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Ultra-Reliable Low-Latency Communication (URLLC) in 5G
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Fig. 1. Latency and reliability requirements for different URLLC services.

II. KEY METRICS, REQUIREMENTS, AND PERFORMANCE
BENCHMARK

1) Latency: In the physical layer, we mainly focus on user
plane latency, which is defined as the time to successfully
deliver a data block from the transmitter to the receiver via the
radio interface in both uplink and downlink directions. User
plane latency consists of four major components: the time-to-
transmit latency, the propagation delay, the processing latency,
e.g., for channel estimation and encoding/decoding, and finally
the re-transmission time. Propagation delay is typically defined
as the delay of propagation through the transmission medium,
and it depends on the distance between the transmitter and
receiver. The time-to-transmit latency is required to be in the
order of a hundred microseconds, which is much less than the
1ms currently considered in 4G [1].

2) Reliability: Reliability is defined as the success probabil-
ity of transmitting K information bits within the desired user
plane latency at a certain channel quality. Sources of failure
from a higher layer perspective are when the packet is lost,
or it is received late, or it has residual errors. It is essential to
maximize the reliability of every packet in order to minimize
the error rate, so as to minimize the number of retransmissions.
In this paper, we use block error rate (BLER) as a metric to
compare different channel codes in terms of reliability.

3) Flexibility: The flexibility of the channel coding scheme
is an important aspect along with the evaluation of the coding
performance. Bit-level granularity of the codeword size and
code operating rate is desired for URLLC [5]. The actual
coding rate used in transmission could not be restricted and
optimized for specified ranges [5]. The channel codes therefore
need to be flexible to enable hybrid automatic repeat request
(HARQ). The number of retransmissions however needs to be
kept as low as possible to minimize the latency.

The general URLLC requirement according to 3GPP is that
the reliability of a transmission of one packet of 32 bytes
should be (1 − 10−5), within a user plane latency of 1ms
(with or without HARQ) [5].

4) Performance Benchmark: There are two effects which
should be distinguished here to better understand the code
design problem for short blocks. The first one is the gap to
the Shannon’s limit, that is if we decrease the block length, the
coding gain will be reduced and the gap to Shannon’s limit will
increase. This is not a problem of code design but is mainly
due to the reduction in channel observations that comes with
finite block lengths. We will use the normal approximation
(NA) [4], that incorporates the reduction in channel observa-
tions, as the performance benchmark for comparison. For a
coding block of length N , the normal approximation is given
by [4]:

R = C −
√

V

N
Q−1(ǫ) +

1

2N
log2(N),

where R is the code rate, C is the channel capacity, V is the
channel dispersion, ǫ is the average block error rate (BLER),
and Q(.) is the cumulative distribution function of the standard
normal distribution. Fig. 2 shows the normal approximation for
different code rates and information block lengths. As can be
seen, when the block length increases, the gap to the Shannon’s
limit [4] decreases1.

The second effect is the gap to the finite length bounds,
that is if we decrease the block length, modern codes, such as
LDPC or Turbo codes, show a gap to finite length bounds. This
is often due to the suboptimal decoding algorithms. As can be
seen in Fig. 2, long term evolution (LTE) Turbo and TB-CC
codes show a considerable gap to the normal approximation
at short blocks. However, when the block length of the Turbo
code increases, the gap to the normal approximation and the
Shannon’s limit decreases.

1It is important to note that Shannon’s theoretical model breaks down for
short codes, as the channel capacity, defined as the maximum possible rate
at which reliable communications is possible, is only valid for infinite block
length. The normal approximation was shown to be tight for moderate block
lengths (>100 bits) [4].

These stringent requirements call for good short blocklength codes!

M. Shirvanimoghaddam et al., “Short blocklength codes for ultra-reliable low-latency
communications,” IEEE Commun. Mag., Feb. 2019. Fig. 1.
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Finite-Blocklength Information Theory

Define

• n: blocklength

• M : message size

• ε∗(n,M) , inf{ε : ∃ an (n,M, ε) fixed-length code}

Theorem 1 (Random-coding union (RCU) bound, Polyanskiy et al., 2010)

Fix n ∈ N, M ∈ N, and a memoryless channel (X ,Y,W (Y |X)).

ε∗(n,M) ≤ E
[

min
{

1, (M − 1)P
[
Wn(Y n|X̄n) ≥Wn(Y n|Xn)

]} ]
(1)

Theorem 2 (Meta-converse (MC) bound, Polyanskiy et al., 2010)

Fix n ∈ N, M ∈ N, and a memoryless channel (X ,Y,W (Y |X)).

ε∗(n,M) ≥ min
Pn

max
Qn

{
α 1
M

(Pn ×Wn, Pn ×Qn)
}

(2)

Y. Polyanskiy et al., “Channel coding rate in the finite blocklength regime,” IEEE
Trans. Inf. Theory, May 2010.
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Contemporary Short Blocklength Code Performance

74 M.C. Coşkun, G. Durisi, T. Jerkovits et al. / Physical Communication 34 (2019) 66–79

Table 1
Summary of the TB CC used in the comparisons.
Generators m (n, k) Weight enumerating function A(x)

[515, 677] 8
(128, 64)

1 + 576x12
+ 1152x13

+ 1856x14
+ . . .

[5537, 6131] 11 1 + 64x14
+ 960x15

+ 1356x16
+ . . .

[75063, 56711] 14 1 + 8x16
+ 1856x18

+ 19392x20
+ . . .

[515, 677] 8
(512, 256)

1 + 2304x12
+ 4608x13

+ 7424x14
+ . . .

[5537, 6131] 11 1 + 256x14
+ 3840x15

+ 537616
+ . . .

[75063, 56711] 14 1 + 6656x18
+ 42240x20

+ 216320x22
+ . . .

LDPC code performs somehow poorly in terms of coding gain
and is outperformed by the ARA LDPC code.5 At low error rates
(e.g. CER ≈ 10−6) the CCSDS LDPC code is likely to attain lower
error rates than the ARA code thanks to its remarkable distance
properties [33]. Among the LDPC codes adopted for the 5G NR
standard, the codes based on BG 2 are seen to be competitive,
outperforming the ARA code.

