Y)],\tag{42}$$

$$V \triangleq \mathbb{E}_{\mathsf{P}_X^* \mathsf{P}_{Y|X}}[\iota^2(X;Y)] - C^2.$$
(43)

Y. Polyanskiy et al., "Channel coding rate in the finite blocklength regime," IEEE Trans. Inf. Theory, Apr. 2010.

$$\iota(x^{n}; y^{n}) \triangleq \log \frac{\mathsf{P}_{Y^{n}|X^{n}}(y^{n}|x^{n})}{\mathsf{P}_{Y^{n}}(y^{n})}$$
(41)

• If $\mathsf{P}_{X^n} = \prod_{i=1}^n \mathsf{P}_{X_i}$ and the channel is memoryless, $\iota(x^n; y^n) = \sum_{i=1}^n \iota(x_i; y_i)$.

• If $P_X = P_X^*$, define channel capacity and dispersion by

$$C \triangleq \mathbb{E}_{\mathsf{P}_X^* \mathsf{P}_{Y|X}}[\iota(X;Y)],\tag{42}$$

$$V \triangleq \mathbb{E}_{\mathsf{P}_X^* \mathsf{P}_{Y|X}}[\iota^2(X;Y)] - C^2.$$
(43)

We assume i.i.d. inputs ~ P_X^{*}.

Y. Polyanskiy et al., "Channel coding rate in the finite blocklength regime," IEEE Trans. Inf. Theory, Apr. 2010.

Theorem 14 (Yavas et al., 2021)

Fix a constant $\gamma > 0$, integer-valued decoding times $n_1 < n_2 < \cdots < n_m$, and a memoryless channel $(\mathcal{X}, \mathcal{Y}, \mathsf{P}_{Y|X})$. For any l > 0 and $\epsilon \in (0, 1)$, there exists an (l, n_1^m, M, ϵ') VLSF code with

$$l \le n_m + \sum_{i=1}^{m-1} (n_i - n_{i+1}) \mathbb{P}\left[\bigcup_{j=1}^i \{\iota(X^{n_j}; Y^{n_j}) \ge \gamma\}\right],$$

$$\epsilon' \le 1 - \mathbb{P}[\iota(X^{n_m}; Y^{n_m}) \ge \gamma] + (M-1)2^{-\gamma},$$
(45)

where $\mathsf{P}_{X^{n_m}}$ is the product of distributions of m subvectors of lengths $n_i - n_{i-1}$, $i \in [m]$, i.e.,

$$\mathsf{P}_{X^{n_m}}(x_1^{n_m}) = \prod_{i=1}^m \mathsf{P}_{X_{n_{i-1}+1}^{n_i}}\left(x_{n_{i-1}+1}^{n_i}\right). \tag{46}$$

R. Yavas et al., "Variable-length feedback codes with several decoding times for the Gaussian channel," *IEEE Int. Sym. Inf. Theory (ISIT)*, Jul. 2021.

An Integer Program

By relaxing
$$\mathbb{P}\left[\bigcup_{j=1}^{i} \{\iota(X^{n_j}; Y^{n_j}) \geq \gamma\}\right]$$
 to $\mathbb{P}[\iota(X^{n_i}; Y^{n_i}) \geq \gamma]$, define

$$N(\gamma, n_1^m) \triangleq n_m + \sum_{i=1}^{m-1} (n_i - n_{i+1}) \mathbb{P}[\iota(X^{n_i}; Y^{n_i}) \ge \gamma],$$

$$\mathcal{F}_m(\gamma, M, \epsilon) \triangleq \{n_1^m \in \mathbb{R}^m_+ : n_{i+1} - n_i \ge 1, \forall i \in [m-1];$$

$$\mathbb{P}[\iota(X^{n_m}; Y^{n_m}) \ge \gamma] \ge 1 - \epsilon + (M-1)2^{-\gamma}\}.$$
(48)