The performance of a turbo code introduced in [113] based
on 16-state component recursive convolutional codes is also pro-
vided. The turbo code shows superior performance with respect
to binary LDPC codes, down to low error rates. The code attains a
CER ≈ 10−4 at almost 0.4 dB from the RCB. The code performance
diverges remarkably from the RCB at lower error rates, due to
the relatively low code minimum distance. Results for a non-
binary LDPC code are included in Fig. 10. The code has been
constructed over F256, and it attains visible gains with respect to
its binary counterparts, performing on top of the RCB (and 0.7
dB away from the NA) down to low error rates (no floors down
to CER ≈ 10−9 were observed in [97]). The error probability of
the polar-code concatenation using a CRC-7 as an outer code is
shown. The polar code has parameters (128, 71). A list size of 32
has been used in the simulation. The code outperforms all the
competitors that rely on iterative decoding algorithms. Finally,
the CER of three TB CCs is included [114,115]. The three codes
have memory 8, 11 and 14, respectively. Their generators (in
octal notation) and their distance properties are summarized in
Table 1. The WAVA algorithm has been used for decoding [77].
The memory-11 convolutional code reaches the performance of
the BCH and LDPC codes under OSD. The memory-8 code loses 1
dB at CER ≈ 10−5, but still outperforms binary LDPC and turbo
codes over the whole simulation range. The third code (memory-
14) outperforms all other codes in Fig. 10 (at the expense of a
high decoding complexity due to the large number of states in
the code trellis).

5.2. Moderate-length codes

In this section, we address a second case study, where an
intermediate blocklength of n = 512 bits is considered. The
code dimension is fixed to k = 256 bits yielding a rate R =

1/2. The performance of the codes is compared in Fig. 11 for
transmission over the bi-AWGN channel. Also here, the per-
formance of the (512, 256) binary protograph-based [33] LDPC
code from the CCSDS telecommand standard [99] is provided
as a reference. Most of the considerations that are valid in the
very short blocklength regime are still valid here, with a few
notable exceptions. First, we observe that the performance of the
polar code (concatenated with an outer 16 bits CRC code) is still
competitive, but it performs only marginally better than binary

5 All LDPC codes considered in this section have been designed by means of a
girth optimization based on the progressive edge growth (PEG) algorithm [85]. A
maximum of 200 belief propagation iterations have been used in the simulations
(although the average iteration count is much lower, especially at high SNRs,
thanks to early decoding stopping rules).

Fig. 10. Codeword error rate vs. Eb/N0 for several (128, 64) codes over the
bi-AWGN channel.

LDPC and turbo codes when the list size is limited to 32. To close
the gap to the finite length bounds, a larger list size (e.g., 1024)
has to be used. A second major discrepancy with respect to the
very short block regime deals with the performance of TB CCs.
For the code parameters considered in Fig. 11, TB CCs are far from
the finite length bounds even for the memory-14 case. This is an
instance of a well known limitation of (TB) CCs, i.e., the saturation,
for large enough n, of the TB CC minimum distance to the free
distance of the underlying (unterminated) convolutional code (in
addition, the minimum weight multiplicity grows with n). This
phenomenon is illustrated in Fig. 12, where the SNR required to
achieve a target CER = 10−4 is provided as a function of the code
dimension k, for various code families.

5.3. Short codes in coded modulation schemes

Higher-order modulation increases the SE of a communication
system by using constellations with more than two signal points
(e.g., M-amplitude shift keying (ASK) or M-quadrature amplitude
modulation (QAM)) and transmitting more than one bit per chan-
nel use [116]. As this requires an interplay of both modulation
and coding techniques, the term ‘‘coded modulation’’ (CM) has
been established. The most straightforward CM approach com-
bines anM-ary constellation with a non-binary channel code over
a field of order M .6 In this case, symbol-metric decoding (SMD)
can be employed at the receiver. This is the common approach
for non-binary LDPC and Turbo codes.

Practical receivers resort to ‘‘pragmatic’’ CM schemes with
binary channel codes. In such pragmatic schemes, an m-bit binary
labeling is assigned to each of the M = 2m constellation points
(e.g., a binary reflected gray code (BRGC) code [117]) and a bit-
wise decoding (BMD) metric is used at the decoder. The BMD
metric is obtained by marginalizing over all bit levels except the

6 It is also possible to map sequences of constellation points to one Galois
field symbol of appropriate field order.
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formance of the (512, 256) binary protograph-based [33] LDPC
code from the CCSDS telecommand standard [99] is provided
as a reference. Most of the considerations that are valid in the
very short blocklength regime are still valid here, with a few
notable exceptions. First, we observe that the performance of the
polar code (concatenated with an outer 16 bits CRC code) is still
competitive, but it performs only marginally better than binary

5 All LDPC codes considered in this section have been designed by means of a
girth optimization based on the progressive edge growth (PEG) algorithm [85]. A
maximum of 200 belief propagation iterations have been used in the simulations
(although the average iteration count is much lower, especially at high SNRs,
thanks to early decoding stopping rules).

Fig. 10. Codeword error rate vs. Eb/N0 for several (128, 64) codes over the
bi-AWGN channel.

LDPC and turbo codes when the list size is limited to 32. To close
the gap to the finite length bounds, a larger list size (e.g., 1024)
has to be used. A second major discrepancy with respect to the
very short block regime deals with the performance of TB CCs.
For the code parameters considered in Fig. 11, TB CCs are far from
the finite length bounds even for the memory-14 case. This is an
instance of a well known limitation of (TB) CCs, i.e., the saturation,
for large enough n, of the TB CC minimum distance to the free
distance of the underlying (unterminated) convolutional code (in
addition, the minimum weight multiplicity grows with n). This
phenomenon is illustrated in Fig. 12, where the SNR required to
achieve a target CER = 10−4 is provided as a function of the code
dimension k, for various code families.

5.3. Short codes in coded modulation schemes

Higher-order modulation increases the SE of a communication
system by using constellations with more than two signal points
(e.g., M-amplitude shift keying (ASK) or M-quadrature amplitude
modulation (QAM)) and transmitting more than one bit per chan-
nel use [116]. As this requires an interplay of both modulation
and coding techniques, the term ‘‘coded modulation’’ (CM) has
been established. The most straightforward CM approach com-
bines anM-ary constellation with a non-binary channel code over
a field of order M .6 In this case, symbol-metric decoding (SMD)
can be employed at the receiver. This is the common approach
for non-binary LDPC and Turbo codes.

Practical receivers resort to ‘‘pragmatic’’ CM schemes with
binary channel codes. In such pragmatic schemes, an m-bit binary
labeling is assigned to each of the M = 2m constellation points
(e.g., a binary reflected gray code (BRGC) code [117]) and a bit-
wise decoding (BMD) metric is used at the decoder. The BMD
metric is obtained by marginalizing over all bit levels except the

6 It is also possible to map sequences of constellation points to one Galois
field symbol of appropriate field order.

M. Coşkun et al., “Efficient error-correcting codes in the short blocklength regime”,
Physical Commun., Jun. 2019. Fig. 10. n = 128, k = 64, BI-AWGN channel.
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Contemporary Short Blocklength Code Performance

Can we approach the RCU bound at a reasonable complexity?
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Based on...