An Integer Program

By relaxing
$$\mathbb{P}\left[\bigcup_{j=1}^{i} \{\iota(X^{n_j}; Y^{n_j}) \geq \gamma\}\right]$$
 to $\mathbb{P}[\iota(X^{n_i}; Y^{n_i}) \geq \gamma]$, define

$$N(\gamma, n_1^m) \triangleq n_m + \sum_{i=1}^{m-1} (n_i - n_{i+1}) \mathbb{P}[\iota(X^{n_i}; Y^{n_i}) \ge \gamma],$$

$$\mathcal{F}_m(\gamma, M, \epsilon) \triangleq \{n_1^m \in \mathbb{R}^m_+ : n_{i+1} - n_i \ge 1, \forall i \in [m-1];$$

$$\mathbb{P}[\iota(X^{n_m}; Y^{n_m}) \ge \gamma] \ge 1 - \epsilon + (M-1)2^{-\gamma}\}.$$
(48)

Integer program: for a given $m \in \mathbb{N}_+$, $M \in \mathbb{N}_+$, $\epsilon \in (0, 1)$, and $\gamma \ge \log \frac{M-1}{\epsilon}$,

$$\min_{\substack{n_1^m \\ 1}} N(\gamma, n_1^m)$$
s. t. $n_1^m \in \mathcal{F}_m(\gamma, M, \epsilon)$
 $n_1^m \in \mathbb{N}_+^m.$
(49)

By relaxing
$$\mathbb{P}\left[\bigcup_{j=1}^{i} \left\{\iota(X^{n_j}; Y^{n_j}) \geq \gamma\right\}\right]$$
 to $\mathbb{P}[\iota(X^{n_i}; Y^{n_i}) \geq \gamma]$, define

$$N(\gamma, n_1^m) \triangleq n_m + \sum_{i=1}^{m-1} (n_i - n_{i+1}) \mathbb{P}[\iota(X^{n_i}; Y^{n_i}) \ge \gamma],$$

$$\mathcal{F}_m(\gamma, M, \epsilon) \triangleq \{n_1^m \in \mathbb{R}^m_+ : n_{i+1} - n_i \ge 1, \forall i \in [m-1];$$

$$\mathbb{P}[\iota(X^{n_m}; Y^{n_m}) \ge \gamma] \ge 1 - \epsilon + (M-1)2^{-\gamma}\}.$$
(48)

Integer program: for a given $m \in \mathbb{N}_+$, $M \in \mathbb{N}_+$, $\epsilon \in (0, 1)$, and $\gamma \ge \log \frac{M-1}{\epsilon}$,

$$\min_{\substack{n_1^m \\ n_1^m}} N(\gamma, n_1^m)
s. t. \quad n_1^m \in \mathcal{F}_m(\gamma, M, \epsilon)
\quad n_1^m \in \mathbb{N}_+^m.$$
(49)

Two-step minimization: $\min_{\gamma} \min_{n_1^m} N(\gamma, n_1^m)$

Outline

1 CRC-Aided List Decoding of Convolutional Codes

- Introduction
- Search for the Optimal CRC Polynomial
- Performance and Complexity Analysis
- Simulation Results

2 Variable-Length Coding for Binary Channels With Full Feedback

- Introduction
- The Small-Enough-Difference (SED) Coding for BSC
- The Generalized SED Coding for BAC

Original States of States and States and

- Introduction
- BI-AWGN Channel Case
- BSC Case

4 Summary

May 16, 2022

49 / 69

For BI-AWGN channel,

- $\iota(x;Y) = 1 \log(1 + e^{-2xY})$ is continuous.
- $\iota(X^n; Y^n)$ is a sum of i.i.d. $\iota(X; Y)$.

For BI-AWGN channel,

- $\iota(x;Y) = 1 \log(1 + e^{-2xY})$ is continuous.
- $\iota(X^n; Y^n)$ is a sum of i.i.d. $\iota(X; Y)$.

Central limit theorem (CLT): Let W_1, W_2, \ldots, W_n be i.i.d. r.v.'s with zero mean, variance σ^2 . Define the standardized sum

$$S_n \triangleq \frac{\sum_{i=1}^n W_i}{\sigma \sqrt{n}}.$$
 (50)

Then, $\lim_{n\to\infty} \mathbb{P}[S_n \leq x] = \Phi(x)$.

For BI-AWGN channel,

- $\iota(x; Y) = 1 \log(1 + e^{-2xY})$ is continuous.
- $\iota(X^n; Y^n)$ is a sum of i.i.d. $\iota(X; Y)$.