H. Yang, E. Liang, M. Pan, and R. D. Wesel, “CRC-Aided List Decoding of Convolutional
Codes in the Short Blocklength Regime,” IEEE Trans. Inf. Theory, Feb. 2022, early
access.
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Serial List Viterbi Decoding (SLVD)
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Parameters setup: k = 2, degree-2 CRC poly. p(x) = x2 + 1, ZTCC (5, 7).
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CRC-Aided Convolutional Codes under SLVD

CRC Gen.
Poly. p(x)

(ω, 1, ν) Conv.
Encoder g(x)

BPSK
Modulation

AWGN
Channel (σ2)

Soft SLVD aided
with CRC p(x)

u ∈ {0, 1}k v ∈ {0, 1}k+m c ∈ {0, 1}n x ∈ {−
√
Es,
√
Es}n

y ∈ Rnû ∈ {0, 1}k or NACK
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CRC Gen.
Poly. p(x)

(ω, 1, ν) Conv.
Encoder g(x)

BPSK
Modulation

AWGN
Channel (σ2)

Soft SLVD aided
with CRC p(x)

u ∈ {0, 1}k v ∈ {0, 1}k+m c ∈ {0, 1}n x ∈ {−
√
Es,
√
Es}n

y ∈ Rnû ∈ {0, 1}k or NACK

Two concatenated codes of interest:

• Zero-terminated convolutional codes (ZTCC) ⇒ CRC-ZTCC

• Tail-biting convolutional codes (TBCC) ⇒ CRC-TBCC
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Supremum List Rank λ

λ ≤ |Ch| − |Cl|+ 1 = 2k+m − 2k + 1

Open problem: How to determine λ exactly for a given Cl, Ch?

1 ≤ L ≤ min{λ,Ψ}
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Problems to Address

Problem 1: Given a convolutional code, how to design the optimal CRC gen. poly. p(x)?

Problem 2: What is the performance-complexity trade-off of the resulting code?
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Problem Formulation

Problem: For a given ZTCC (or TBCC), CRC degree m, and SNR Es/σ
2,

min
p(x)

Pe,λ (3)

where

p(x) = xm + am−1x
m−1 + · · ·+ a2x

2 + a1x+ 1, ai ∈ {0, 1} (4)

Obstacle: Pe,λ does not admit an analytical expression.

Workaround: Take the union bound of Pe,λ as the objective function!

Pe,λ ≤
∑

c∈Cl\{c̄}

P
(
Z >

1

2
‖x(c)− x(c̄)‖

∣∣∣X = x(c̄)

)
=

n∑
d=dlmin

CdQ

(√
dEs
σ2

)
(5)

where Cdlmin
, Cdlmin+1, . . . , Cn denotes the distance spectrum of Cl.
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The Distance-Spectrum Optimal (DSO) CRC Polynomial

Degree-m DSO CRC polynomial at SNR
√
Es/σ2: defined as the solution to

min
p(x)

n∑
d=dlmin

CdQ

(√
dEs
σ2

)
, (6)

where

p(x) = xm + am−1x
m−1 + · · ·+ a2x

2 + a1x+ 1, with ai ∈ F2 (7)

Theorem 3

For sufficiently large SNR Es/σ
2, (6) simplifies to

max
p(x)

dlmin (8)
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A Sharp Upper Bound on dlmin

Theorem 4

Fix CRC degree m and a higher-rate distance spectrum Bdhmin
, . . . , Bn. Define

w∗ , min

w ∈ N+ :

w∑
d=dhmin

Bd ≥ 2m

 . (9)

For any degree-m CRC polynomial, we have dlmin ≤ 2w∗.
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DSO CRC Search Algorithm

Lou et al.’s algorithm for ZTCC case

Collection Search

A length-N ZT trellis

Dist. threshold d̃

LZTCC(N, d̃)

Degree m

Deg-m DSO CRC poly. p(x)

C. Lou et al., “Convolutional-code-specific CRC code design,” IEEE Trans. Commun.,
Oct. 2015.
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DSO CRC Search Algorithm

Lou et al.’s algorithm for ZTCC case

Collection Search

Our algorithm for TBCC case

Collection Reconstruction Search

Contribution: A novel collection step that collects non-catastrophic IEEs.

A length-N ZT trellis

Dist. threshold d̃

LZTCC(N, d̃)

Degree m

Deg-m DSO CRC poly. p(x)

A long TB trellis

Dist. threshold d̃

LIEE(d̃)

Length N

LTBCC(N, d̃)

Degree m

Deg-m DSO CRC poly. p(x)

C. Lou et al., “Convolutional-code-specific CRC code design,” IEEE Trans. Commun.,
Oct. 2015.
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DSO CRC Polynomials for rate-1/2 ZTCC with k = 64

ν ZTCC g(x)
DSO CRC Polynomials

m = 3 4 5 6 7 8 9 10

3 (13, 17) 9 1B 2D 43 B5 107 313 50B
4 (27, 31) F 15 33 4F D3 13F 2AD 709
5 (53, 75) 9 11 25 49 EF 131 23F 73D
6 (133, 171) F 1B 23 41 8F 113 2EF 629
7 (247, 371) 9 13 3F 5B E9 17F 2A5 61D
8 (561, 753) F 11 33 49 8B 19D 27B 4CF
9 (1131, 1537) D 15 21 51 B7 1D5 20F 50D

10 (2473, 3217) F 13 3D 5B BB 105 20D 6BB

Parameter setup: k = 64. CRC polynomials are in hexadecimal. Optimum encoders are from [Lin and Costello].

Lin and Costello, “Error control coding”, USA: Pearson, Table 12.1(c).
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DSO CRC Polynomials for rate-1/2 TBCC with k = 64

ν TBCC g(x)
DSO CRC Polynomials

m = 3 4 5 6 7 8 9 10

3 (13, 17) F 1F 2D 63 ED 107 349 49D
4 (27, 31) F 11 33 4F B5 1AB 265 4D1
5 (53, 75) 9 11 3F 63 BD 16D 349 41B
6 (133, 171) F 1B 3D 7F FF 145 2BD 571
7 (247, 371) F 11 33 63 EF 145 3A1 5D7
8 (561, 753) F 11 33 7F FF 1AB 301 4F5
9 (1131, 1537) D 15 33 51 C5 1FF 349 583

10 (2473, 3217) F 1B 33 79 BB 199 217 4DD

Parameter setup: k = 64. CRC polynomials are in hexadecimal. Optimum encoders are from [Lin and Costello].

Lin and Costello, “Error control coding”, USA: Pearson, Table 12.1(c).
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Performance of CRC-Aided Convolutional Codes Under SLVD

Performance measures:

• Prob. of correct decoding Pc,Ψ

• Prob. of UE Pe,Ψ

• Prob. of NACK PNACK,Ψ

Question: How do these quantities vary with Ψ and SNR Es/σ
2?

Theorem 5

For a given CRC-aided convolutional code under SLVD at a fixed SNR, Pc,Ψ and Pe,Ψ
are both strictly increasing in Ψ, and will converge to Pc,λ and Pe,λ, respectively, where
Pc,λ + Pe,λ = 1.

Implication: minΨ

(
Pe,Ψ + PNACK,Ψ

)
= Pe,λ and Ψ∗ ≥ λ.
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Approximations to Pe,1, Pe,λ, PNACK,1 as a Function of SNR

• Higher-rate distance spectrum: Bdhmin
, Bdhmin+1, . . . , Bn

• Lower-rate distance spectrum: Cdlmin
, Cdlmin+1, . . . , Cn

Pe,1 ≤ min

{
2−m,

n∑
d=dlmin

CdQ

(√
dEs
σ2

)}
≈ min

{
2−m, Cdlmin

Q

(√
dlminEs
σ2

)}

Pe,λ ≤ min

{
1,

n∑
d=dlmin

CdQ

(√
dEs
σ2

)}
≈ min

{
1,

d̃∑
d=dlmin

CdQ

(√
dEs
σ2

)}

PNACK,1 ≈ min

{
1− 2−m,

d̃∑
d=dhmin

BdQ

(√
dEs
σ2

)
− Cdlmin

Q

(√
dlminEs
σ2

)}
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Example of Approximations

Setting: k = 64, degree-6 DSO CRC poly. 0x43, ZTCC (13, 17), d̃ = 24.
The tangential-sphere (TS) bound is also shown for PNACK,1.
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Expected Terminating List Rank

Theorem 6

For a given CRC-aided convolutional code decoded with SLVD,

lim
Es
σ2
→0

E[L] = E[L|X = O]. (10)

Lemma 1

There exists a possibly nonlinear lower-rate code Cl with

E[L|X = O, Cl] ≤ 2m.
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Parametric Approximation

Theorem 7 (Parametric Approximation)

Define L̄ , E[L|X = O]. For a CRC-aided convolutional code with corresponding
parameters L̄ and Pe,λ,

E[L] ≈ 1− Pe,λ + Pe,λL̄. (11)

Remarks: Assume a target error prob. P ∗e and L̄ ≈ 2m (true for CRC-ZTCC),
m / − log(P ∗e ) is sufficient to maintain E[L] ≤ 2.
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An Example of Parametric Approximation

Setting: k = 64, degree-m DSO CRC polynomials for ZTCC (13, 17).
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Empirical Complexity Formula for SLVD

For our specific implementation of SLVD, three components comprise the average
complexity of SLVD:

CSLVD = CSSV + Ctrace + Clist. (12)

Variable CRC-ZTCC CRC-TBCC

CSSV
(2ν+1 − 2) + 1.5(2ν+1 − 2) +
1.5(k+m− ν)2ν+1 + c1[2(k+
m+ ν) + 1.5(k +m)]

1.5(k+m)2ν+1+2ν+3.5c1(k+
m)

Ctrace
c1(E[L] − 1)[2(k + m + ν) +
1.5(k +m)]

3.5c1(E[L]− 1)(k +m)

Clist c2E[I] log(E[I])

Notes
(i). c1 and c2 are computer-specific constants.
(ii). E[I] denotes the average number of insertions
(iii). For CRC-TBCC codes, E[I] ≤ (k +m)E[L] + 2ν − 1
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Performance-Complexity Trade-off for CRC-ZTCCs

Parameters setup: k = 64 and target error probability Pe,λ = 10−4.
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Based on ...

H. Yang and R. D. Wesel, “Finite-Blocklength Performance of Sequential Transmission
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Feedback is Useful

Bad news: Feedback does not improve the capacity of a memoryless channel [Shannon,
1956].

Variable-length transmission:

• Simplify coding schemes: e.g., Horstein scheme, posterior matching.

• Achieve better error exponents: [Burnashev, 1976]. For any R ∈ [0, C],

E(R) , lim
ε→0

log 1
ε

E[τ∗ε ]
= C1

(
1− R

C

)
. (13)

• Achieve universality: LT codes (or fountain codes) [Luby, 2002]

• Improve first- and second-order coding rates: [Polyanskiy et al., 2011] (for ε < 1/2)

Fixed-length transmission:

• Achieve better error exponents: e.g., Schalkwijk–Kailath scheme

• Improve second-order coding rate for compound-dispersion DMCs: [Wagner, 2020].
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Variable-Length Coding with Full Feedback

Encoder
Channel

(X ,Y, PY |X) Decoder

Θ Xt Yt

Y t−1

Θ̂

Given M ∈ N+, l > 0, ε ∈ (0, 1), we want to specify an
(l,M, ε) variable-length feedback (VLF) code.
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Variable-Length Coding with Full Feedback

Encoder
Channel

(X ,Y, PY |X) Decoder

Θ Xt Yt

Y t−1

Θ̂

Codebook U ∈ U : can be designed “on the fly” with full feedback
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Variable-Length Coding with Full Feedback

Encoder
Channel

(X ,Y, PY |X) Decoder

Θ Xt Yt

Y t−1

Θ̂

[M ] , {1, 2, . . . ,M}.

Encoding function et : U × [M ]× Yt−1 → X :

Xt = et(U,Θ, Y
t−1), t ∈ N+

where Θ ∼ Unif ([M ]).
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Variable-Length Coding with Full Feedback

Encoder
Channel

(X ,Y, PY |X) Decoder

Θ Xt Yt

Y t−1

Θ̂

Decoding function gt : U × Yt → [M ]: providing
the best estimate of Θ at time t, t ∈ N+.
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Variable-Length Coding with Full Feedback

Encoder
Channel

(X ,Y, PY |X) Decoder

Θ Xt Yt

Y t−1

Θ̂

Stopping time τ ∈ N: a function of filtration Ft = σ{U, Y t} and
must satisfy E[τ ] ≤ l.