Central limit theorem (CLT): Let W_1, W_2, \ldots, W_n be i.i.d. r.v.'s with zero mean, variance σ^2 . Define the standardized sum

$$S_n \triangleq \frac{\sum_{i=1}^n W_i}{\sigma \sqrt{n}}.$$
(50)

Then, $\lim_{n\to\infty} \mathbb{P}[S_n \leq x] = \Phi(x)$.

Gaussian Model [Wang et al., 2017]: For n sufficiently large,

$$\mathbb{P}[\iota(X^n;Y^n) \ge \gamma] \approx Q\left(\frac{\gamma - nC}{\sqrt{nV}}\right).$$
(51)

H. Wang *et al.*, "An information density approach to analyzing and optimizing incremental redundancy with feedback", *IEEE Int. Sym. Inf. Theory (ISIT)*, Jun. 2017.

May 16, 2022

50 / 69

Hengjie Yang

For BI-AWGN channel,

- $\iota(x; Y) = 1 \log(1 + e^{-2xY})$ is continuous.
- $\iota(X^n; Y^n)$ is a sum of i.i.d. $\iota(X; Y)$.

Central limit theorem (CLT): Let W_1, W_2, \ldots, W_n be i.i.d. r.v.'s with zero mean, variance σ^2 . Define the standardized sum

$$S_n \triangleq \frac{\sum_{i=1}^n W_i}{\sigma \sqrt{n}}.$$
(50)

Then, $\lim_{n\to\infty} \mathbb{P}[S_n \leq x] = \Phi(x)$.

Gaussian Model [Wang et al., 2017]: For n sufficiently large,

$$\mathbb{P}[\iota(X^n;Y^n) \ge \gamma] \approx Q\left(\frac{\gamma - nC}{\sqrt{nV}}\right).$$
(51)

Question: What if n is small?

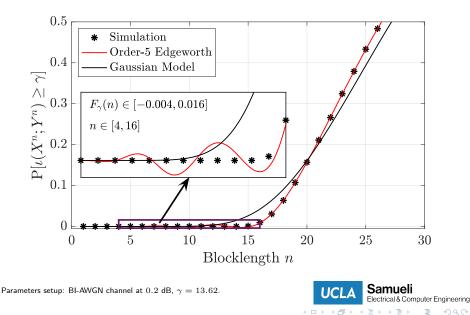
H. Wang et al., "An information density approach to analyzing and optimizing incremental redundancy with feedback", *IEEE Int. Sym. Inf. Theory (ISIT)*, Jun. 2017.

Edgeworth expansion: Let W_1, W_2, \ldots, W_n be i.i.d. absolutely continuous r.v.'s with zero mean, variance σ^2 . Let $\{\kappa_i\}_{i=1}^{\infty}$ be the cumulants of W. If $\mathbb{E}[|W|^{s+2}] < \infty$ for some $s \in \mathbb{N}_+$, then,

$$\mathbb{P}[S_n \le x] = \Phi(x) + \phi(x) \sum_{j=1}^s n^{-\frac{j}{2}} p_j(x) + o\left(n^{-\frac{s}{2}}\right),$$
(52)

where $p_j(x)$ requires cumulants $\kappa_3, \kappa_4, \ldots, \kappa_{j+2}$ of W.

F. Edgeworth, "The law of error," Cambridge Philos. Trans., 1905.



Petrov expansion: Let W_1, W_2, \ldots, W_n be i.i.d. r.v.'s with zero mean, variance σ^2 . Let $\{\kappa_i\}_{i=1}^{\infty}$ be the cumulants of W. If $x \ge 0$, $x = o(\sqrt{n})$, and $\mathbb{E}[e^{tW}] < \infty$ for |t| < H for some H > 0,

$$\mathbb{P}[S_n \le x] = 1 - Q(x) \exp\left\{\frac{x^3}{\sqrt{n}}\Lambda\left(\frac{x}{\sqrt{n}}\right)\right\} \left[1 + O\left(\frac{x+1}{\sqrt{n}}\right)\right], \tag{53}$$
$$\mathbb{P}[S_n \le -x] = O(x) \exp\left\{\frac{-x^3}{\sqrt{n}}\Lambda\left(\frac{-x}{\sqrt{n}}\right)\right\} \left[1 + O\left(\frac{x+1}{\sqrt{n}}\right)\right] \tag{54}$$

$$\mathbb{P}[S_n \le -x] = Q(x) \exp\left\{\frac{-x^3}{\sqrt{n}}\Lambda\left(\frac{-x}{\sqrt{n}}\right)\right\} \left[1 + O\left(\frac{x+1}{\sqrt{n}}\right)\right],\tag{54}$$

where $\Lambda(t) = \sum_{k=0}^\infty a_k t^k$ is called the Cramér series. Petrov provided

$$\Lambda^{[3]}(t) = \frac{\kappa_3}{6\kappa_2^{3/2}} + \frac{\kappa_4\kappa_2 - 3\kappa_3^2}{24\kappa_2^3}t + \frac{\kappa_5\kappa_2^2 - 10\kappa_4\kappa_3\kappa_2 + 15\kappa_3^3}{120\kappa_2^{9/2}}t^2$$
(55)

V. V. Petrov, "Sum of independent random variables," USA: Springer, Berlin, Heidelberg, 1975.

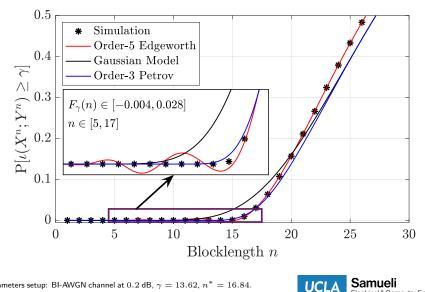
For BI-AWGN channel: $F_{\gamma}(n)$: a function to approximate $\mathbb{P}[\iota(X^n;Y^n) \geq \gamma]$.

$$F_{\gamma}(n) = \begin{cases} Q(x(n)) - \phi(x(n)) \sum_{j=1}^{5} n^{-\frac{j}{2}} p_j(x(n)), \ n > n^* \\ Q(x(n)) \exp\left\{\frac{x^3(n)}{\sqrt{n}} \Lambda^{[3]}\left(\frac{x(n)}{\sqrt{n}}\right)\right\}, \ 0 \le n \le n^*, \end{cases}$$
(56)

where

$$x(n) \triangleq \frac{\gamma - nC}{\sqrt{nV}}$$

Edgeworth and Petrov Expansions

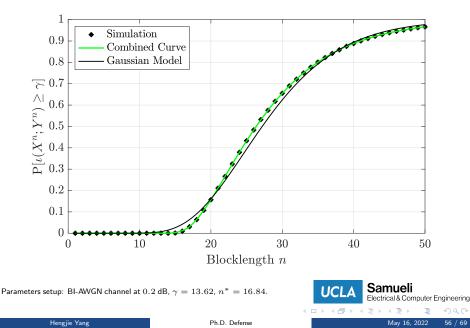


Parameters setup: BI-AWGN channel at 0.2 dB, $\gamma = 13.62$, $n^* = 16.84$.

Electrical & Computer Engineering

・ロト ・回 ト ・ ヨト ・

Combination of Two Expansions



Relaxed program: for a given $m \in \mathbb{N}_+$, $M \in \mathbb{N}_+$, $\epsilon \in (0, 1)$, and $\gamma \ge \log \frac{M-1}{\epsilon}$, $\min_{\substack{n_1^m \\ n_1^m}} N(\gamma, n_1^m)$ s.t. $n_1^m \in \mathcal{F}_m(\gamma, M, \epsilon)$ (57)

Theorem 15 (Gap-constrained SDO procedure)

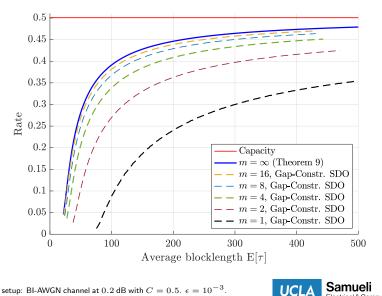
Fix a memoryless channel $(\mathcal{X}, \mathcal{Y}, P_{Y|X})$ for which $\iota(X; Y)$ is continuous and $\mathbb{P}[\iota(X^n; Y^n) \ge \gamma]$ is increasing and differentiable. For a given $m \in \mathbb{N}_+$, $M \in \mathbb{N}_+$, $\epsilon \in (0, 1)$, and $\gamma \ge \log \frac{M-1}{\epsilon}$, the optimal real-valued decoding times $n_1^*, n_2^*, \ldots, n_m^*$ for the relaxed program (57) satisfy