Final decision: Θ̂ = gτ (Y τ )

τ also needs to satisfy

Pe , P[Θ 6= Θ̂] ≤ ε.
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Variable-Length Coding with Full Feedback

Encoder
Channel

(X ,Y, PY |X) Decoder

Θ Xt Yt

Y t−1

Θ̂

Goal: Determine l∗(M, ε) , min{l : ∃(l,M, ε) VLF code}
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Naghshvar et al.’s SED Coding Scheme

For symmetric binary-input channels, Naghshvar et al. constructed a particular
deterministic VLF code.

Belief state vector ρ(t):

ρ(t) ,
[
ρ1(t) ρ2(t) · · · ρM (t)

]
(14)

where ρi(t) , P[Θ = i|Y t], i ∈ [M ], t ∈ N. By default, ρi(0) = 1/M , i ∈ [M ].

Bayes’ update of ρ(t): Upon receiving Yt+1 = yt+1,

ρi(t+ 1) =
ρi(t)PY |X(yt+1|xt+1,i)∑

j∈[M ] ρj(t)PY |X(yt+1|xt+1,j)
, i ∈ [M ], (15)

where xt+1,i ∈ X denotes the input symbol for i ∈ [M ] at time t+ 1.

M. Naghshvar et al., “Optimal reliability over a class of binary-input channels with
feedback,” IEEE Inf. Theory Workshop, Sep. 2012.
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Naghshvar et al.’s SED Coding Scheme, cont’d

The SED bipartition (defining codebook U) : Let S0(t) and S1(t) be a bipartition of
[M ]. Define

πx(t) ,
∑

i∈Sx(t)

ρi(t), x ∈ {0, 1}. (16)

At time t+ 1, upon obtaining ρ(t), partition [M ] into S0(t) and S1(t) s.t.

0 ≤ π0(t)− π1(t) ≤ min
i∈S0(t)

ρi(t). (17)

Encoder: After SED bipartition of [M ] into S0(t), S1(t),

Xt+1 =

{
0, if Θ ∈ S0(t)

1, if Θ ∈ S1(t)
(18)

• A straightforward algo.: O(k2k)

• A type-based algo. for relaxed SED bipartition [Antonini et al., 2020]: O(k2)

A. Antonini et al., “Low complexity algorithms for transmission of short blocks over
the BSC with full feedback,” IEEE Int. Sym. Inf. Theory (ISIT), Jun. 2020.
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Naghshvar et al.’s Small-Enough-Difference (SED) Coding Scheme, cont’d

Decoder: Upon receiving yt+1, the decoder obtains ρ(t+ 1) with Bayes’ rule. The
decoder adopts

τ , min

{
t ∈ N : max

i∈[M ]
ρi(t) ≥ 1− ε

}
. (19)

Θ̂ , arg max
i∈[M ]

ρi(τ). (20)

Error probability: Pe = E
[
1−maxi∈[M ] ρi(τ)

]
≤ ε.
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Why is the SED coding rule interesting?

Log-likelihood ratio Uj(t):

Uj(t) , log
ρj(t)

1− ρj(t)
, j ∈ [M ] (21)

Theorem 8 (Naghshvar et al., 2012)

For symmetric binary-input channels, the SED bipartition yields a two-stage
submartingale {Ui(t)}∞t=0:

E[Ui(t+ 1)|Ft,Θ = i] ≥ Ui(t) + C, if Ui(t) < 0 (22a)

E[Ui(t+ 1)|Ft,Θ = i] = Ui(t) + C1 if Ui(t) ≥ 0 (22b)

|Ui(t+ 1)− Ui(t)| ≤ C2, (22c)

where C = maxPX I(X;Y ),

C1 , max
x,x′∈X

D
(
PY |X=x‖PY |X=x′

)
(23)

C2 , max
y∈Y

log
maxx∈X PY |X(y|x)

minx∈X PY |X(y|x)
. (24)

For typical DMC, 0 < C ≤ C1 ≤ C2 <∞.
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Naghshvar et al.’s Bound for Binary Symmetric Channel (BSC)

Theorem 9 (Naghshvar et al., 2015)

Fix M ∈ N+ and ε ∈ (0, 1/2). The (l,M, ε) VLF code constructed from the SED coding
rule for BSC satisfies

l ≤
logM + log log M

ε

C
+

log 1
ε

+ 1

C1
+

96 · 22C2

CC1
(25)

M. Naghshvar et al., “Extrinsic Jensen-Shannon divergence: applications to variable-length coding,” IEEE Trans. Inf. Theory,
Apr. 2015.

Theorem 10 (Polyanskiy et al., 2011)

Fix M ∈ N+ and ε ∈ (0, 1/2). There exists an (l,M, ε) variable-length stop-feedback
(VLSF) code for DMC with bounded information density with

l ≤ log(M − 1)

C
+

log 1
ε

C
+
a0

C
(26)

where a0 , supx∈X ,y∈Y ι(x; y).

Y. Polyanskiy et al., “Feedback in the non-asymptotic regime,” IEEE Trans. Inf.
Theory, Aug. 2011.
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Shortcomings of Naghshvar et al.’s Bound

Issue: Even with full feedback, Naghshvar’s result is much looser than Polyanskiy’s.

Numerical example: For BSC(0.11) with C = 0.5 and ε = 10−3,

l ≤ logM + log logM

0.5
+ 5352.67 (Naghshvar’s bound for VLF code) (27)

l ≤ log(M − 1)

0.5
+ 21.93 (Polyanskiy’s bound for VLSF code) (28)

Our goal: Seek a new upper bound for SED coding rule better than Polyanskiy’s bound!
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Our Main Result for BSC

Theorem 11

Fix M and ε ∈ (0, 1/2). The (l,M, ε) VLF code constructed from the SED coding
scheme for BSC(p), p ∈ (0, 1/2), satisfies

l <
logM + 1

q
log 2q

C
+

log 1−ε
ε

+ C2

C1
+ 2−C2C2

(
1

C
− 1

C1
+

1
q

log 2q

CC2

)
1− ε

1−ε2
−C2

1− 2−C2
.

(29)

Hengjie Yang Ph.D. Defense May 16, 2022 35 / 69



Numerical Evaluation for BSC(0.11) and ε = 10−3
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Binary Asymmetric Channel (BAC)

0

1

0

1

BAC(p0, p1)

1− p0

p0

p1

1− p1

Special cases:

• Regularized BAC: p0 ∈ (0, 1/2) and p0 ≤ p1 ≤ 1− p0.

• BSC: p0 = p1 ∈ (0, 1/2).