$$n_m^* = F_{\gamma}^{-1} \left(1 - \epsilon + (M - 1)2^{-\gamma} \right), \tag{58}$$

$$n_{i+1}^* = n_i^* + \max\left\{1, \frac{F_{\gamma}(n_i^*) - F_{\gamma}(n_{i-1}^*) - \lambda_{i-1}}{f_{\gamma}(n_i^*)}\right\},\tag{59}$$

$$\lambda_{i} = \max\{\lambda_{i-1} + f_{\gamma}(n_{i}^{*}) - F_{\gamma}(n_{i}^{*}) + F_{\gamma}(n_{i-1}^{*}), 0\},$$
(60)

where $i \in [m-1]$, $\lambda_0 \triangleq 0$, and $n_0^* \triangleq 0$.



Parameters setup: BI-AWGN channel at 0.2 dB with C = 0.5. $\epsilon = 10^{-3}$.

Electrical & Computer Engineering

59 / 69

May 16, 2022

Outline

1 CRC-Aided List Decoding of Convolutional Codes

- Introduction
- Search for the Optimal CRC Polynomial
- Performance and Complexity Analysis
- Simulation Results

2 Variable-Length Coding for Binary Channels With Full Feedback

- Introduction
- The Small-Enough-Difference (SED) Coding for BSC
- The Generalized SED Coding for BAC

3 Variable-Length Coding for Binary-Input Channels With Finite, Stop Feedback

- Introduction
- BI-AWGN Channel Case
- BSC Case

Summary

May 16, 2022

59 / 69

For BSC(p), $p \in (0, 1/2)$,

•
$$\iota(X;Y) = \log(2-2p) - Z\left(\log \frac{1-p}{p}\right)$$
 is a lattice r.v.

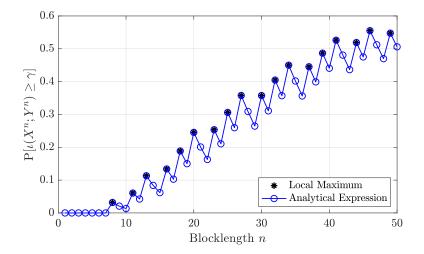
For BSC(p), $p \in (0, 1/2)$,

•
$$\iota(X;Y) = \log(2-2p) - Z\left(\log \frac{1-p}{p}\right)$$
 is a lattice r.v.

• The tail probability

$$\mathbb{P}[\iota(X^n;Y^n) \ge \gamma] = \mathbb{P}\left[\sum_{i=1}^n Z_i \le \frac{n\log(2-2p)-\gamma}{\log\left((1-p)/p\right)}\right]$$
$$= \frac{\left\lfloor \frac{n\log(2-2p)-\gamma}{\log\left((1-p)/p\right)} \right\rfloor}{\sum_{c=0}^{c=0}} \binom{n}{c} p^c (1-p)^{n-c}.$$
 (61)

A Quick Look at the Tail Probability



Parameters setup: BSC(0.35), $\gamma = 3$.

Hengjie Yang

Theorem 16

$$Fix \gamma > 0 \text{ and } p \in (0, 1/2). Define \alpha_i \triangleq \left\lceil \frac{\gamma + i \log((1-p)/p)}{\log(2-2p)} \right\rceil, i \in \mathbb{N}. Then,$$
$$\mathbb{P}[\iota(X^n; Y^n) \ge \gamma] < \mathbb{P}[\iota(X^{n+1}; Y^{n+1}) \ge \gamma], \quad if n = \alpha_i - 1, \qquad (62)$$
$$\mathbb{P}[\iota(X^n; Y^n) \ge \gamma] > \mathbb{P}[\iota(X^{n+1}; Y^{n+1}) \ge \gamma], \quad if n \in [\alpha_i, \alpha_{i+1} - 1). \qquad (63)$$

 α_i is called the *i*th local maximizer, $i \in \mathbb{N}$.