Every BAC can be transformed into an equivalent regularized BAC.
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Some Useful Facts

Fact 1: Consider a BAC(p0, p1). Define z , 2
h(p0)−h(p1)

1−p0−p1 . Then,

C =
p0h(p1)

1− p0 − p1
− (1− p1)h(p0)

1− p0 − p1
+ log(1 + z), (30)

π∗0 =
1− p1(1 + z)

(1− p0 − p1)(1 + z)
, (31)

π∗1 =
(1− p0)(1 + z)− 1

(1− p0 − p1)(1 + z)
. (32)

Further ,for regularized BAC(p0, p1), 0 < π∗1 ≤ π∗0 < 1.

Fact 2: For a regularized BAC(p0, p1),

C1 = D
(
PY |X=1‖PY |X=0

)
, (33)

C2 = log
PY |X(1|1)

PY |X(1|0)
= log

1− p1

p0
. (34)
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Generalized SED Coding Scheme for Regularized BAC

Posterior matching principle: we want to have

[π0(t), π1(t)] ≈ [π∗0 , π
∗
1 ], ∀t ∈ N (35)

Generalized SED bipartition: At time t+ 1, let î , arg maxj∈[M ] ρj(t).

• If ρî(t) < π∗1 , partition [M ] into S0(t) and S1(t) s.t.

−
mini∈S1(t) ρi(t)

π∗1
≤ π0(t)

π∗0
− π1(t)

π∗1
≤

mini∈S0(t) ρi(t)

π∗0
. (36)

• If ρî(t) ≥ π
∗
1 , exclusively assign S0(t) = [M ] \ {̂i}, S1(t) = {̂i}.

Encoder & Decoder: same as the BSC case
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• If ρî(t) ≥ π
∗
1 , exclusively assign S0(t) = [M ] \ {̂i}, S1(t) = {̂i}.

Encoder & Decoder: same as the BSC case

Hengjie Yang Ph.D. Defense May 16, 2022 39 / 69



Why is the Generalized SED Coding Rule Interesting?

Lemma 2

Fix a regularized BAC(p0, p1). The generalized SED coding rule induces the following
submartingale

E[Ui(t+ 1)|Ft,Θ = i] ≥ Ui(t) + C, if Ui(t) < 0 (37a)

E[Ui(t+ 1)|Ft,Θ = i] ≥ Ui(t) + C1 if Ui(t) ≥ 0 (37b)

|Ui(t+ 1)− Ui(t)| ≤ C2 (37c)
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Is the Generalized SED Coding Scheme Always Achievable?

Theorem 12

Fix a regularized BAC(p0, p1). Let λ , π∗1/π
∗
0 ∈ (0, 1]. For ρ = [ρ1, ρ2, . . . , ρM ]

satisfying maxi∈[M ] ρi < π∗1 , define function f : 2[M ] → R:

f(S) , λ
(
π1(S)− λπ0(S)

)
1{π1(S)≥λπ0(S)} +

(
λπ0(S)− π1(S)

)
1{π1(S)<λπ0(S)}, (38)

where

π0(S) ,
∑
i∈S

ρi, π1(S) ,
∑

i∈[M ]\S

ρi (39)

If S∗0 ⊆ [M ] minimizes (38), then, the partition (S∗0 , [M ] \ S∗0 ) satisfies (36).
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Main Results for Regularized BAC

Theorem 13

Fix M ∈ N+ and ε ∈ (0, 1/2). The (l,M, ε) VLF code constructed from the generalized
SED coding scheme for regularized BAC(p0, p1) satisfies

l <
logM

C
+

log 1−ε
ε

+ C2

C1
+C2

(
1

C
− 1

C1

)
1− ε

1−ε2
−C2

1− 2−C2
. (40)
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Numerical Evaluation for BSC(0.11) and ε = 10−3

Parameters: C = 0.5, C1 = 2.3527, C2 = 3.02.
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Numerical Evaluation for BAC(0.03, 0.22) and ε = 10−3

Parameters: C = 0.5, C1 = 3.1954, C2 = 4.7.
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Based on ...

H. Yang, R. C. Yavas, V. Kostina, and R. D. Wesel, “Variable-Length Stop-Feedback
Codes With Finite Optimal Decoding Times for BI-AWGN Channels,” accepted for pre-
sentation at IEEE Int. Sym. Inf. Theory (ISIT), Espoo, Finland, June 2022.

H. Yang, R. C. Yavas, V. Kostina, and R. D. Wesel, “Variable-Length Coding for Binary-
Input Channels With Finite Stop Feedback,” to be submitted to IEEE Trans. Inf. Theory.
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VLSF Codes with m Decoding Times

Encoder
Channel

(X ,Y, PY |X) Decoder

Θ Xt Yt

Stop-feedback symbol 0/1

Θ̂

Given l > 0, nm1 ∈ Nm+ with n1 < n2 < · · · < nm, M ∈ N+, ε ∈ (0, 1),
we want to specify an (l, nm1 ,M, ε) VLSF code.
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VLSF Codes with m Decoding Times

Encoder
Channel

(X ,Y, PY |X) Decoder

Θ Xt Yt

Stop-feedback symbol 0/1

Θ̂

Codebook U ∈ U : designed and fixed before transmission

Hengjie Yang Ph.D. Defense May 16, 2022 46 / 69



VLSF Codes with m Decoding Times

Encoder
Channel

(X ,Y, PY |X) Decoder

Θ Xt Yt

Stop-feedback symbol 0/1

Θ̂

Encoding function et : U × [M ]→ X :

Xt = et(U,Θ), t ∈ N+

where Θ ∼ Unif ([M ]).
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VLSF Codes with m Decoding Times

Encoder
Channel

(X ,Y, PY |X) Decoder

Θ Xt Yt

Stop-feedback symbol 0/1

Θ̂

Decoding function gt : U ×Yt → [M ]: providing the best
estimate of Θ at time t, t ∈ {n1, n2, . . . , nm}.
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VLSF Codes with m Decoding Times

Encoder
Channel

(X ,Y, PY |X) Decoder

Θ Xt Yt

Stop-feedback symbol 0/1

Θ̂

Stopping time τ ∈ {ni}mi=1: a function of filtration generated by
{U, Y ni}mi=1 and must satisfy E[τ ] ≤ l.

Final decision: Θ̂ = gτ (Y τ )

τ also needs to satisfy

Pe , P[Θ 6= Θ̂] ≤ ε.
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VLSF Codes with m Decoding Times

Encoder
Channel

(X ,Y, PY |X) Decoder

Θ Xt Yt

Stop-feedback symbol 0/1

Θ̂

Goal: Determine l∗(m,M, ε) , min{l : ∃(l, nm1 ,M, ε) VLSF code}
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Information Density

Information density:

ι(xn; yn) , log
PY n|Xn(yn|xn)

PY n(yn)
(41)

• If PXn =
∏n
i=1 PXi and the channel is memoryless, ι(xn; yn) =

∑n
i=1 ι(xi; yi).