Theorem 16

$$\begin{aligned} \operatorname{Fix} \gamma &> 0 \text{ and } p \in (0, 1/2). \text{ Define } \alpha_i \triangleq \left\lceil \frac{\gamma + i \log((1-p)/p)}{\log(2-2p)} \right\rceil, i \in \mathbb{N}. \text{ Then,} \\ & \mathbb{P}[\iota(X^n; Y^n) \ge \gamma] < \mathbb{P}[\iota(X^{n+1}; Y^{n+1}) \ge \gamma], \quad \text{if } n = \alpha_i - 1, \\ & \mathbb{P}[\iota(X^n; Y^n) \ge \gamma] > \mathbb{P}[\iota(X^{n+1}; Y^{n+1}) \ge \gamma], \quad \text{if } n \in [\alpha_i, \alpha_{i+1} - 1). \end{aligned}$$
(62)

 α_i is called the *i*th local maximizer, $i \in \mathbb{N}$.

Lemma 3

Fix a BSC(p), $p \in (0, 1/2)$. For a given $m \in \mathbb{N}_+$, $M \in \mathbb{N}_+$, and γ , if $m < n_m^*(M, \gamma)$, the optimal decoding times n_1^m for minimizing $N(\gamma, n_1^m)$ are among $\{\alpha_i\}_{i=1}^{\infty}$.

Define

$$n_m^* \triangleq \min\{n \in \mathbb{N} : \mathbb{P}[S_{n_m} \ge \gamma] \ge 1 - \epsilon + (M - 1)2^{-\gamma}\}.$$
(64)

$$g_{-}^{(1)}(n_1) \triangleq \max_{\substack{n \in [1, n_m^* - m + 1]}} \frac{\mathbb{P}[S_n \ge \gamma](n_1 - n)}{\mathbb{P}[S_{n_1} \ge \gamma] - \mathbb{P}[S_n \ge \gamma]},\tag{65}$$

$$\mathbb{P}[S_n \ge \gamma] < \mathbb{P}[S_{n_1} \ge \gamma]$$

$$g_+^{(1)}(n_1) \triangleq \min_{\substack{n \ge 1 \\ m \ge 1}} \frac{\mathbb{P}[S_n \ge \gamma](n_1 - n)}{\mathbb{P}[G_n \ge 1] \mathbb{P}[G_n \ge 1]}.$$
(66)

$$\overset{+}{=} (n_1) \stackrel{=}{=} \min_{\substack{n \in [1, n_m^* - m + 1] \\ \mathbb{P}[S_n \ge \gamma] > \mathbb{P}[S_{n_1} \ge \gamma]}} \overline{\mathbb{P}[S_{n_1} \ge \gamma] - \mathbb{P}[S_n \ge \gamma]}.$$
 (66)

$$g_{-}^{(i)}(n_i, n_{i-1}) \triangleq \max_{\substack{n \in [n_{i-1}+1, n_m^* - m + i] \\ \mathbb{P}[S_n \ge \gamma] < \mathbb{P}[S_{n_i} \ge \gamma]}} \frac{\mathbb{P}[S_n \ge \gamma] - \mathbb{P}[S_{n_i} \ge \gamma]}{\mathbb{P}[S_{n_i} \ge \gamma] - \mathbb{P}[S_n \ge \gamma]} (n_i - n), \quad (67)$$

$$g_{+}^{(i)}(n_i, n_{i-1}) \triangleq \min_{\substack{n \in [n_{i-1}+1, n_m^* - m + i]\\ \mathbb{P}[S_n \ge \gamma] > \mathbb{P}[S_{n_i} \ge \gamma]}} \frac{\mathbb{P}[S_n \ge \gamma] - \mathbb{P}[S_{n_{i-1}} \ge \gamma]}{\mathbb{P}[S_{n_i} \ge \gamma] - \mathbb{P}[S_n \ge \gamma]} (n_i - n).$$
(68)

- $g_{-}^{(i)}(\,\cdot\,) = -\infty$ if the maximizer is empty.
- $g_{+}^{(i)}(\,\cdot\,)=\infty$ if the minimizer is empty

Theorem 17 (Discrete SDO procedure)