• If PX = P∗X , define channel capacity and dispersion by

C , EP∗
X

PY |X [ι(X;Y )], (42)

V , EP∗
X

PY |X [ι2(X;Y )]− C2. (43)

• We assume i.i.d. inputs ∼ P ∗X .

Y. Polyanskiy et al., “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, Apr. 2010.
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An Achievability Bound for (l, nm1 ,M, ε) VLSF Code

Theorem 14 (Yavas et al., 2021)

Fix a constant γ > 0, integer-valued decoding times n1 < n2 < · · · < nm, and a
memoryless channel (X ,Y,PY |X). For any l > 0 and ε ∈ (0, 1), there exists an
(l, nm1 ,M, ε′) VLSF code with

l ≤ nm +

m−1∑
i=1

(ni − ni+1)P

[
i⋃

j=1

{ι(Xnj ;Y nj ) ≥ γ}

]
, (44)

ε′ ≤ 1− P[ι(Xnm ;Y nm) ≥ γ] + (M − 1)2−γ , (45)

where PXnm is the product of distributions of m subvectors of lengths ni − ni−1,
i ∈ [m], i.e.,

PXnm (xnm1 ) =

m∏
i=1

PXnini−1+1

(
xnini−1+1

)
. (46)

R. Yavas et al., “Variable-length feedback codes with several decoding times for
the Gaussian channel,” IEEE Int. Sym. Inf. Theory (ISIT), Jul. 2021.
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An Integer Program

By relaxing P
[⋃i

j=1 {ι(X
nj ;Y nj ) ≥ γ}

]
to P[ι(Xni ;Y ni) ≥ γ], define

N(γ, nm1 ) , nm +

m−1∑
i=1

(ni − ni+1)P[ι(Xni ;Y ni) ≥ γ], (47)

Fm(γ,M,ε) , {nm1 ∈ Rm+ : ni+1 − ni ≥ 1, ∀i ∈ [m− 1];

P[ι(Xnm ;Y nm) ≥ γ] ≥ 1− ε+ (M − 1)2−γ}. (48)

Integer program: for a given m ∈ N+, M ∈ N+, ε ∈ (0, 1), and γ ≥ log M−1
ε

,

min
nm1

N(γ, nm1 )

s. t. nm1 ∈ Fm(γ,M, ε)

nm1 ∈ Nm+ .

(49)

Two-step minimization: minγ minnm1 N(γ, nm1 )
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Gaussian Model

For BI-AWGN channel,

• ι(x;Y ) = 1− log
(
1 + e−2xY

)
is continuous.

• ι(Xn;Y n) is a sum of i.i.d. ι(X;Y ).

Central limit theorem (CLT): Let W1,W2, . . . ,Wn be i.i.d. r.v.’s with zero mean,
variance σ2. Define the standardized sum

Sn ,

∑n
i=1 Wi

σ
√
n

. (50)

Then, limn→∞ P[Sn ≤ x] = Φ(x).

Gaussian Model [Wang et al., 2017]: For n sufficiently large,

P[ι(Xn;Y n) ≥ γ] ≈ Q
(
γ − nC√
nV

)
. (51)

Question: What if n is small?

H. Wang et al., “An information density approach to analyzing and optimizing incre-
mental redundancy with feedback”, IEEE Int. Sym. Inf. Theory (ISIT), Jun. 2017.
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Gaussian Model

For BI-AWGN channel,

• ι(x;Y ) = 1− log
(
1 + e−2xY

)
is continuous.

• ι(Xn;Y n) is a sum of i.i.d. ι(X;Y ).

Central limit theorem (CLT): Let W1,W2, . . . ,Wn be i.i.d. r.v.’s with zero mean,
variance σ2. Define the standardized sum

Sn ,

∑n
i=1 Wi

σ
√
n

. (50)

Then, limn→∞ P[Sn ≤ x] = Φ(x).
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γ − nC√
nV

)
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Edgeworth Expansion

Edgeworth expansion: Let W1,W2, . . . ,Wn be i.i.d. absolutely continuous r.v.’s with
zero mean, variance σ2. Let {κi}∞i=1 be the cumulants of W . If E[|W |s+2] <∞ for
some s ∈ N+, then,

P[Sn ≤ x] = Φ(x) + φ(x)

s∑
j=1

n−
j
2 pj(x) + o

(
n−

s
2

)
, (52)

where pj(x) requires cumulants κ3, κ4, . . . , κj+2 of W .

F. Edgeworth, “The law of error,” Cambridge Philos. Trans., 1905.
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An Example of Order-5 Edgeworth Expansion

Parameters setup: BI-AWGN channel at 0.2 dB, γ = 13.62.
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Petrov Expansion

Petrov expansion: Let W1,W2, . . . ,Wn be i.i.d. r.v.’s with zero mean, variance σ2. Let
{κi}∞i=1 be the cumulants of W . If x ≥ 0, x = o(

√
n), and E[etW ] <∞ for |t| < H for

some H > 0,

P[Sn ≤ x] = 1−Q(x) exp

{
x3

√
n

Λ

(
x√
n

)}[
1 +O

(
x+ 1√
n

)]
, (53)

P[Sn ≤ −x] = Q(x) exp

{
−x3

√
n

Λ

(
−x√
n

)}[
1 +O

(
x+ 1√
n

)]
, (54)

where Λ(t) =
∑∞
k=0 akt

k is called the Cramér series. Petrov provided

Λ[3](t) =
κ3

6κ
3/2
2

+
κ4κ2 − 3κ2

3

24κ3
2

t+
κ5κ

2
2 − 10κ4κ3κ2 + 15κ3

3

120κ
9/2
2

t2 (55)

V. V. Petrov, “Sum of independent random variables,” USA: Springer, Berlin, Heidelberg, 1975.
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Approximation Strategy

For BI-AWGN channel: Fγ(n): a function to approximate P[ι(Xn;Y n) ≥ γ].

Fγ(n) =

Q (x(n))− φ(x(n))
∑5
j=1 n

− j
2 pj(x(n)), n > n∗

Q(x(n)) exp
{
x3(n)√

n
Λ[3]

(
x(n)√
n

)}
, 0 ≤ n ≤ n∗,

(56)

where

x(n) ,
γ − nC√
nV
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Edgeworth and Petrov Expansions

Parameters setup: BI-AWGN channel at 0.2 dB, γ = 13.62, n∗ = 16.84.
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Combination of Two Expansions

Parameters setup: BI-AWGN channel at 0.2 dB, γ = 13.62, n∗ = 16.84.
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A Relaxed Program

Relaxed program: for a given m ∈ N+, M ∈ N+, ε ∈ (0, 1), and γ ≥ log M−1
ε

,

min
nm1

N(γ, nm1 )

s. t. nm1 ∈ Fm(γ,M, ε)
(57)
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The Gap-Constrained Sequential Differential Optimization (SDO) Procedure

Theorem 15 (Gap-constrained SDO procedure)

Fix a memoryless channel (X ,Y, PY |X) for which ι(X;Y ) is continuous and
P[ι(Xn;Y n) ≥ γ] is increasing and differentiable. For a given m ∈ N+, M ∈ N+,
ε ∈ (0, 1), and γ ≥ log M−1

ε
, the optimal real-valued decoding times n∗1, n

∗
2, . . . , n

∗
m for

the relaxed program (57) satisfy

n∗m = F−1
γ

(
1− ε+ (M − 1)2−γ

)
, (58)

n∗i+1 = n∗i + max

{
1,
Fγ(n∗i )− Fγ(n∗i−1)− λi−1

fγ(n∗i )

}
, (59)

λi = max{λi−1 + fγ(n∗i )− Fγ(n∗i ) + Fγ(n∗i−1), 0}, (60)

where i ∈ [m− 1], λ0 , 0, and n∗0 , 0.
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Achievability Bounds for (l, nm1 ,M, ε) VLSF Codes over BI-AWGN Channel

Parameters setup: BI-AWGN channel at 0.2 dB withC = 0.5. ε = 10−3.
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What About BSC?

For BSC(p), p ∈ (0, 1/2),

• ι(X;Y ) = log(2− 2p)− Z
(

log 1−p
p

)
is a lattice r.v.

• The tail probability

P[ι(Xn;Y n) ≥ γ] = P

[
n∑
i=1

Zi ≤
n log(2− 2p)− γ

log ((1− p)/p)

]

=

⌊
n log(2−2p)−γ
log((1−p)/p)

⌋∑
c=0

(
n

c

)
pc(1− p)n−c. (61)
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A Quick Look at the Tail Probability

Parameters setup: BSC(0.35), γ = 3.
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The Zig-Zag Tail Probability is Universal

Theorem 16

Fix γ > 0 and p ∈ (0, 1/2). Define αi ,
⌈
γ+i log((1−p)/p)

log(2−2p)

⌉
, i ∈ N. Then,

P[ι(Xn;Y n) ≥ γ] < P[ι(Xn+1;Y n+1) ≥ γ], if n = αi − 1, (62)

P[ι(Xn;Y n) ≥ γ] > P[ι(Xn+1;Y n+1) ≥ γ], if n ∈ [αi, αi+1 − 1). (63)

αi is called the ith local maximizer, i ∈ N.

Lemma 3

Fix a BSC(p), p ∈ (0, 1/2). For a given m ∈ N+, M ∈ N+, and γ, if m < n∗m(M,γ), the
optimal decoding times nm1 for minimizing N(γ, nm1 ) are among {αi}∞i=1.
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Discrete SDO Procedure, cont’d

Define

n∗m , min{n ∈ N : P[Snm ≥ γ] ≥ 1− ε+ (M − 1)2−γ}. (64)

g
(1)
− (n1) , max

n∈[1,n∗m−m+1]
P[Sn≥γ]<P[Sn1

≥γ]

P[Sn ≥ γ](n1 − n)

P[Sn1 ≥ γ]− P[Sn ≥ γ]
, (65)

g
(1)
+ (n1) , min

n∈[1,n∗m−m+1]
P[Sn≥γ]>P[Sn1

≥γ]

P[Sn ≥ γ](n1 − n)

P[Sn1 ≥ γ]− P[Sn ≥ γ]
. (66)

g
(i)
− (ni, ni−1) , max

n∈[ni−1+1,n∗m−m+i]
P[Sn≥γ]<P[Sni≥γ]

P[Sn ≥ γ]− P[Sni−1 ≥ γ]

P[Sni ≥ γ]− P[Sn ≥ γ]
(ni − n), (67)

g
(i)
+ (ni, ni−1) , min

n∈[ni−1+1,n∗m−m+i]
P[Sn≥γ]>P[Sni≥γ]

P[Sn ≥ γ]− P[Sni−1 ≥ γ]

P[Sni ≥ γ]− P[Sn ≥ γ]
(ni − n). (68)

• g(i)
− ( · ) = −∞ if the maximizer is empty.

• g(i)
+ ( · ) =∞ if the minimizer is empty
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Discrete SDO Procedure, cont’d

Theorem 17 (Discrete SDO procedure)

Fix a memoryless channel (X ,Y, PY |X) and scalars m ∈ N+, M ∈ N+, ε ∈ (0, 1), and

γ ≥ log M−1
ε

. Define Sn , ι(Xn;Y n). The optimal integer-valued decoding times
n∗1, n

∗
2, . . . , n

∗
m for the integer program (49) satisfy

n∗1 + max(1, g
(1)
− (n∗1)) ≤ n∗2 ≤ n∗1 + g

(1)
+ (n∗1), (69)

n∗2 + max(1, g
(2)
− (n∗2, n

∗
1)) ≤ n∗3 ≤ n∗2 + g

(2)
+ (n∗2, n

∗
1), (70)

· · ·

n∗m−1 + max(1, g
(m−1)
− (n∗m−1, n

∗
m−2)) ≤ n∗m ≤ n∗m−1 + g

(m−1)
+ (n∗m−1, n

∗
m−2), (71)

Hengjie Yang Ph.D. Defense May 16, 2022 64 / 69



Achievability Bounds for (l, nm1 ,M, ε) VLSF Codes over BSC

Parameters setup: BSC(0.11) with C = 0.5. ε = 10−3.
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Summary

Case 1: BI-AWGN channel with no feedback

• We designed a new block code called CRC-aided convolutional code.

• Simulation shows that several CRC-TBCCs under SLVD outperforms the RCU
bound at a reasonable complexity.

Case 2: Binary channels with full, noiseless feedback

• For BSC, we developed refined non-asymptotic VLF achievability bound that
outperforms Polyanskiy’s VLSF achievability bound.

• For BAC, we generalized the SED coding scheme and developed a non-asymptotic
VLF achievability bound.

Case 3: Binary-input channels with finite, stop feedback

• We developed two methods to evaluate the VLSF achievability bounds.

• For both BI-AWGN channel and BSC, Polyanskiy’s VLSF achievability bound can be
approached with a small number of decoding times.
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