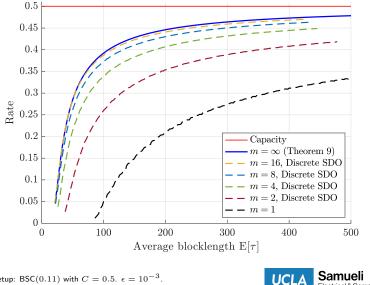
Fix a memoryless channel $(\mathcal{X}, \mathcal{Y}, P_{Y|X})$ and scalars $m \in \mathbb{N}_+$, $M \in \mathbb{N}_+$, $\epsilon \in (0,1)$, and $\gamma \geq \log \frac{M-1}{\epsilon}$. Define $S_n \triangleq \iota(X^n; Y^n)$. The optimal integer-valued decoding times $n_1^*, n_2^*, \ldots, n_m^*$ for the integer program (49) satisfy

$$n_1^* + \max(1, g_-^{(1)}(n_1^*)) \le n_2^* \le n_1^* + g_+^{(1)}(n_1^*),$$
(69)

$$n_{2}^{*} + \max(1, g_{-}^{(2)}(n_{2}^{*}, n_{1}^{*})) \le n_{3}^{*} \le n_{2}^{*} + g_{+}^{(2)}(n_{2}^{*}, n_{1}^{*}),$$
(70)

$$n_{m-1}^{*} + \max(1, g_{-}^{(m-1)}(n_{m-1}^{*}, n_{m-2}^{*})) \le n_{m}^{*} \le n_{m-1}^{*} + g_{+}^{(m-1)}(n_{m-1}^{*}, n_{m-2}^{*}),$$
(71)

Achievability Bounds for (l, n_1^m, M, ϵ) VLSF Codes over BSC



Parameters setup: BSC(0.11) with C = 0.5. $\epsilon = 10^{-3}$.

May 16, 2022 65 / 69

Electrical & Computer Engineering

・ロト ・回 ト ・ ヨト ・

Outline

1 CRC-Aided List Decoding of Convolutional Codes

- Introduction
- Search for the Optimal CRC Polynomial
- Performance and Complexity Analysis
- Simulation Results

2 Variable-Length Coding for Binary Channels With Full Feedback

- Introduction
- The Small-Enough-Difference (SED) Coding for BSC
- The Generalized SED Coding for BAC

3 Variable-Length Coding for Binary-Input Channels With Finite, Stop Feedback

- Introduction
- BI-AWGN Channel Case
- BSC Case

Summary

May 16, 2022

65 / 69

Case 1: BI-AWGN channel with no feedback

- We designed a new block code called CRC-aided convolutional code.
- Simulation shows that several CRC-TBCCs under SLVD outperforms the RCU bound at a reasonable complexity.

Summary

Case 1: BI-AWGN channel with no feedback

- We designed a new block code called CRC-aided convolutional code.
- Simulation shows that several CRC-TBCCs under SLVD outperforms the RCU bound at a reasonable complexity.

Case 2: Binary channels with full, noiseless feedback

- For BSC, we developed refined non-asymptotic VLF achievability bound that outperforms Polyanskiy's VLSF achievability bound.
- For BAC, we generalized the SED coding scheme and developed a non-asymptotic VLF achievability bound.

Case 1: BI-AWGN channel with no feedback

- We designed a new block code called CRC-aided convolutional code.
- Simulation shows that several CRC-TBCCs under SLVD outperforms the RCU bound at a reasonable complexity.

Case 2: Binary channels with full, noiseless feedback

- For BSC, we developed refined non-asymptotic VLF achievability bound that outperforms Polyanskiy's VLSF achievability bound.
- For BAC, we generalized the SED coding scheme and developed a non-asymptotic VLF achievability bound.

Case 3: Binary-input channels with finite, stop feedback

- We developed two methods to evaluate the VLSF achievability bounds.
- For both BI-AWGN channel and BSC, Polyanskiy's VLSF achievability bound can be approached with a small number of decoding times.

I would like to thank my significant collaborators:

Ethan Liang

Minghao Pan

Linfang Wang

Recep Yavas

Ph.D. Defense

I would also like to thank

- my advisor: Prof. Richard Wesel;
- my committee members: Profs. Lara Dolecek, Christina Fragouli, Alexander Sherstov, and Dariush Divsalar;
- all faculty members of the ECE Department and Mathematics Department;
- my friends in California: Weinan Song, Linfang Wang, Bijie Bai, Yun Liao, Minghao Pan, and many others;
- National Science Foundation (NSF) and Qualcomm for funding support.

Thank you!

